Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame] | 1 | /* mpn_rootrem(rootp,remp,ap,an,nth) -- Compute the nth root of {ap,an}, and |
| 2 | store the truncated integer part at rootp and the remainder at remp. |
| 3 | |
| 4 | Contributed by Paul Zimmermann (algorithm) and |
| 5 | Paul Zimmermann and Torbjorn Granlund (implementation). |
| 6 | Marco Bodrato wrote logbased_root to seed the loop. |
| 7 | |
| 8 | THE FUNCTIONS IN THIS FILE ARE INTERNAL, AND HAVE MUTABLE INTERFACES. IT'S |
| 9 | ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT'S ALMOST |
| 10 | GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| 11 | |
| 12 | Copyright 2002, 2005, 2009-2012, 2015 Free Software Foundation, Inc. |
| 13 | |
| 14 | This file is part of the GNU MP Library. |
| 15 | |
| 16 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 17 | it under the terms of either: |
| 18 | |
| 19 | * the GNU Lesser General Public License as published by the Free |
| 20 | Software Foundation; either version 3 of the License, or (at your |
| 21 | option) any later version. |
| 22 | |
| 23 | or |
| 24 | |
| 25 | * the GNU General Public License as published by the Free Software |
| 26 | Foundation; either version 2 of the License, or (at your option) any |
| 27 | later version. |
| 28 | |
| 29 | or both in parallel, as here. |
| 30 | |
| 31 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 32 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 33 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 34 | for more details. |
| 35 | |
| 36 | You should have received copies of the GNU General Public License and the |
| 37 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 38 | see https://www.gnu.org/licenses/. */ |
| 39 | |
| 40 | /* FIXME: |
| 41 | This implementation is not optimal when remp == NULL, since the complexity |
| 42 | is M(n), whereas it should be M(n/k) on average. |
| 43 | */ |
| 44 | |
| 45 | #include <stdio.h> /* for NULL */ |
| 46 | |
| 47 | #include "gmp-impl.h" |
| 48 | #include "longlong.h" |
| 49 | |
| 50 | static mp_size_t mpn_rootrem_internal (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, |
| 51 | mp_limb_t, int); |
| 52 | |
| 53 | #define MPN_RSHIFT(rp,up,un,cnt) \ |
| 54 | do { \ |
| 55 | if ((cnt) != 0) \ |
| 56 | mpn_rshift (rp, up, un, cnt); \ |
| 57 | else \ |
| 58 | { \ |
| 59 | MPN_COPY_INCR (rp, up, un); \ |
| 60 | } \ |
| 61 | } while (0) |
| 62 | |
| 63 | #define MPN_LSHIFT(cy,rp,up,un,cnt) \ |
| 64 | do { \ |
| 65 | if ((cnt) != 0) \ |
| 66 | cy = mpn_lshift (rp, up, un, cnt); \ |
| 67 | else \ |
| 68 | { \ |
| 69 | MPN_COPY_DECR (rp, up, un); \ |
| 70 | cy = 0; \ |
| 71 | } \ |
| 72 | } while (0) |
| 73 | |
| 74 | |
| 75 | /* Put in {rootp, ceil(un/k)} the kth root of {up, un}, rounded toward zero. |
| 76 | If remp <> NULL, put in {remp, un} the remainder. |
| 77 | Return the size (in limbs) of the remainder if remp <> NULL, |
| 78 | or a non-zero value iff the remainder is non-zero when remp = NULL. |
| 79 | Assumes: |
| 80 | (a) up[un-1] is not zero |
