blob: 387dbc3bf2f46ebb5b7abae29bac65cdf0359ac8 [file] [log] [blame]
James Kuszmaulf5eb4682023-09-22 17:16:59 -07001#ifndef AOS_FLATBUFFERS_BASE_H_
2#define AOS_FLATBUFFERS_BASE_H_
3#include <iomanip>
4#include <memory>
5#include <optional>
6#include <span>
7
8#include "flatbuffers/base.h"
9#include "glog/logging.h"
10namespace aos::fbs {
11using ::flatbuffers::soffset_t;
12using ::flatbuffers::uoffset_t;
13using ::flatbuffers::voffset_t;
14
15// Returns the smallest multiple of alignment that is greater than or equal to
16// size.
17constexpr size_t PaddedSize(size_t size, size_t alignment) {
18 // We can be clever with bitwise operations by assuming that aligment is a
19 // power of two. Or we can just be clearer about what we mean and eat a few
20 // integer divides.
21 return (((size - 1) / alignment) + 1) * alignment;
22}
23
24// Used as a parameter to methods where we are messing with memory and may or
25// may not want to clear it to zeroes.
26enum class SetZero { kYes, kNo };
27
28class Allocator;
29
30// Parent type of any object that may need to dynamically change size at
31// runtime. Used by the static table and vector types to request additional
32// blocks of memory when needed.
33//
34// The way that this works is that every ResizeableObject has some number of
35// children that are themselves ResizeableObject's and whose memory is entirely
36// contained within their parent's memory. A ResizeableObject without a parent
37// instead has an Allocator that it can use to allocate additional blocks
38// of memory. Whenever a child needs to grow in size, it will make a call to
39// InsertBytes() on its parent, which will percolate up until InsertBytes() gets
40// called on the root allocator. If the insert succeeds, then every single child
41// through the entire tree will get notified (this is because the allocator may
42// have shifted the entire memory buffer, so any pointers may need to be
43// updated). Child types will provide implementations of the GetObjects() method
44// to both allow tree traversal as well as to allow the various internal offsets
45// to be updated appropriately.
46class ResizeableObject {
47 public:
48 // Returns the underlying memory buffer into which the flatbuffer will be
49 // serialized.
50 std::span<uint8_t> buffer() { return buffer_; }
51 std::span<const uint8_t> buffer() const { return buffer_; }
52
53 // Updates the underlying memory buffer to new_buffer, with an indication of
54 // where bytes were inserted/removed from the buffer. It is assumed that
55 // new_buffer already has the state of the serialized flatbuffer
56 // copied into it.
57 // * When bytes have been inserted, modification_point will point to the first
58 // of the inserted bytes in new_buffer and bytes_inserted will be the number
59 // of new bytes.
60 // * Buffer shrinkage is not currently supported.
61 // * When bytes_inserted is zero, modification_point is ignored.
62 void UpdateBuffer(std::span<uint8_t> new_buffer, void *modification_point,
63 ssize_t bytes_inserted);
64
65 protected:
66 // Data associated with a sub-object of this object.
67 struct SubObject {
68 // A direct pointer to the inline entry in the flatbuffer table data. The
69 // pointer must be valid, but the entry itself may be zero if the object is
70 // not actually populated.
71 // If *inline_entry is non-zero, this will get updated if any new memory got
72 // added/removed in-between inline_entry and the actual data pointed to be
73 // inline_entry.
74 uoffset_t *inline_entry;
75 // The actual child object. Should be nullptr if *inline_entry is zero; must
76 // be valid if *inline_entry is non-zero.
77 ResizeableObject *object;
78 // The nominal offset from buffer_.data() to object->buffer_.data().
79 // Must be provided, and must always be valid, even if *inline_entry is
80 // zero.
81 // I.e., the following holds when object is not nullptr:
82 // SubObject object = parent.GetSubObject(index);
83 // CHECK_EQ(parent.buffer()->data() + *object.absolute_offset,
84 // object.object->buffer().data());
85 size_t *absolute_offset;
86 };
87
88 ResizeableObject(std::span<uint8_t> buffer, ResizeableObject *parent)
89 : buffer_(buffer), parent_(parent) {}
90 ResizeableObject(std::span<uint8_t> buffer, Allocator *allocator)
91 : buffer_(buffer), allocator_(allocator) {}
92 ResizeableObject(std::span<uint8_t> buffer,
93 std::unique_ptr<Allocator> allocator)
94 : buffer_(buffer),
95 owned_allocator_(std::move(allocator)),
96 allocator_(owned_allocator_.get()) {}
97 ResizeableObject(const ResizeableObject &) = delete;
98 ResizeableObject &operator=(const ResizeableObject &) = delete;
99 // Users do not end up using the move constructor; however, it is needed to
100 // handle the fact that a ResizeableObject may be a member of an std::vector
101 // in the various generated types.
