Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame] | 1 | /* Exercise mpz_*_kronecker_*() and mpz_jacobi() functions. |
| 2 | |
| 3 | Copyright 1999-2004, 2013 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of the GNU MP Library test suite. |
| 6 | |
| 7 | The GNU MP Library test suite is free software; you can redistribute it |
| 8 | and/or modify it under the terms of the GNU General Public License as |
| 9 | published by the Free Software Foundation; either version 3 of the License, |
| 10 | or (at your option) any later version. |
| 11 | |
| 12 | The GNU MP Library test suite is distributed in the hope that it will be |
| 13 | useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
| 15 | Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License along with |
| 18 | the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */ |
| 19 | |
| 20 | |
| 21 | /* With no arguments the various Kronecker/Jacobi symbol routines are |
| 22 | checked against some test data and a lot of derived data. |
| 23 | |
| 24 | To check the test data against PARI-GP, run |
| 25 | |
| 26 | t-jac -p | gp -q |
| 27 | |
| 28 | Enhancements: |
| 29 | |
| 30 | More big test cases than those given by check_squares_zi would be good. */ |
| 31 | |
| 32 | |
| 33 | #include <stdio.h> |
| 34 | #include <stdlib.h> |
| 35 | #include <string.h> |
| 36 | |
| 37 | #include "gmp-impl.h" |
| 38 | #include "tests.h" |
| 39 | |
| 40 | #ifdef _LONG_LONG_LIMB |
| 41 | #define LL(l,ll) ll |
| 42 | #else |
| 43 | #define LL(l,ll) l |
| 44 | #endif |
| 45 | |
| 46 | |
| 47 | int option_pari = 0; |
| 48 | |
| 49 | |
| 50 | unsigned long |
| 51 | mpz_mod4 (mpz_srcptr z) |
| 52 | { |
| 53 | mpz_t m; |
| 54 | unsigned long ret; |
| 55 | |
| 56 | mpz_init (m); |
| 57 | mpz_fdiv_r_2exp (m, z, 2); |
| 58 | ret = mpz_get_ui (m); |
| 59 | mpz_clear (m); |
| 60 | return ret; |
| 61 | } |
| 62 | |
| 63 | int |
| 64 | mpz_fits_ulimb_p (mpz_srcptr z) |
| 65 | { |
| 66 | return (SIZ(z) == 1 || SIZ(z) == 0); |
| 67 | } |
| 68 | |
| 69 | mp_limb_t |
| 70 | mpz_get_ulimb (mpz_srcptr z) |
| 71 | { |
| 72 | if (SIZ(z) == 0) |
| 73 | return 0; |
| 74 | else |
| 75 | return PTR(z)[0]; |
| 76 | } |
| 77 | |
| 78 | |
| 79 | void |
| 80 | try_base (mp_limb_t a, mp_limb_t b, int answer) |
| 81 | { |
| 82 | int got; |
| 83 | |
| 84 | if ((b & 1) == 0 || b == 1 || a > b) |
| 85 | return; |
| 86 | |
| 87 | got = mpn_jacobi_base (a, b, 0); |
| 88 | if (got != answer) |
| 89 | { |
| 90 | printf (LL("mpn_jacobi_base (%lu, %lu) is %d should be %d\n", |
| 91 | "mpn_jacobi_base (%llu, %llu) is %d should be %d\n"), |
| 92 | a, b, got, answer); |
| 93 | abort (); |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | |
| 98 | void |
| 99 | try_zi_ui (mpz_srcptr a, unsigned long b, int answer) |
| 100 | { |
| 101 | int got; |
| 102 | |
| 103 | got = mpz_kronecker_ui (a, b); |
| 104 | if (got != answer) |
| 105 | { |
| 106 | printf ("mpz_kronecker_ui ("); |
| 107 | mpz_out_str (stdout, 10, a); |
| 108 | printf (", %lu) is %d should be %d\n", b, got, answer); |
| 109 | abort (); |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | |
| 114 | void |
| 115 | try_zi_si (mpz_srcptr a, long b, int answer) |
| 116 | { |
| 117 | int got; |
| 118 | |
| 119 | got = mpz_kronecker_si (a, b); |
| 120 | if (got != answer) |
| 121 | { |
| 122 | printf ("mpz_kronecker_si ("); |
| 123 | mpz_out_str (stdout, 10, a); |
| 124 | printf (", %ld) is %d should be %d\n", b, got, answer); |
| 125 | abort (); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | |
| 130 | void |
| 131 | try_ui_zi (unsigned long a, mpz_srcptr b, int answer) |
| 132 | { |
| 133 | int got; |
| 134 | |
| 135 | got = mpz_ui_kronecker (a, b); |
| 136 | if (got != answer) |
| 137 | { |
| 138 | printf ("mpz_ui_kronecker (%lu, ", a); |
| 139 | mpz_out_str (stdout, 10, b); |