| 81 | (b) rootp has at least space for ceil(un/k) limbs |
| 82 | (c) remp has at least space for un limbs (in case remp <> NULL) |
| 83 | (d) the operands do not overlap. |
| 84 | |
| 85 | The auxiliary memory usage is 3*un+2 if remp = NULL, |
| 86 | and 2*un+2 if remp <> NULL. FIXME: This is an incorrect comment. |
| 87 | */ |
| 88 | mp_size_t |
| 89 | mpn_rootrem (mp_ptr rootp, mp_ptr remp, |
| 90 | mp_srcptr up, mp_size_t un, mp_limb_t k) |
| 91 | { |
| 92 | ASSERT (un > 0); |
| 93 | ASSERT (up[un - 1] != 0); |
| 94 | ASSERT (k > 1); |
| 95 | |
| 96 | if (UNLIKELY (k == 2)) |
| 97 | return mpn_sqrtrem (rootp, remp, up, un); |
| 98 | /* (un-1)/k > 2 <=> un > 3k <=> (un + 2)/3 > k */ |
| 99 | if (remp == NULL && (un + 2) / 3 > k) |
| 100 | /* Pad {up,un} with k zero limbs. This will produce an approximate root |
| 101 | with one more limb, allowing us to compute the exact integral result. */ |
| 102 | { |
| 103 | mp_ptr sp, wp; |
| 104 | mp_size_t rn, sn, wn; |
| 105 | TMP_DECL; |
| 106 | TMP_MARK; |
| 107 | wn = un + k; |
| 108 | sn = (un - 1) / k + 2; /* ceil(un/k) + 1 */ |
| 109 | TMP_ALLOC_LIMBS_2 (wp, wn, /* will contain the padded input */ |
| 110 | sp, sn); /* approximate root of padded input */ |
| 111 | MPN_COPY (wp + k, up, un); |
| 112 | MPN_FILL (wp, k, 0); |
| 113 | rn = mpn_rootrem_internal (sp, NULL, wp, wn, k, 1); |
| 114 | /* The approximate root S = {sp,sn} is either the correct root of |
| 115 | {sp,sn}, or 1 too large. Thus unless the least significant limb of |
| 116 | S is 0 or 1, we can deduce the root of {up,un} is S truncated by one |
| 117 | limb. (In case sp[0]=1, we can deduce the root, but not decide |
| 118 | whether it is exact or not.) */ |
| 119 | MPN_COPY (rootp, sp + 1, sn - 1); |
| 120 | TMP_FREE; |
| 121 | return rn; |
| 122 | } |
| 123 | else |
| 124 | { |
| 125 | return mpn_rootrem_internal (rootp, remp, up, un, k, 0); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | #define LOGROOT_USED_BITS 8 |
| 130 | #define LOGROOT_NEEDS_TWO_CORRECTIONS 1 |
| 131 | #define LOGROOT_RETURNED_BITS (LOGROOT_USED_BITS + LOGROOT_NEEDS_TWO_CORRECTIONS) |
| 132 | /* Puts in *rootp some bits of the k^nt root of the number |
| 133 | 2^bitn * 1.op ; where op represents the "fractional" bits. |
| 134 | |
| 135 | The returned value is the number of bits of the root minus one; |
| 136 | i.e. an approximation of the root will be |
| 137 | (*rootp) * 2^(retval-LOGROOT_RETURNED_BITS+1). |
| 138 | |
| 139 | Currently, only LOGROOT_USED_BITS bits of op are used (the implicit |
| 140 | one is not counted). |
| 141 | */ |
| 142 | static unsigned |
| 143 | logbased_root (mp_ptr rootp, mp_limb_t op, mp_bitcnt_t bitn, mp_limb_t k) |
| 144 | { |
| 145 | /* vlog=vector(256,i,floor((log(256+i)/log(2)-8)*256)-(i>255)) */ |
| 146 | static const |
| 147 | unsigned char vlog[] = {1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, |
| 148 | 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43, |
| 149 | 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, |