James Kuszmauld4b4f1d2024-03-13 15:57:35 -0700102 ResizeableObject(ResizeableObject &&other);
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700103 // Required alignment of this object.
104 virtual size_t Alignment() const = 0;
105 // Offset from the start of buffer() to the actual start of the object in
106 // question (this is important for vectors, where the vector itself cannot
107 // have internal padding, and so the start of the vector may be offset from
108 // the start of the buffer to handle alignment).
109 virtual size_t AbsoluteOffsetOffset() const = 0;
110 // Causes bytes bytes to be inserted between insertion_point - 1 and
111 // insertion_point.
112 // If requested, the new bytes will be cleared to zero; otherwise they will be
113 // left uninitialized.
114 // The insertion_point may not be equal to this->buffer_.data(); it may be a
115 // pointer just past the end of the buffer. This is to ease the
116 // implementation, and is merely a requirement that any buffer growth occur
117 // only on the inside or past the end of the vector, and not prior to the
118 // start of the vector.
119 // Returns true on success, false on failure (e.g., if the allocator has no
120 // memory available).
121 bool InsertBytes(void *insertion_point, size_t bytes, SetZero set_zero);
122 // Called *after* the internal buffer_ has been swapped out and *after* the
123 // object tree has been traversed and fixed.
124 virtual void ObserveBufferModification() {}
125
126 // Returns the index'th sub object of this object.
127 // index must be less than NumberOfSubObjects().
128 // This will include objects which are not currently populated but which may
129 // be populated in the future (so that we can track what the necessary offsets
130 // are when we do populate it).
131 virtual SubObject GetSubObject(size_t index) = 0;
132 // Number of sub-objects of this object. May be zero.
133 virtual size_t NumberOfSubObjects() const = 0;
134
135 // Treating the supplied absolute_offset as an offset into the internal memory
136 // buffer, return the pointer to the underlying memory.
137 const void *PointerForAbsoluteOffset(const size_t absolute_offset) {
138 return buffer_.data() + absolute_offset;
139 }
140 // Returns a span at the requested offset into the buffer. terminal_alignment
141 // does not align the start of the buffer; instead, it ensures that the memory
142 // from absolute_offset + size until the next multiple of terminal_alignment
143 // is set to all zeroes.
144 std::span<uint8_t> BufferForObject(size_t absolute_offset, size_t size,
145 size_t terminal_alignment);
146 // When memory has been inserted/removed, this iterates over the sub-objects
147 // and notifies/adjusts them appropriately.
148 // This will be called after buffer_ has been updated, and:
149 // * For insertion, modification_point will point into the new buffer_ to the
150 // first of the newly inserted bytes.
151 // * Removal is not entirely implemented yet, but for removal,
152 // modification_point should point to the first byte after the removed
153 // chunk.
154 void FixObjects(void *modification_point, ssize_t bytes_inserted);
155
156 Allocator *allocator() { return allocator_; }
157
158 std::span<uint8_t> buffer_;
159
160 private:
161 ResizeableObject *parent_ = nullptr;
162 std::unique_ptr<Allocator> owned_allocator_;
163 Allocator *allocator_ = nullptr;
164};
165
166// Interface to represent a memory allocator for use with ResizeableObject.
167class Allocator {
168 public:
169 virtual ~Allocator() {}
170 // Allocates memory of the requested size and alignment. alignment is not
171 // guaranteed.
172 // On failure to allocate the requested size, returns nullopt;
173 // Never returns a partial span.
174 // The span will be initialized to zero upon request.
175 // Once Allocate() has been called once, it may not be called again until
176 // Deallocate() has been called. In order to adjust the size of the buffer,
177 // call InsertBytes() and RemoveBytes().
178 [[nodiscard]] virtual std::optional<std::span<uint8_t>> Allocate(
179 size_t size, size_t alignment_hint, SetZero set_zero) = 0;
180 // Identical to Allocate(), but dies on failure.
181 [[nodiscard]] std::span<uint8_t> AllocateOrDie(size_t size,
182 size_t alignment_hint,
183 SetZero set_zero) {
184 std::optional<std::span<uint8_t>> span =
185 Allocate(size, alignment_hint, set_zero);
186 CHECK(span.has_value()) << ": Failed to allocate " << size << " bytes.";
187 CHECK_EQ(size, span.value().size())
188 << ": Failed to allocate " << size << " bytes.";
189 return span.value();
190 }
191 // Increases the size of the buffer by inserting bytes bytes immediately
192 // before insertion_point.
193 // alignment_hint specifies the alignment of the entire buffer, not of the
194 // inserted bytes.
195 // The returned span may or may not overlap with the original buffer in
196 // memory.
197 // The inserted bytes will be set to zero or uninitialized depending on the
198 // value of SetZero.
199 // insertion_point must be in (or 1 past the end of) the buffer.
200 // Returns nullopt on a failure to allocate the requested bytes.
