Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 1 | #ifndef FRC971_SOLVERS_SPARSE_CONVEX_H_ |
| 2 | #define FRC971_SOLVERS_SPARSE_CONVEX_H_ |
| 3 | |
| 4 | #include <sys/types.h> |
| 5 | #include <unistd.h> |
| 6 | |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 7 | #include <iomanip> |
| 8 | |
| 9 | #include "glog/logging.h" |
Philipp Schrader | 790cb54 | 2023-07-05 21:06:52 -0700 | [diff] [blame] | 10 | #include <Eigen/Sparse> |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 11 | |
Stephan Pleines | d99b1ee | 2024-02-02 20:56:44 -0800 | [diff] [blame^] | 12 | namespace frc971::solvers { |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 13 | |
| 14 | // TODO(austin): Steal JET from Ceres to generate the derivatives easily and |
| 15 | // quickly? |
| 16 | // |
| 17 | // States is the number of inputs to the optimization problem. |
| 18 | // M is the number of inequality constraints. |
| 19 | // N is the number of equality constraints. |
| 20 | class SparseConvexProblem { |
| 21 | public: |
| 22 | size_t states() const { return states_; } |
| 23 | size_t inequality_constraints() const { return inequality_constraints_; } |
| 24 | size_t equality_constraints() const { return equality_constraints_; } |
| 25 | |
| 26 | // Returns the function to minimize and it's derivatives. |
| 27 | virtual double f0(Eigen::Ref<const Eigen::VectorXd> X) const = 0; |
| 28 | // TODO(austin): Should the jacobian be sparse? |
| 29 | virtual Eigen::SparseMatrix<double> df0( |
| 30 | Eigen::Ref<const Eigen::VectorXd> X) const = 0; |
| 31 | virtual Eigen::SparseMatrix<double> ddf0( |
| 32 | Eigen::Ref<const Eigen::VectorXd> X) const = 0; |
| 33 | |
| 34 | // Returns the constraints f(X) < 0, and their derivative. |
| 35 | virtual Eigen::VectorXd f(Eigen::Ref<const Eigen::VectorXd> X) const = 0; |
| 36 | virtual Eigen::SparseMatrix<double> df( |
| 37 | Eigen::Ref<const Eigen::VectorXd> X) const = 0; |
| 38 | |
| 39 | // Returns the equality constraints of the form A x = b |
| 40 | virtual Eigen::SparseMatrix<double> A() const = 0; |
| 41 | virtual Eigen::VectorXd b() const = 0; |
| 42 | |
| 43 | protected: |
| 44 | SparseConvexProblem(size_t states, size_t inequality_constraints, |
| 45 | size_t equality_constraints) |
| 46 | : states_(states), |
| 47 | inequality_constraints_(inequality_constraints), |
| 48 | equality_constraints_(equality_constraints) {} |
| 49 | |
| 50 | private: |
| 51 | size_t states_; |
| 52 | size_t inequality_constraints_; |
| 53 | size_t equality_constraints_; |
| 54 | }; |
| 55 | |
| 56 | // Implements a Primal-Dual Interior point method convex solver. |
| 57 | // See 11.7 of https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |
| 58 | // |
| 59 | // States is the number of inputs to the optimization problem. |
| 60 | // M is the number of inequality constraints. |
| 61 | // N is the number of equality constraints. |
| 62 | class SparseSolver { |
| 63 | public: |
| 64 | // Ratio to require the cost to decrease when line searching. |
| 65 | static constexpr double kAlpha = 0.05; |
| 66 | // Line search step parameter. |
| 67 | static constexpr double kBeta = 0.5; |
| 68 | static constexpr double kMu = 2.0; |
| 69 | // Terminal condition for the primal problem (equality constraints) and dual |
| 70 | // (gradient + inequality constraints). |
| 71 | static constexpr double kEpsilonF = 1e-6; |
| 72 | // Terminal condition for nu, the surrogate duality gap. |
| 73 | static constexpr double kEpsilon = 1e-6; |
| 74 | |
| 75 | // Solves the problem given a feasible initial solution. |
| 76 | Eigen::VectorXd Solve(const SparseConvexProblem &problem, |
| 77 | Eigen::Ref<const Eigen::VectorXd> X_initial); |
| 78 | |
| 79 | private: |
| 80 | // Class to hold all the derivataves and function evaluations. |
| 81 | struct Derivatives { |
| 82 | size_t states() const { return hessian.rows(); } |
| 83 | size_t inequality_constraints() const { return f.rows(); } |
| 84 | size_t equality_constraints() const { return Axmb.rows(); } |
| 85 | |
| 86 | Eigen::SparseMatrix<double> gradient; |
| 87 | Eigen::SparseMatrix<double> hessian; |
| 88 | |
| 89 | // Inequality function f |
| 90 | Eigen::VectorXd f; |
| 91 | // df |
| 92 | Eigen::SparseMatrix<double> df; |
| 93 | |
| 94 | // ddf is assumed to be 0 because for the linear constraint distance |
| 95 | // function we are using, it is actually 0, and by assuming it is zero |
| 96 | // rather than passing it through as 0 to the solver, we can save enough CPU |
| 97 | // to make it worth it. |
| 98 | |
| 99 | // A |
| 100 | Eigen::SparseMatrix<double> A; |
| 101 | // Ax - b |
| 102 | Eigen::VectorXd Axmb; |
| 103 | }; |
| 104 | |
| 105 | // Computes all the values for the given problem at the given state. |
Philipp Schrader | 790cb54 | 2023-07-05 21:06:52 -0700 | [diff] [blame] | 106 | Derivatives ComputeDerivative(const SparseConvexProblem &problem, |
| 107 | const Eigen::Ref<const Eigen::VectorXd> y); |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 108 | |
| 109 | // Computes Rt at the given state and with the given t_inverse. See 11.53 of |
| 110 | // cvxbook.pdf. |
Philipp Schrader | 790cb54 | 2023-07-05 21:06:52 -0700 | [diff] [blame] | 111 | Eigen::VectorXd Rt(const Derivatives &derivatives, Eigen::VectorXd y, |
| 112 | double t_inverse); |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 113 | |
| 114 | // Prints out all the derivatives with VLOG at the provided verbosity. |
Philipp Schrader | 790cb54 | 2023-07-05 21:06:52 -0700 | [diff] [blame] | 115 | void PrintDerivatives(const Derivatives &derivatives, |
| 116 | const Eigen::Ref<const Eigen::VectorXd> y, |
| 117 | std::string_view prefix, int verbosity); |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 118 | }; |
| 119 | |
Stephan Pleines | d99b1ee | 2024-02-02 20:56:44 -0800 | [diff] [blame^] | 120 | } // namespace frc971::solvers |
Austin Schuh | 2944103 | 2023-05-31 19:32:24 -0700 | [diff] [blame] | 121 | |
| 122 | #endif // FRC971_SOLVERS_SPARSE_CONVEX_H_ |