| 140 | printf (") is %d should be %d\n", got, answer); |
| 141 | abort (); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | |
| 146 | void |
| 147 | try_si_zi (long a, mpz_srcptr b, int answer) |
| 148 | { |
| 149 | int got; |
| 150 | |
| 151 | got = mpz_si_kronecker (a, b); |
| 152 | if (got != answer) |
| 153 | { |
| 154 | printf ("mpz_si_kronecker (%ld, ", a); |
| 155 | mpz_out_str (stdout, 10, b); |
| 156 | printf (") is %d should be %d\n", got, answer); |
| 157 | abort (); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | |
| 162 | /* Don't bother checking mpz_jacobi, since it only differs for b even, and |
| 163 | we don't have an actual expected answer for it. tests/devel/try.c does |
| 164 | some checks though. */ |
| 165 | void |
| 166 | try_zi_zi (mpz_srcptr a, mpz_srcptr b, int answer) |
| 167 | { |
| 168 | int got; |
| 169 | |
| 170 | got = mpz_kronecker (a, b); |
| 171 | if (got != answer) |
| 172 | { |
| 173 | printf ("mpz_kronecker ("); |
| 174 | mpz_out_str (stdout, 10, a); |
| 175 | printf (", "); |
| 176 | mpz_out_str (stdout, 10, b); |
| 177 | printf (") is %d should be %d\n", got, answer); |
| 178 | abort (); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | |
| 183 | void |
| 184 | try_pari (mpz_srcptr a, mpz_srcptr b, int answer) |
| 185 | { |
| 186 | printf ("try("); |
| 187 | mpz_out_str (stdout, 10, a); |
| 188 | printf (","); |
| 189 | mpz_out_str (stdout, 10, b); |
| 190 | printf (",%d)\n", answer); |
| 191 | } |
| 192 | |
| 193 | |
| 194 | void |
| 195 | try_each (mpz_srcptr a, mpz_srcptr b, int answer) |
| 196 | { |
| 197 | #if 0 |
| 198 | fprintf(stderr, "asize = %d, bsize = %d\n", |
| 199 | mpz_sizeinbase (a, 2), mpz_sizeinbase (b, 2)); |
| 200 | #endif |
| 201 | if (option_pari) |
| 202 | { |
| 203 | try_pari (a, b, answer); |
| 204 | return; |
| 205 | } |
| 206 | |
| 207 | if (mpz_fits_ulimb_p (a) && mpz_fits_ulimb_p (b)) |
| 208 | try_base (mpz_get_ulimb (a), mpz_get_ulimb (b), answer); |
| 209 | |
| 210 | if (mpz_fits_ulong_p (b)) |
| 211 | try_zi_ui (a, mpz_get_ui (b), answer); |
| 212 | |
| 213 | if (mpz_fits_slong_p (b)) |
| 214 | try_zi_si (a, mpz_get_si (b), answer); |
| 215 | |
| 216 | if (mpz_fits_ulong_p (a)) |
| 217 | try_ui_zi (mpz_get_ui (a), b, answer); |
| 218 | |
| 219 | if (mpz_fits_sint_p (a)) |
| 220 | try_si_zi (mpz_get_si (a), b, answer); |
| 221 | |
| 222 | try_zi_zi (a, b, answer); |
| 223 | } |
| 224 | |
| 225 | |
| 226 | /* Try (a/b) and (a/-b). */ |
| 227 | void |
| 228 | try_pn (mpz_srcptr a, mpz_srcptr b_orig, int answer) |
| 229 | { |
| 230 | mpz_t b; |
| 231 | |
| 232 | mpz_init_set (b, b_orig); |
| 233 | try_each (a, b, answer); |
| 234 | |
| 235 | mpz_neg (b, b); |
| 236 | if (mpz_sgn (a) < 0) |
| 237 | answer = -answer; |
| 238 | |
| 239 | try_each (a, b, answer); |
| 240 | |
| 241 | mpz_clear (b); |
| 242 | } |
| 243 | |
| 244 | |
| 245 | /* Try (a+k*p/b) for various k, using the fact (a/b) is periodic in a with |
| 246 | period p. For b>0, p=b if b!=2mod4 or p=4*b if b==2mod4. */ |
| 247 | |
| 248 | void |
| 249 | try_periodic_num (mpz_srcptr a_orig, mpz_srcptr b, int answer) |
| 250 | { |
| 251 | mpz_t a, a_period; |
| 252 | int i; |
| 253 | |
| 254 | if (mpz_sgn (b) <= 0) |
| 255 | return; |
| 256 | |
| 257 | mpz_init_set (a, a_orig); |
| 258 | mpz_init_set (a_period, b); |
| 259 | if (mpz_mod4 (b) == 2) |
| 260 | mpz_mul_ui (a_period, a_period, 4); |
| 261 | |
| 262 | /* don't bother with these tests if they're only going to produce |
| 263 | even/even */ |
| 264 | if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (a_period)) |
| 265 | goto done; |
| 266 | |
| 267 | for (i = 0; i < 6; i++) |
| 268 | { |
| 269 | mpz_add (a, a, a_period); |
| 270 | try_pn (a, b, answer); |
| 271 | } |
| 272 | |
| 273 | mpz_set (a, a_orig); |
| 274 | for (i = 0; i < 6; i++) |