| 150 | 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82, |
| 151 | 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, |
| 152 | 101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, |
| 153 | 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, |
| 154 | 135, 136, 137, 138, 139, 140, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, |
| 155 | 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 162, 163, 164, |
| 156 | 165, 166, 167, 168, 169, 170, 171, 172, 173, 173, 174, 175, 176, 177, 178, 179, |
| 157 | 180, 181, 181, 182, 183, 184, 185, 186, 187, 188, 188, 189, 190, 191, 192, 193, |
| 158 | 194, 194, 195, 196, 197, 198, 199, 200, 200, 201, 202, 203, 204, 205, 205, 206, |
| 159 | 207, 208, 209, 209, 210, 211, 212, 213, 214, 214, 215, 216, 217, 218, 218, 219, |
| 160 | 220, 221, 222, 222, 223, 224, 225, 225, 226, 227, 228, 229, 229, 230, 231, 232, |
| 161 | 232, 233, 234, 235, 235, 236, 237, 238, 239, 239, 240, 241, 242, 242, 243, 244, |
| 162 | 245, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255, 255}; |
| 163 | |
| 164 | /* vexp=vector(256,i,floor(2^(8+i/256)-256)-(i>255)) */ |
| 165 | static const |
| 166 | unsigned char vexp[] = {0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11, |
| 167 | 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, |
| 168 | 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, |
| 169 | 36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, |
| 170 | 49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 61, |
| 171 | 62, 63, 64, 65, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, |
| 172 | 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, 87, 88, 89, 90, |
| 173 | 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, |
| 174 | 107, 108, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, |
| 175 | 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, |
| 176 | 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, |
| 177 | 157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174, |
| 178 | 175, 176, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193, |
| 179 | 194, 196, 197, 198, 199, 200, 202, 203, 204, 205, 207, 208, 209, 210, 212, 213, |
| 180 | 214, 216, 217, 218, 219, 221, 222, 223, 225, 226, 227, 229, 230, 231, 232, 234, |
| 181 | 235, 236, 238, 239, 240, 242, 243, 245, 246, 247, 249, 250, 251, 253, 254, 255}; |
| 182 | mp_bitcnt_t retval; |
| 183 | |
| 184 | if (UNLIKELY (bitn > (~ (mp_bitcnt_t) 0) >> LOGROOT_USED_BITS)) |
| 185 | { |
| 186 | /* In the unlikely case, we use two divisions and a modulo. */ |
| 187 | retval = bitn / k; |
| 188 | bitn %= k; |
| 189 | bitn = (bitn << LOGROOT_USED_BITS | |
| 190 | vlog[op >> (GMP_NUMB_BITS - LOGROOT_USED_BITS)]) / k; |
| 191 | } |
| 192 | else |
| 193 | { |
| 194 | bitn = (bitn << LOGROOT_USED_BITS | |
| 195 | vlog[op >> (GMP_NUMB_BITS - LOGROOT_USED_BITS)]) / k; |
| 196 | retval = bitn >> LOGROOT_USED_BITS; |
| 197 | bitn &= (CNST_LIMB (1) << LOGROOT_USED_BITS) - 1; |
| 198 | } |
| 199 | ASSERT(bitn < CNST_LIMB (1) << LOGROOT_USED_BITS); |