201 [[nodiscard]] virtual std::optional<std::span<uint8_t>> InsertBytes(
202 void *insertion_point, size_t bytes, size_t alignment_hint,
203 SetZero set_zero) = 0;
204 // Removes the requested span of bytes from the buffer, returning the new
205 // buffer.
206 [[nodiscard]] virtual std::span<uint8_t> RemoveBytes(
207 std::span<uint8_t> remove_bytes) = 0;
208 // Deallocates the currently allocated buffer. The provided buffer must match
209 // the latest version of the buffer.
210 // If Allocate() has been called, Deallocate() must be called prior to
211 // destroying the Allocator.
212 virtual void Deallocate(std::span<uint8_t> buffer) = 0;
213};
214
215// Allocator that uses an std::vector to allow arbitrary-sized allocations.
216// Does not provide any alignment guarantees.
217class VectorAllocator : public Allocator {
218 public:
219 VectorAllocator() {}
220 ~VectorAllocator() {
221 CHECK(buffer_.empty())
222 << ": Must deallocate before destroying the VectorAllocator.";
223 }
224 std::optional<std::span<uint8_t>> Allocate(size_t size, size_t /*alignment*/,
225 SetZero set_zero) override;
226 std::optional<std::span<uint8_t>> InsertBytes(void *insertion_point,
227 size_t bytes,
228 size_t /*alignment*/,
229 SetZero /*set_zero*/) override;
230 std::span<uint8_t> RemoveBytes(std::span<uint8_t> remove_bytes) override;
231
232 void Deallocate(std::span<uint8_t>) override {
233 CHECK(!buffer_.empty())
234 << ": Called Deallocate() without a prior allocation.";
235 buffer_.resize(0);
236 }
237
238 private:
239 std::vector<uint8_t> buffer_;
240};
241
242// Allocator that allocates all of its memory within a provided span. To match
243// the behavior of the FlatBufferBuilder, it will start its allocations at the
244// end of the provided span.
245//
246// Attempts to allocate more memory than is present in the provided buffer will
247// fail.
248class SpanAllocator : public Allocator {
249 public:
250 SpanAllocator(std::span<uint8_t> buffer) : buffer_(buffer) {}
251 ~SpanAllocator() {
252 CHECK(!allocated_)
253 << ": Must deallocate before destroying the SpanAllocator.";
254 }
255
256 std::optional<std::span<uint8_t>> Allocate(size_t size, size_t /*alignment*/,
257 SetZero set_zero) override;
258
259 std::optional<std::span<uint8_t>> InsertBytes(void *insertion_point,
260 size_t bytes,
261 size_t /*alignment*/,
262 SetZero set_zero) override;
263
264 std::span<uint8_t> RemoveBytes(std::span<uint8_t> remove_bytes) override;
265
266 void Deallocate(std::span<uint8_t>) override;
267
268 private:
269 std::span<uint8_t> buffer_;
270 bool allocated_ = false;
271 size_t allocated_size_ = 0;
272};
273
Maxwell Hendersonfb1e3bc2024-02-04 13:55:22 -0800274// Allocates and owns a fixed-size memory buffer on the stack.
275//
276// This provides a convenient Allocator for use with the aos::fbs::Builder
277// in realtime code instead of trying to use the VectorAllocator.
278template <std::size_t N>
279class FixedStackAllocator : public SpanAllocator {
280 public:
281 FixedStackAllocator() : SpanAllocator({buffer_, sizeof(buffer_)}) {}
282
283 private:
284 uint8_t buffer_[N];
285};
286
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700287namespace internal {
288std::ostream &DebugBytes(std::span<const uint8_t> span, std::ostream &os);
289inline void ClearSpan(std::span<uint8_t> span) {
290 memset(span.data(), 0, span.size());
291}
292// std::span::subspan does not do bounds checking.
293template <typename T>
294inline std::span<T> GetSubSpan(std::span<T> span, size_t offset,
295 size_t count = std::dynamic_extent) {
296 if (count != std::dynamic_extent) {
297 CHECK_LE(offset + count, span.size());
298 }
299 return span.subspan(offset, count);
300}
301// Normal users should never move any of the special flatbuffer types that we
302// provide. However, they do need to be moveable in order to support the use of
303// resizeable vectors. As such, we make all the move constructors private and
304// friend the TableMover struct. The TableMover struct is then used in places
305// that need to have moveable objects. It should never be used by a user.
306template <typename T>
307struct TableMover {
308 TableMover(std::span<uint8_t> buffer, ResizeableObject *parent)
309 : t(buffer, parent) {}
310 TableMover(std::span<uint8_t> buffer, Allocator *allocator)
311 : t(buffer, allocator) {}
312 TableMover(std::span<uint8_t> buffer, ::std::unique_ptr<Allocator> allocator)
313 : t(buffer, ::std::move(allocator)) {}
314 TableMover(TableMover &&) = default;
315 T t;
316};
317} // namespace internal
318} // namespace aos::fbs
319#endif // AOS_FLATBUFFERS_BASE_H_