| 275 | { |
| 276 | mpz_sub (a, a, a_period); |
| 277 | try_pn (a, b, answer); |
| 278 | } |
| 279 | |
| 280 | done: |
| 281 | mpz_clear (a); |
| 282 | mpz_clear (a_period); |
| 283 | } |
| 284 | |
| 285 | |
| 286 | /* Try (a/b+k*p) for various k, using the fact (a/b) is periodic in b of |
| 287 | period p. |
| 288 | |
| 289 | period p |
| 290 | a==0,1mod4 a |
| 291 | a==2mod4 4*a |
| 292 | a==3mod4 and b odd 4*a |
| 293 | a==3mod4 and b even 8*a |
| 294 | |
| 295 | In Henri Cohen's book the period is given as 4*a for all a==2,3mod4, but |
| 296 | a counterexample would seem to be (3/2)=-1 which with (3/14)=+1 doesn't |
| 297 | have period 4*a (but rather 8*a with (3/26)=-1). Maybe the plain 4*a is |
| 298 | to be read as applying to a plain Jacobi symbol with b odd, rather than |
| 299 | the Kronecker extension to b even. */ |
| 300 | |
| 301 | void |
| 302 | try_periodic_den (mpz_srcptr a, mpz_srcptr b_orig, int answer) |
| 303 | { |
| 304 | mpz_t b, b_period; |
| 305 | int i; |
| 306 | |
| 307 | if (mpz_sgn (a) == 0 || mpz_sgn (b_orig) == 0) |
| 308 | return; |
| 309 | |
| 310 | mpz_init_set (b, b_orig); |
| 311 | |
| 312 | mpz_init_set (b_period, a); |
| 313 | if (mpz_mod4 (a) == 3 && mpz_even_p (b)) |
| 314 | mpz_mul_ui (b_period, b_period, 8L); |
| 315 | else if (mpz_mod4 (a) >= 2) |
| 316 | mpz_mul_ui (b_period, b_period, 4L); |
| 317 | |
| 318 | /* don't bother with these tests if they're only going to produce |
| 319 | even/even */ |
| 320 | if (mpz_even_p (a) && mpz_even_p (b) && mpz_even_p (b_period)) |
| 321 | goto done; |
| 322 | |
| 323 | for (i = 0; i < 6; i++) |
| 324 | { |
| 325 | mpz_add (b, b, b_period); |
| 326 | try_pn (a, b, answer); |
| 327 | } |
| 328 | |
| 329 | mpz_set (b, b_orig); |
| 330 | for (i = 0; i < 6; i++) |
| 331 | { |
| 332 | mpz_sub (b, b, b_period); |
| 333 | try_pn (a, b, answer); |
| 334 | } |
| 335 | |
| 336 | done: |
| 337 | mpz_clear (b); |
| 338 | mpz_clear (b_period); |
| 339 | } |
| 340 | |
| 341 | |
| 342 | static const unsigned long ktable[] = { |
| 343 | 0, 1, 2, 3, 4, 5, 6, 7, |
| 344 | GMP_NUMB_BITS-1, GMP_NUMB_BITS, GMP_NUMB_BITS+1, |
| 345 | 2*GMP_NUMB_BITS-1, 2*GMP_NUMB_BITS, 2*GMP_NUMB_BITS+1, |
| 346 | 3*GMP_NUMB_BITS-1, 3*GMP_NUMB_BITS, 3*GMP_NUMB_BITS+1 |
| 347 | }; |
| 348 | |
| 349 | |
| 350 | /* Try (a/b*2^k) for various k. */ |
| 351 | void |
| 352 | try_2den (mpz_srcptr a, mpz_srcptr b_orig, int answer) |
| 353 | { |
| 354 | mpz_t b; |
| 355 | int kindex; |
| 356 | int answer_a2, answer_k; |
| 357 | unsigned long k; |
| 358 | |
| 359 | /* don't bother when b==0 */ |
| 360 | if (mpz_sgn (b_orig) == 0) |
| 361 | return; |
| 362 | |
| 363 | mpz_init_set (b, b_orig); |
| 364 | |
| 365 | /* (a/2) is 0 if a even, 1 if a==1 or 7 mod 8, -1 if a==3 or 5 mod 8 */ |
| 366 | answer_a2 = (mpz_even_p (a) ? 0 |
| 367 | : (((SIZ(a) >= 0 ? PTR(a)[0] : -PTR(a)[0]) + 2) & 7) < 4 ? 1 |
| 368 | : -1); |
| 369 | |
| 370 | for (kindex = 0; kindex < numberof (ktable); kindex++) |
| 371 | { |
| 372 | k = ktable[kindex]; |
| 373 | |
| 374 | /* answer_k = answer*(answer_a2^k) */ |
| 375 | answer_k = (answer_a2 == 0 && k != 0 ? 0 |
| 376 | : (k & 1) == 1 && answer_a2 == -1 ? -answer |
| 377 | : answer); |
| 378 | |
| 379 | mpz_mul_2exp (b, b_orig, k); |
| 380 | try_pn (a, b, answer_k); |
| 381 | } |
| 382 | |
| 383 | mpz_clear (b); |
| 384 | } |
| 385 | |
| 386 | |
| 387 | /* Try (a*2^k/b) for various k. If it happens mpz_ui_kronecker() gets (2/b) |
| 388 | wrong it will show up as wrong answers demanded. */ |
| 389 | void |
| 390 | try_2num (mpz_srcptr a_orig, mpz_srcptr b, int answer) |
| 391 | { |
| 392 | mpz_t a; |
| 393 | int kindex; |
| 394 | int answer_2b, answer_k; |
| 395 | unsigned long k; |
| 396 | |
| 397 | /* don't bother when a==0 */ |
| 398 | if (mpz_sgn (a_orig) == 0) |