| 200 | *rootp = CNST_LIMB(1) << (LOGROOT_USED_BITS - ! LOGROOT_NEEDS_TWO_CORRECTIONS) |
| 201 | | vexp[bitn] >> ! LOGROOT_NEEDS_TWO_CORRECTIONS; |
| 202 | return retval; |
| 203 | } |
| 204 | |
| 205 | /* if approx is non-zero, does not compute the final remainder */ |
| 206 | static mp_size_t |
| 207 | mpn_rootrem_internal (mp_ptr rootp, mp_ptr remp, mp_srcptr up, mp_size_t un, |
| 208 | mp_limb_t k, int approx) |
| 209 | { |
| 210 | mp_ptr qp, rp, sp, wp, scratch; |
| 211 | mp_size_t qn, rn, sn, wn, nl, bn; |
| 212 | mp_limb_t save, save2, cy, uh; |
| 213 | mp_bitcnt_t unb; /* number of significant bits of {up,un} */ |
| 214 | mp_bitcnt_t xnb; /* number of significant bits of the result */ |
| 215 | mp_bitcnt_t b, kk; |
| 216 | mp_bitcnt_t sizes[GMP_NUMB_BITS + 1]; |
| 217 | int ni; |
| 218 | int perf_pow; |
| 219 | unsigned ulz, snb, c, logk; |
| 220 | TMP_DECL; |
| 221 | |
| 222 | /* MPN_SIZEINBASE_2EXP(unb, up, un, 1); --unb; */ |
| 223 | uh = up[un - 1]; |
| 224 | count_leading_zeros (ulz, uh); |
| 225 | ulz = ulz - GMP_NAIL_BITS + 1; /* Ignore the first 1. */ |
| 226 | unb = (mp_bitcnt_t) un * GMP_NUMB_BITS - ulz; |
| 227 | /* unb is the (truncated) logarithm of the input U in base 2*/ |
| 228 | |
| 229 | if (unb < k) /* root is 1 */ |
| 230 | { |
| 231 | rootp[0] = 1; |
| 232 | if (remp == NULL) |
| 233 | un -= (*up == CNST_LIMB (1)); /* Non-zero iif {up,un} > 1 */ |
| 234 | else |
| 235 | { |
| 236 | mpn_sub_1 (remp, up, un, CNST_LIMB (1)); |
| 237 | un -= (remp [un - 1] == 0); /* There should be at most one zero limb, |
| 238 | if we demand u to be normalized */ |
| 239 | } |
| 240 | return un; |
| 241 | } |
| 242 | /* if (unb - k < k/2 + k/16) // root is 2 */ |
| 243 | |
| 244 | if (ulz == GMP_NUMB_BITS) |
| 245 | uh = up[un - 2]; |
| 246 | else |
| 247 | uh = (uh << ulz & GMP_NUMB_MASK) | up[un - 1 - (un != 1)] >> (GMP_NUMB_BITS - ulz); |
| 248 | ASSERT (un != 1 || up[un - 1 - (un != 1)] >> (GMP_NUMB_BITS - ulz) == 1); |
| 249 | |
| 250 | xnb = logbased_root (rootp, uh, unb, k); |
| 251 | snb = LOGROOT_RETURNED_BITS - 1; |
| 252 | /* xnb+1 is the number of bits of the root R */ |
| 253 | /* snb+1 is the number of bits of the current approximation S */ |
| 254 | |
| 255 | kk = k * xnb; /* number of truncated bits in the input */ |
| 256 | |
| 257 | /* FIXME: Should we skip the next two loops when xnb <= snb ? */ |
| 258 | for (uh = (k - 1) / 2, logk = 3; (uh >>= 1) != 0; ++logk ) |
| 259 | ; |
| 260 | /* logk = ceil(log(k)/log(2)) + 1 */ |
| 261 | |
| 262 | /* xnb is the number of remaining bits to determine in the kth root */ |
| 263 | for (ni = 0; (sizes[ni] = xnb) > snb; ++ni) |
| 264 | { |
| 265 | /* invariant: here we want xnb+1 total bits for the kth root */ |
| 266 | |
| 267 | /* if c is the new value of xnb, this means that we'll go from a |
| 268 | root of c+1 bits (say s') to a root of xnb+1 bits. |
| 269 | It is proved in the book "Modern Computer Arithmetic" by Brent |
| 270 | and Zimmermann, Chapter 1, that |
| 271 | if s' >= k*beta, then at most one correction is necessary. |
| 272 | Here beta = 2^(xnb-c), and s' >= 2^c, thus it suffices that |
| 273 | c >= ceil((xnb + log2(k))/2). */ |
| 274 | if (xnb > logk) |
| 275 | xnb = (xnb + logk) / 2; |
| 276 | else |
| 277 | --xnb; /* add just one bit at a time */ |
| 278 | } |
| 279 | |
| 280 | *rootp >>= snb - xnb; |
| 281 | kk -= xnb; |
| 282 | |
| 283 | ASSERT_ALWAYS (ni < GMP_NUMB_BITS + 1); |
| 284 | /* We have sizes[0] = b > sizes[1] > ... > sizes[ni] = 0 with |
| 285 | sizes[i] <= 2 * sizes[i+1]. |
| 286 | Newton iteration will first compute sizes[ni-1] extra bits, |
| 287 | then sizes[ni-2], ..., then sizes[0] = b. */ |
| 288 | |
| 289 | TMP_MARK; |
| 290 | /* qp and wp need enough space to store S'^k where S' is an approximate |
| 291 | root. Since S' can be as large as S+2, the worst case is when S=2 and |
| 292 | S'=4. But then since we know the number of bits of S in advance, S' |
| 293 | can only be 3 at most. Similarly for S=4, then S' can be 6 at most. |
| 294 | So the worst case is S'/S=3/2, thus S'^k <= (3/2)^k * S^k. Since S^k |
| 295 | fits in un limbs, the number of extra limbs needed is bounded by |
| 296 | ceil(k*log2(3/2)/GMP_NUMB_BITS). */ |
| 297 | /* THINK: with the use of logbased_root, maybe the constant is |
| 298 | 258/256 instead of 3/2 ? log2(258/256) < 1/89 < 1/64 */ |
| 299 | #define EXTRA 2 + (mp_size_t) (0.585 * (double) k / (double) GMP_NUMB_BITS) |
| 300 | TMP_ALLOC_LIMBS_3 (scratch, un + 1, /* used by mpn_div_q */ |
| 301 | qp, un + EXTRA, /* will contain quotient and remainder |
| 302 | of R/(k*S^(k-1)), and S^k */ |
| 303 | wp, un + EXTRA); /* will contain S^(k-1), k*S^(k-1), |
| 304 | and temporary for mpn_pow_1 */ |
| 305 | |
| 306 | if (remp == NULL) |
| 307 | rp = scratch; /* will contain the remainder */ |
| 308 | else |
| 309 | rp = remp; |
| 310 | sp = rootp; |
| 311 | |
| 312 | sn = 1; /* Initial approximation has one limb */ |
| 313 | |
| 314 | for (b = xnb; ni != 0; --ni) |
| 315 | { |
| 316 | /* 1: loop invariant: |
| 317 | {sp, sn} is the current approximation of the root, which has |
| 318 | exactly 1 + sizes[ni] bits. |
| 319 | {rp, rn} is the current remainder |
| 320 | {wp, wn} = {sp, sn}^(k-1) |
| 321 | kk = number of truncated bits of the input |
| 322 | */ |
| 323 | |
| 324 | /* Since each iteration treats b bits from the root and thus k*b bits |
| 325 | from the input, and we already considered b bits from the input, |
| 326 | we now have to take another (k-1)*b bits from the input. */ |
| 327 | kk -= (k - 1) * b; /* remaining input bits */ |
| 328 | /* {rp, rn} = floor({up, un} / 2^kk) */ |
| 329 | rn = un - kk / GMP_NUMB_BITS; |
| 330 | MPN_RSHIFT (rp, up + kk / GMP_NUMB_BITS, rn, kk % GMP_NUMB_BITS); |
| 331 | rn -= rp[rn - 1] == 0; |
| 332 | |
| 333 | /* 9: current buffers: {sp,sn}, {rp,rn} */ |
| 334 | |
| 335 | for (c = 0;; c++) |
| 336 | { |
| 337 | /* Compute S^k in {qp,qn}. */ |
| 338 | /* W <- S^(k-1) for the next iteration, |
| 339 | and S^k = W * S. */ |
| 340 | wn = mpn_pow_1 (wp, sp, sn, k - 1, qp); |
| 341 | mpn_mul (qp, wp, wn, sp, sn); |