| 399 | return; |
| 400 | |
| 401 | mpz_init (a); |
| 402 | |
| 403 | /* (2/b) is 0 if b even, 1 if b==1 or 7 mod 8, -1 if b==3 or 5 mod 8 */ |
| 404 | answer_2b = (mpz_even_p (b) ? 0 |
| 405 | : (((SIZ(b) >= 0 ? PTR(b)[0] : -PTR(b)[0]) + 2) & 7) < 4 ? 1 |
| 406 | : -1); |
| 407 | |
| 408 | for (kindex = 0; kindex < numberof (ktable); kindex++) |
| 409 | { |
| 410 | k = ktable[kindex]; |
| 411 | |
| 412 | /* answer_k = answer*(answer_2b^k) */ |
| 413 | answer_k = (answer_2b == 0 && k != 0 ? 0 |
| 414 | : (k & 1) == 1 && answer_2b == -1 ? -answer |
| 415 | : answer); |
| 416 | |
| 417 | mpz_mul_2exp (a, a_orig, k); |
| 418 | try_pn (a, b, answer_k); |
| 419 | } |
| 420 | |
| 421 | mpz_clear (a); |
| 422 | } |
| 423 | |
| 424 | |
| 425 | /* The try_2num() and try_2den() routines don't in turn call |
| 426 | try_periodic_num() and try_periodic_den() because it hugely increases the |
| 427 | number of tests performed, without obviously increasing coverage. |
| 428 | |
| 429 | Useful extra derived cases can be added here. */ |
| 430 | |
| 431 | void |
| 432 | try_all (mpz_t a, mpz_t b, int answer) |
| 433 | { |
| 434 | try_pn (a, b, answer); |
| 435 | try_periodic_num (a, b, answer); |
| 436 | try_periodic_den (a, b, answer); |
| 437 | try_2num (a, b, answer); |
| 438 | try_2den (a, b, answer); |
| 439 | } |
| 440 | |
| 441 | |
| 442 | void |
| 443 | check_data (void) |
| 444 | { |
| 445 | static const struct { |
| 446 | const char *a; |
| 447 | const char *b; |
| 448 | int answer; |
| 449 | |
| 450 | } data[] = { |
| 451 | |
| 452 | /* Note that the various derived checks in try_all() reduce the cases |
| 453 | that need to be given here. */ |
| 454 | |
| 455 | /* some zeros */ |
| 456 | { "0", "0", 0 }, |
| 457 | { "0", "2", 0 }, |
| 458 | { "0", "6", 0 }, |
| 459 | { "5", "0", 0 }, |
| 460 | { "24", "60", 0 }, |
| 461 | |
| 462 | /* (a/1) = 1, any a |
| 463 | In particular note (0/1)=1 so that (a/b)=(a mod b/b). */ |
| 464 | { "0", "1", 1 }, |
| 465 | { "1", "1", 1 }, |
| 466 | { "2", "1", 1 }, |
| 467 | { "3", "1", 1 }, |
| 468 | { "4", "1", 1 }, |
| 469 | { "5", "1", 1 }, |
| 470 | |
| 471 | /* (0/b) = 0, b != 1 */ |
| 472 | { "0", "3", 0 }, |
| 473 | { "0", "5", 0 }, |
| 474 | { "0", "7", 0 }, |
| 475 | { "0", "9", 0 }, |
| 476 | { "0", "11", 0 }, |
| 477 | { "0", "13", 0 }, |
| 478 | { "0", "15", 0 }, |
| 479 | |
| 480 | /* (1/b) = 1 */ |
| 481 | { "1", "1", 1 }, |
| 482 | { "1", "3", 1 }, |
| 483 | { "1", "5", 1 }, |
| 484 | { "1", "7", 1 }, |
| 485 | { "1", "9", 1 }, |
| 486 | { "1", "11", 1 }, |
| 487 | |
| 488 | /* (-1/b) = (-1)^((b-1)/2) which is -1 for b==3 mod 4 */ |
| 489 | { "-1", "1", 1 }, |
| 490 | { "-1", "3", -1 }, |
| 491 | { "-1", "5", 1 }, |
| 492 | { "-1", "7", -1 }, |
| 493 | { "-1", "9", 1 }, |
| 494 | { "-1", "11", -1 }, |
| 495 | { "-1", "13", 1 }, |
| 496 | { "-1", "15", -1 }, |
| 497 | { "-1", "17", 1 }, |
| 498 | { "-1", "19", -1 }, |
| 499 | |
| 500 | /* (2/b) = (-1)^((b^2-1)/8) which is -1 for b==3,5 mod 8. |
| 501 | try_2num() will exercise multiple powers of 2 in the numerator. */ |
| 502 | { "2", "1", 1 }, |
| 503 | { "2", "3", -1 }, |
| 504 | { "2", "5", -1 }, |
| 505 | { "2", "7", 1 }, |
| 506 | { "2", "9", 1 }, |
| 507 | { "2", "11", -1 }, |
| 508 | { "2", "13", -1 }, |
| 509 | { "2", "15", 1 }, |
| 510 | { "2", "17", 1 }, |
| 511 | |
| 512 | /* (-2/b) = (-1)^((b^2-1)/8)*(-1)^((b-1)/2) which is -1 for b==5,7mod8. |
| 513 | try_2num() will exercise multiple powers of 2 in the numerator, which |
| 514 | will test that the shift in mpz_si_kronecker() uses unsigned not |
| 515 | signed. */ |
| 516 | { "-2", "1", 1 }, |
| 517 | { "-2", "3", 1 }, |
| 518 | { "-2", "5", -1 }, |
| 519 | { "-2", "7", -1 }, |
| 520 | { "-2", "9", 1 }, |
| 521 | { "-2", "11", 1 }, |
| 522 | { "-2", "13", -1 }, |
| 523 | { "-2", "15", -1 }, |