| 342 | qn = wn + sn; |
| 343 | qn -= qp[qn - 1] == 0; |
| 344 | |
| 345 | perf_pow = 1; |
| 346 | /* if S^k > floor(U/2^kk), the root approximation was too large */ |
| 347 | if (qn > rn || (qn == rn && (perf_pow=mpn_cmp (qp, rp, rn)) > 0)) |
| 348 | MPN_DECR_U (sp, sn, 1); |
| 349 | else |
| 350 | break; |
| 351 | } |
| 352 | |
| 353 | /* 10: current buffers: {sp,sn}, {rp,rn}, {qp,qn}, {wp,wn} */ |
| 354 | |
| 355 | /* sometimes two corrections are needed with logbased_root*/ |
| 356 | ASSERT (c <= 1 + LOGROOT_NEEDS_TWO_CORRECTIONS); |
| 357 | ASSERT_ALWAYS (rn >= qn); |
| 358 | |
| 359 | b = sizes[ni - 1] - sizes[ni]; /* number of bits to compute in the |
| 360 | next iteration */ |
| 361 | bn = b / GMP_NUMB_BITS; /* lowest limb from high part of rp[], after shift */ |
| 362 | |
| 363 | kk = kk - b; |
| 364 | /* nl is the number of limbs in U which contain bits [kk,kk+b-1] */ |
| 365 | nl = 1 + (kk + b - 1) / GMP_NUMB_BITS - (kk / GMP_NUMB_BITS); |
| 366 | /* nl = 1 + floor((kk + b - 1) / GMP_NUMB_BITS) |
| 367 | - floor(kk / GMP_NUMB_BITS) |
| 368 | <= 1 + (kk + b - 1) / GMP_NUMB_BITS |
| 369 | - (kk - GMP_NUMB_BITS + 1) / GMP_NUMB_BITS |
| 370 | = 2 + (b - 2) / GMP_NUMB_BITS |
| 371 | thus since nl is an integer: |
| 372 | nl <= 2 + floor(b/GMP_NUMB_BITS) <= 2 + bn. */ |
| 373 | |
| 374 | /* 11: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */ |
| 375 | |
| 376 | /* R = R - Q = floor(U/2^kk) - S^k */ |
| 377 | if (perf_pow != 0) |
| 378 | { |
| 379 | mpn_sub (rp, rp, rn, qp, qn); |
| 380 | MPN_NORMALIZE_NOT_ZERO (rp, rn); |
| 381 | |
| 382 | /* first multiply the remainder by 2^b */ |
| 383 | MPN_LSHIFT (cy, rp + bn, rp, rn, b % GMP_NUMB_BITS); |
| 384 | rn = rn + bn; |
| 385 | if (cy != 0) |
| 386 | { |
| 387 | rp[rn] = cy; |
| 388 | rn++; |
| 389 | } |
| 390 | |
| 391 | save = rp[bn]; |
| 392 | /* we have to save rp[bn] up to rp[nl-1], i.e. 1 or 2 limbs */ |
| 393 | if (nl - 1 > bn) |
| 394 | save2 = rp[bn + 1]; |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | rn = bn; |
| 399 | save2 = save = 0; |
| 400 | } |
| 401 | /* 2: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */ |
| 402 | |
| 403 | /* Now insert bits [kk,kk+b-1] from the input U */ |
| 404 | MPN_RSHIFT (rp, up + kk / GMP_NUMB_BITS, nl, kk % GMP_NUMB_BITS); |
| 405 | /* set to zero high bits of rp[bn] */ |
| 406 | rp[bn] &= (CNST_LIMB (1) << (b % GMP_NUMB_BITS)) - 1; |
| 407 | /* restore corresponding bits */ |
| 408 | rp[bn] |= save; |
| 409 | if (nl - 1 > bn) |
| 410 | rp[bn + 1] = save2; /* the low b bits go in rp[0..bn] only, since |
| 411 | they start by bit 0 in rp[0], so they use |
| 412 | at most ceil(b/GMP_NUMB_BITS) limbs */ |
| 413 | /* FIXME: Should we normalise {rp,rn} here ?*/ |
| 414 | |
| 415 | /* 3: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */ |
| 416 | |
| 417 | /* compute {wp, wn} = k * {sp, sn}^(k-1) */ |
| 418 | cy = mpn_mul_1 (wp, wp, wn, k); |
| 419 | wp[wn] = cy; |
| 420 | wn += cy != 0; |
| 421 | |
| 422 | /* 6: current buffers: {sp,sn}, {qp,qn} */ |
| 423 | |