| 524 | { "-2", "17", 1 }, |
| 525 | |
| 526 | /* (a/2)=(2/a). |
| 527 | try_2den() will exercise multiple powers of 2 in the denominator. */ |
| 528 | { "3", "2", -1 }, |
| 529 | { "5", "2", -1 }, |
| 530 | { "7", "2", 1 }, |
| 531 | { "9", "2", 1 }, |
| 532 | { "11", "2", -1 }, |
| 533 | |
| 534 | /* Harriet Griffin, "Elementary Theory of Numbers", page 155, various |
| 535 | examples. */ |
| 536 | { "2", "135", 1 }, |
| 537 | { "135", "19", -1 }, |
| 538 | { "2", "19", -1 }, |
| 539 | { "19", "135", 1 }, |
| 540 | { "173", "135", 1 }, |
| 541 | { "38", "135", 1 }, |
| 542 | { "135", "173", 1 }, |
| 543 | { "173", "5", -1 }, |
| 544 | { "3", "5", -1 }, |
| 545 | { "5", "173", -1 }, |
| 546 | { "173", "3", -1 }, |
| 547 | { "2", "3", -1 }, |
| 548 | { "3", "173", -1 }, |
| 549 | { "253", "21", 1 }, |
| 550 | { "1", "21", 1 }, |
| 551 | { "21", "253", 1 }, |
| 552 | { "21", "11", -1 }, |
| 553 | { "-1", "11", -1 }, |
| 554 | |
| 555 | /* Griffin page 147 */ |
| 556 | { "-1", "17", 1 }, |
| 557 | { "2", "17", 1 }, |
| 558 | { "-2", "17", 1 }, |
| 559 | { "-1", "89", 1 }, |
| 560 | { "2", "89", 1 }, |
| 561 | |
| 562 | /* Griffin page 148 */ |
| 563 | { "89", "11", 1 }, |
| 564 | { "1", "11", 1 }, |
| 565 | { "89", "3", -1 }, |
| 566 | { "2", "3", -1 }, |
| 567 | { "3", "89", -1 }, |
| 568 | { "11", "89", 1 }, |
| 569 | { "33", "89", -1 }, |
| 570 | |
| 571 | /* H. Davenport, "The Higher Arithmetic", page 65, the quadratic |
| 572 | residues and non-residues mod 19. */ |
| 573 | { "1", "19", 1 }, |
| 574 | { "4", "19", 1 }, |
| 575 | { "5", "19", 1 }, |
| 576 | { "6", "19", 1 }, |
| 577 | { "7", "19", 1 }, |
| 578 | { "9", "19", 1 }, |
| 579 | { "11", "19", 1 }, |
| 580 | { "16", "19", 1 }, |
| 581 | { "17", "19", 1 }, |
| 582 | { "2", "19", -1 }, |
| 583 | { "3", "19", -1 }, |
| 584 | { "8", "19", -1 }, |
| 585 | { "10", "19", -1 }, |
| 586 | { "12", "19", -1 }, |
| 587 | { "13", "19", -1 }, |
| 588 | { "14", "19", -1 }, |
| 589 | { "15", "19", -1 }, |
| 590 | { "18", "19", -1 }, |
| 591 | |
| 592 | /* Residues and non-residues mod 13 */ |
| 593 | { "0", "13", 0 }, |
| 594 | { "1", "13", 1 }, |
| 595 | { "2", "13", -1 }, |
| 596 | { "3", "13", 1 }, |
| 597 | { "4", "13", 1 }, |
| 598 | { "5", "13", -1 }, |
| 599 | { "6", "13", -1 }, |
| 600 | { "7", "13", -1 }, |
| 601 | { "8", "13", -1 }, |
| 602 | { "9", "13", 1 }, |
| 603 | { "10", "13", 1 }, |
| 604 | { "11", "13", -1 }, |
| 605 | { "12", "13", 1 }, |
| 606 | |
| 607 | /* various */ |
| 608 | { "5", "7", -1 }, |
| 609 | { "15", "17", 1 }, |
| 610 | { "67", "89", 1 }, |
| 611 | |
| 612 | /* special values inducing a==b==1 at the end of jac_or_kron() */ |
| 613 | { "0x10000000000000000000000000000000000000000000000001", |
| 614 | "0x10000000000000000000000000000000000000000000000003", 1 }, |
| 615 | |
| 616 | /* Test for previous bugs in jacobi_2. */ |
| 617 | { "0x43900000000", "0x42400000439", -1 }, /* 32-bit limbs */ |
| 618 | { "0x4390000000000000000", "0x4240000000000000439", -1 }, /* 64-bit limbs */ |
| 619 | |
| 620 | { "198158408161039063", "198158360916398807", -1 }, |
| 621 | |
| 622 | /* Some tests involving large quotients in the continued fraction |
| 623 | expansion. */ |
| 624 | { "37200210845139167613356125645445281805", |
| 625 | "451716845976689892447895811408978421929", -1 }, |
| 626 | { "67674091930576781943923596701346271058970643542491743605048620644676477275152701774960868941561652032482173612421015", |
| 627 | "4902678867794567120224500687210807069172039735", 0 }, |
| 628 | { "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683283672592", "2666617146103764067061017961903284334497474492754652499788571378062969111250584288683585223600172138551198546085281683290481773", 1 }, |
| 629 | |
| 630 | /* Exercises the case asize == 1, btwos > 0 in mpz_jacobi. */ |