| 424 | /* multiply the root approximation by 2^b */ |
| 425 | MPN_LSHIFT (cy, sp + b / GMP_NUMB_BITS, sp, sn, b % GMP_NUMB_BITS); |
| 426 | sn = sn + b / GMP_NUMB_BITS; |
| 427 | if (cy != 0) |
| 428 | { |
| 429 | sp[sn] = cy; |
| 430 | sn++; |
| 431 | } |
| 432 | |
| 433 | save = sp[b / GMP_NUMB_BITS]; |
| 434 | |
| 435 | /* Number of limbs used by b bits, when least significant bit is |
| 436 | aligned to least limb */ |
| 437 | bn = (b - 1) / GMP_NUMB_BITS + 1; |
| 438 | |
| 439 | /* 4: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */ |
| 440 | |
| 441 | /* now divide {rp, rn} by {wp, wn} to get the low part of the root */ |
| 442 | if (UNLIKELY (rn < wn)) |
| 443 | { |
| 444 | MPN_FILL (sp, bn, 0); |
| 445 | } |
| 446 | else |
| 447 | { |
| 448 | qn = rn - wn; /* expected quotient size */ |
| 449 | if (qn <= bn) { /* Divide only if result is not too big. */ |
| 450 | mpn_div_q (qp, rp, rn, wp, wn, scratch); |
| 451 | qn += qp[qn] != 0; |
| 452 | } |
| 453 | |
| 454 | /* 5: current buffers: {sp,sn}, {qp,qn}. |
| 455 | Note: {rp,rn} is not needed any more since we'll compute it from |
| 456 | scratch at the end of the loop. |
| 457 | */ |
| 458 | |
| 459 | /* the quotient should be smaller than 2^b, since the previous |
| 460 | approximation was correctly rounded toward zero */ |
| 461 | if (qn > bn || (qn == bn && (b % GMP_NUMB_BITS != 0) && |
| 462 | qp[qn - 1] >= (CNST_LIMB (1) << (b % GMP_NUMB_BITS)))) |
| 463 | { |
| 464 | for (qn = 1; qn < bn; ++qn) |
| 465 | sp[qn - 1] = GMP_NUMB_MAX; |
| 466 | sp[qn - 1] = GMP_NUMB_MAX >> (GMP_NUMB_BITS - 1 - ((b - 1) % GMP_NUMB_BITS)); |
| 467 | } |
| 468 | else |
| 469 | { |
| 470 | /* 7: current buffers: {sp,sn}, {qp,qn} */ |
| 471 | |
| 472 | /* Combine sB and q to form sB + q. */ |
| 473 | MPN_COPY (sp, qp, qn); |
| 474 | MPN_ZERO (sp + qn, bn - qn); |
| 475 | } |
| 476 | } |
| 477 | sp[b / GMP_NUMB_BITS] |= save; |
| 478 | |
| 479 | /* 8: current buffer: {sp,sn} */ |
| 480 | |
| 481 | } |
| 482 | |
| 483 | /* otherwise we have rn > 0, thus the return value is ok */ |
| 484 | if (!approx || sp[0] <= CNST_LIMB (1)) |
| 485 | { |
| 486 | for (c = 0;; c++) |
| 487 | { |
| 488 | /* Compute S^k in {qp,qn}. */ |
| 489 | /* Last iteration: we don't need W anymore. */ |
| 490 | /* mpn_pow_1 requires that both qp and wp have enough |
| 491 | space to store the result {sp,sn}^k + 1 limb */ |
| 492 | qn = mpn_pow_1 (qp, sp, sn, k, wp); |
| 493 | |
| 494 | perf_pow = 1; |
| 495 | if (qn > un || (qn == un && (perf_pow=mpn_cmp (qp, up, un)) > 0)) |
| 496 | MPN_DECR_U (sp, sn, 1); |
| 497 | else |
| 498 | break; |
| 499 | }; |
| 500 | |
| 501 | /* sometimes two corrections are needed with logbased_root*/ |
| 502 | ASSERT (c <= 1 + LOGROOT_NEEDS_TWO_CORRECTIONS); |
| 503 | |
| 504 | rn = perf_pow != 0; |
| 505 | if (rn != 0 && remp != NULL) |
| 506 | { |
| 507 | mpn_sub (remp, up, un, qp, qn); |
| 508 | rn = un; |
| 509 | MPN_NORMALIZE_NOT_ZERO (remp, rn); |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | TMP_FREE; |
| 514 | return rn; |
| 515 | } |