| 631 | { "804609", "421248363205206617296534688032638102314410556521742428832362659824", 1 } , |
| 632 | { "4190209", "2239744742177804210557442048984321017460028974602978995388383905961079286530650825925074203175536427000", 1 }, |
| 633 | |
| 634 | /* Exercises the case asize == 1, btwos = 63 in mpz_jacobi |
| 635 | (relevant when GMP_LIMB_BITS == 64). */ |
| 636 | { "17311973299000934401", "1675975991242824637446753124775689449936871337036614677577044717424700351103148799107651171694863695242089956242888229458836426332300124417011114380886016", 1 }, |
| 637 | { "3220569220116583677", "41859917623035396746", -1 }, |
| 638 | |
| 639 | /* Other test cases that triggered bugs during development. */ |
| 640 | { "37200210845139167613356125645445281805", "340116213441272389607827434472642576514", -1 }, |
| 641 | { "74400421690278335226712251290890563610", "451716845976689892447895811408978421929", -1 }, |
| 642 | }; |
| 643 | |
| 644 | int i; |
| 645 | mpz_t a, b; |
| 646 | |
| 647 | mpz_init (a); |
| 648 | mpz_init (b); |
| 649 | |
| 650 | for (i = 0; i < numberof (data); i++) |
| 651 | { |
| 652 | mpz_set_str_or_abort (a, data[i].a, 0); |
| 653 | mpz_set_str_or_abort (b, data[i].b, 0); |
| 654 | try_all (a, b, data[i].answer); |
| 655 | } |
| 656 | |
| 657 | mpz_clear (a); |
| 658 | mpz_clear (b); |
| 659 | } |
| 660 | |
| 661 | |
| 662 | /* (a^2/b)=1 if gcd(a,b)=1, or (a^2/b)=0 if gcd(a,b)!=1. |
| 663 | This includes when a=0 or b=0. */ |
| 664 | void |
| 665 | check_squares_zi (void) |
| 666 | { |
| 667 | gmp_randstate_ptr rands = RANDS; |
| 668 | mpz_t a, b, g; |
| 669 | int i, answer; |
| 670 | mp_size_t size_range, an, bn; |
| 671 | mpz_t bs; |
| 672 | |
| 673 | mpz_init (bs); |
| 674 | mpz_init (a); |
| 675 | mpz_init (b); |
| 676 | mpz_init (g); |
| 677 | |
| 678 | for (i = 0; i < 50; i++) |
| 679 | { |
| 680 | mpz_urandomb (bs, rands, 32); |
| 681 | size_range = mpz_get_ui (bs) % 10 + i/8 + 2; |
| 682 | |
| 683 | mpz_urandomb (bs, rands, size_range); |
| 684 | an = mpz_get_ui (bs); |
| 685 | mpz_rrandomb (a, rands, an); |
| 686 | |
| 687 | mpz_urandomb (bs, rands, size_range); |
| 688 | bn = mpz_get_ui (bs); |
| 689 | mpz_rrandomb (b, rands, bn); |
| 690 | |
| 691 | mpz_gcd (g, a, b); |
| 692 | if (mpz_cmp_ui (g, 1L) == 0) |
| 693 | answer = 1; |
| 694 | else |
| 695 | answer = 0; |
| 696 | |
| 697 | mpz_mul (a, a, a); |
| 698 | |
| 699 | try_all (a, b, answer); |
| 700 | } |
| 701 | |
| 702 | mpz_clear (bs); |
| 703 | mpz_clear (a); |
| 704 | mpz_clear (b); |
| 705 | mpz_clear (g); |
| 706 | } |
| 707 | |
| 708 | |
| 709 | /* Check the handling of asize==0, make sure it isn't affected by the low |
| 710 | limb. */ |
| 711 | void |
| 712 | check_a_zero (void) |
| 713 | { |
| 714 | mpz_t a, b; |
| 715 | |
| 716 | mpz_init_set_ui (a, 0); |
| 717 | mpz_init (b); |
| 718 | |
| 719 | mpz_set_ui (b, 1L); |
| 720 | PTR(a)[0] = 0; |
| 721 | try_all (a, b, 1); /* (0/1)=1 */ |
| 722 | PTR(a)[0] = 1; |
| 723 | try_all (a, b, 1); /* (0/1)=1 */ |
| 724 | |
| 725 | mpz_set_si (b, -1L); |
| 726 | PTR(a)[0] = 0; |
| 727 | try_all (a, b, 1); /* (0/-1)=1 */ |
| 728 | PTR(a)[0] = 1; |
| 729 | try_all (a, b, 1); /* (0/-1)=1 */ |
| 730 | |
| 731 | mpz_set_ui (b, 0); |
| 732 | PTR(a)[0] = 0; |
| 733 | try_all (a, b, 0); /* (0/0)=0 */ |
| 734 | PTR(a)[0] = 1; |
| 735 | try_all (a, b, 0); /* (0/0)=0 */ |
| 736 | |
| 737 | mpz_set_ui (b, 2); |
| 738 | PTR(a)[0] = 0; |
| 739 | try_all (a, b, 0); /* (0/2)=0 */ |
| 740 | PTR(a)[0] = 1; |
| 741 | try_all (a, b, 0); /* (0/2)=0 */ |
| 742 | |
| 743 | mpz_clear (a); |
| 744 | mpz_clear (b); |
| 745 | } |
| 746 | |
| 747 | |
| 748 | /* Assumes that b = prod p_k^e_k */ |
| 749 | int |
| 750 | ref_jacobi (mpz_srcptr a, mpz_srcptr b, unsigned nprime, |
| 751 | mpz_t prime[], unsigned *exp) |
| 752 | { |
| 753 | unsigned i; |
| 754 | int res; |
| 755 | |
| 756 | for (i = 0, res = 1; i < nprime; i++) |
| 757 | if (exp[i]) |
| 758 | { |
| 759 | int legendre = refmpz_legendre (a, prime[i]); |
| 760 | if (!legendre) |
| 761 | return 0; |
| 762 | if (exp[i] & 1) |
| 763 | res *= legendre; |
| 764 | } |
| 765 | return res; |
| 766 | } |
| 767 | |
| 768 | void |
| 769 | check_jacobi_factored (void) |
| 770 | { |
| 771 | #define PRIME_N 10 |
| 772 | #define PRIME_MAX_SIZE 50 |
| 773 | #define PRIME_MAX_EXP 4 |
| 774 | #define PRIME_A_COUNT 10 |
| 775 | #define PRIME_B_COUNT 5 |
| 776 | #define PRIME_MAX_B_SIZE 2000 |
| 777 | |
| 778 | gmp_randstate_ptr rands = RANDS; |
| 779 | mpz_t prime[PRIME_N]; |
| 780 | unsigned exp[PRIME_N]; |
| 781 | mpz_t a, b, t, bs; |
| 782 | unsigned i; |
| 783 | |
| 784 | mpz_init (a); |
| 785 | mpz_init (b); |
| 786 | mpz_init (t); |
| 787 | mpz_init (bs); |
| 788 | |
| 789 | /* Generate primes */ |
| 790 | for (i = 0; i < PRIME_N; i++) |
| 791 | { |
| 792 | mp_size_t size; |
| 793 | mpz_init (prime[i]); |
| 794 | mpz_urandomb (bs, rands, 32); |
| 795 | size = mpz_get_ui (bs) % PRIME_MAX_SIZE + 2; |
| 796 | mpz_rrandomb (prime[i], rands, size); |
| 797 | if (mpz_cmp_ui (prime[i], 3) <= 0) |
| 798 | mpz_set_ui (prime[i], 3); |
| 799 | else |
| 800 | mpz_nextprime (prime[i], prime[i]); |
| 801 | } |
| 802 | |
| 803 | for (i = 0; i < PRIME_B_COUNT; i++) |
| 804 | { |
| 805 | unsigned j, k; |
| 806 | mp_bitcnt_t bsize; |
| 807 | |
| 808 | mpz_set_ui (b, 1); |
| 809 | bsize = 1; |
| 810 | |
| 811 | for (j = 0; j < PRIME_N && bsize < PRIME_MAX_B_SIZE; j++) |
| 812 | { |
| 813 | mpz_urandomb (bs, rands, 32); |
| 814 | exp[j] = mpz_get_ui (bs) % PRIME_MAX_EXP; |
| 815 | mpz_pow_ui (t, prime[j], exp[j]); |
| 816 | mpz_mul (b, b, t); |
| 817 | bsize = mpz_sizeinbase (b, 2); |
| 818 | } |
| 819 | for (k = 0; k < PRIME_A_COUNT; k++) |
| 820 | { |
| 821 | int answer; |
| 822 | mpz_rrandomb (a, rands, bsize + 2); |
| 823 | answer = ref_jacobi (a, b, j, prime, exp); |
| 824 | try_all (a, b, answer); |
| 825 | } |
| 826 | } |
| 827 | for (i = 0; i < PRIME_N; i++) |
| 828 | mpz_clear (prime[i]); |
| 829 | |
| 830 | mpz_clear (a); |
| 831 | mpz_clear (b); |
| 832 | mpz_clear (t); |
| 833 | mpz_clear (bs); |
| 834 | |
| 835 | #undef PRIME_N |
| 836 | #undef PRIME_MAX_SIZE |
| 837 | #undef PRIME_MAX_EXP |
| 838 | #undef PRIME_A_COUNT |
| 839 | #undef PRIME_B_COUNT |
| 840 | #undef PRIME_MAX_B_SIZE |
| 841 | } |
| 842 | |
| 843 | /* These tests compute (a|n), where the quotient sequence includes |
| 844 | large quotients, and n has a known factorization. Such inputs are |
| 845 | generated as follows. First, construct a large n, as a power of a |
| 846 | prime p of moderate size. |
| 847 | |
| 848 | Next, compute a matrix from factors (q,1;1,0), with q chosen with |
| 849 | uniformly distributed size. We must stop with matrix elements of |
| 850 | roughly half the size of n. Denote elements of M as M = (m00, m01; |
| 851 | m10, m11). |
| 852 | |
| 853 | We now look for solutions to |
| 854 | |
| 855 | n = m00 x + m01 y |
| 856 | a = m10 x + m11 y |
| 857 | |
| 858 | with x,y > 0. Since n >= m00 * m01, there exists a positive |
| 859 | solution to the first equation. Find those x, y, and substitute in |
| 860 | the second equation to get a. Then the quotient sequence for (a|n) |
| 861 | is precisely the quotients used when constructing M, followed by |
| 862 | the quotient sequence for (x|y). |
| 863 | |
| 864 | Numbers should also be large enough that we exercise hgcd_jacobi, |
| 865 | which means that they should be larger than |
| 866 | |
| 867 | max (GCD_DC_THRESHOLD, 3 * HGCD_THRESHOLD) |
| 868 | |
| 869 | With an n of roughly 40000 bits, this should hold on most machines. |
| 870 | */ |
| 871 | |
| 872 | void |
| 873 | check_large_quotients (void) |
| 874 | { |
| 875 | #define COUNT 50 |
| 876 | #define PBITS 200 |
| 877 | #define PPOWER 201 |
| 878 | #define MAX_QBITS 500 |
| 879 | |
| 880 | gmp_randstate_ptr rands = RANDS; |
| 881 | |
| 882 | mpz_t p, n, q, g, s, t, x, y, bs; |
| 883 | mpz_t M[2][2]; |
| 884 | mp_bitcnt_t nsize; |
| 885 | unsigned i; |
| 886 | |
| 887 | mpz_init (p); |
| 888 | mpz_init (n); |
| 889 | mpz_init (q); |
| 890 | mpz_init (g); |
| 891 | mpz_init (s); |
| 892 | mpz_init (t); |
| 893 | mpz_init (x); |
| 894 | mpz_init (y); |
| 895 | mpz_init (bs); |
| 896 | mpz_init (M[0][0]); |
| 897 | mpz_init (M[0][1]); |
| 898 | mpz_init (M[1][0]); |
| 899 | mpz_init (M[1][1]); |
| 900 | |
| 901 | /* First generate a number with known factorization, as a random |
| 902 | smallish prime raised to an odd power. Then (a|n) = (a|p). */ |
| 903 | mpz_rrandomb (p, rands, PBITS); |
| 904 | mpz_nextprime (p, p); |
| 905 | mpz_pow_ui (n, p, PPOWER); |
| 906 | |
| 907 | nsize = mpz_sizeinbase (n, 2); |
| 908 | |
| 909 | for (i = 0; i < COUNT; i++) |
| 910 | { |
| 911 | int answer; |
| 912 | mp_bitcnt_t msize; |
| 913 | |
| 914 | mpz_set_ui (M[0][0], 1); |
| 915 | mpz_set_ui (M[0][1], 0); |
| 916 | mpz_set_ui (M[1][0], 0); |
| 917 | mpz_set_ui (M[1][1], 1); |
| 918 | |
| 919 | for (msize = 1; 2*(msize + MAX_QBITS) + 1 < nsize ;) |
| 920 | { |
| 921 | unsigned i; |
| 922 | mpz_rrandomb (bs, rands, 32); |
| 923 | mpz_rrandomb (q, rands, 1 + mpz_get_ui (bs) % MAX_QBITS); |
| 924 | |
| 925 | /* Multiply by (q, 1; 1,0) from the right */ |
| 926 | for (i = 0; i < 2; i++) |
| 927 | { |
| 928 | mp_bitcnt_t size; |
| 929 | mpz_swap (M[i][0], M[i][1]); |
| 930 | mpz_addmul (M[i][0], M[i][1], q); |
| 931 | size = mpz_sizeinbase (M[i][0], 2); |
| 932 | if (size > msize) |
| 933 | msize = size; |
| 934 | } |
| 935 | } |
| 936 | mpz_gcdext (g, s, t, M[0][0], M[0][1]); |
| 937 | ASSERT_ALWAYS (mpz_cmp_ui (g, 1) == 0); |
| 938 | |
| 939 | /* Solve n = M[0][0] * x + M[0][1] * y */ |
| 940 | if (mpz_sgn (s) > 0) |
| 941 | { |
| 942 | mpz_mul (x, n, s); |
| 943 | mpz_fdiv_qr (q, x, x, M[0][1]); |
| 944 | mpz_mul (y, q, M[0][0]); |
| 945 | mpz_addmul (y, t, n); |
| 946 | ASSERT_ALWAYS (mpz_sgn (y) > 0); |
| 947 | } |
| 948 | else |
| 949 | { |
| 950 | mpz_mul (y, n, t); |
| 951 | mpz_fdiv_qr (q, y, y, M[0][0]); |
| 952 | mpz_mul (x, q, M[0][1]); |
| 953 | mpz_addmul (x, s, n); |
| 954 | ASSERT_ALWAYS (mpz_sgn (x) > 0); |
| 955 | } |
| 956 | mpz_mul (x, x, M[1][0]); |
| 957 | mpz_addmul (x, y, M[1][1]); |
| 958 | |
| 959 | /* Now (x|n) has the selected large quotients */ |
| 960 | answer = refmpz_legendre (x, p); |
| 961 | try_zi_zi (x, n, answer); |
| 962 | } |
| 963 | mpz_clear (p); |
| 964 | mpz_clear (n); |
| 965 | mpz_clear (q); |
| 966 | mpz_clear (g); |
| 967 | mpz_clear (s); |
| 968 | mpz_clear (t); |
| 969 | mpz_clear (x); |
| 970 | mpz_clear (y); |
| 971 | mpz_clear (bs); |
| 972 | mpz_clear (M[0][0]); |
| 973 | mpz_clear (M[0][1]); |
| 974 | mpz_clear (M[1][0]); |
| 975 | mpz_clear (M[1][1]); |
| 976 | #undef COUNT |
| 977 | #undef PBITS |
| 978 | #undef PPOWER |
| 979 | #undef MAX_QBITS |
| 980 | } |
| 981 | |
| 982 | int |
| 983 | main (int argc, char *argv[]) |
| 984 | { |
| 985 | tests_start (); |
| 986 | |
| 987 | if (argc >= 2 && strcmp (argv[1], "-p") == 0) |
| 988 | { |
| 989 | option_pari = 1; |
| 990 | |
| 991 | printf ("\ |
| 992 | try(a,b,answer) =\n\ |
| 993 | {\n\ |
| 994 | if (kronecker(a,b) != answer,\n\ |
| 995 | print(\"wrong at \", a, \",\", b,\n\ |
| 996 | \" expected \", answer,\n\ |
| 997 | \" pari says \", kronecker(a,b)))\n\ |
| 998 | }\n"); |
| 999 | } |
| 1000 | |
| 1001 | check_data (); |
| 1002 | check_squares_zi (); |
| 1003 | check_a_zero (); |
| 1004 | check_jacobi_factored (); |
| 1005 | check_large_quotients (); |
| 1006 | tests_end (); |
| 1007 | exit (0); |
| 1008 | } |