Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame] | 1 | /* mpn_mul -- Multiply two natural numbers. |
| 2 | |
| 3 | Contributed to the GNU project by Torbjorn Granlund. |
| 4 | |
| 5 | Copyright 1991, 1993, 1994, 1996, 1997, 1999-2003, 2005-2007, 2009, 2010, 2012, |
| 6 | 2014, 2019 Free Software Foundation, Inc. |
| 7 | |
| 8 | This file is part of the GNU MP Library. |
| 9 | |
| 10 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 11 | it under the terms of either: |
| 12 | |
| 13 | * the GNU Lesser General Public License as published by the Free |
| 14 | Software Foundation; either version 3 of the License, or (at your |
| 15 | option) any later version. |
| 16 | |
| 17 | or |
| 18 | |
| 19 | * the GNU General Public License as published by the Free Software |
| 20 | Foundation; either version 2 of the License, or (at your option) any |
| 21 | later version. |
| 22 | |
| 23 | or both in parallel, as here. |
| 24 | |
| 25 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 26 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 27 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 28 | for more details. |
| 29 | |
| 30 | You should have received copies of the GNU General Public License and the |
| 31 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 32 | see https://www.gnu.org/licenses/. */ |
| 33 | |
| 34 | #include "gmp-impl.h" |
| 35 | |
| 36 | |
| 37 | #ifndef MUL_BASECASE_MAX_UN |
| 38 | #define MUL_BASECASE_MAX_UN 500 |
| 39 | #endif |
| 40 | |
| 41 | /* Areas where the different toom algorithms can be called (extracted |
| 42 | from the t-toom*.c files, and ignoring small constant offsets): |
| 43 | |
| 44 | 1/6 1/5 1/4 4/13 1/3 3/8 2/5 5/11 1/2 3/5 2/3 3/4 4/5 1 vn/un |
| 45 | 4/7 6/7 |
| 46 | 6/11 |
| 47 | |--------------------| toom22 (small) |
| 48 | || toom22 (large) |
| 49 | |xxxx| toom22 called |
| 50 | |-------------------------------------| toom32 |
| 51 | |xxxxxxxxxxxxxxxx| | toom32 called |
| 52 | |------------| toom33 |
| 53 | |x| toom33 called |
| 54 | |---------------------------------| | toom42 |
| 55 | |xxxxxxxxxxxxxxxxxxxxxxxx| | toom42 called |
| 56 | |--------------------| toom43 |
| 57 | |xxxxxxxxxx| toom43 called |
| 58 | |-----------------------------| toom52 (unused) |
| 59 | |--------| toom44 |
| 60 | |xxxxxxxx| toom44 called |
| 61 | |--------------------| | toom53 |
| 62 | |xxxxxx| toom53 called |
| 63 | |-------------------------| toom62 (unused) |
| 64 | |----------------| toom54 (unused) |
| 65 | |--------------------| toom63 |
| 66 | |xxxxxxxxx| | toom63 called |
| 67 | |---------------------------------| toom6h |
| 68 | |xxxxxxxx| toom6h called |
| 69 | |-------------------------| toom8h (32 bit) |
| 70 | |------------------------------------------| toom8h (64 bit) |
| 71 | |xxxxxxxx| toom8h called |
| 72 | */ |
| 73 | |
| 74 | #define TOOM33_OK(an,bn) (6 + 2 * an < 3 * bn) |
| 75 | #define TOOM44_OK(an,bn) (12 + 3 * an < 4 * bn) |
| 76 | |
| 77 | /* Multiply the natural numbers u (pointed to by UP, with UN limbs) and v |
| 78 | (pointed to by VP, with VN limbs), and store the result at PRODP. The |
| 79 | result is UN + VN limbs. Return the most significant limb of the result. |
| 80 | |
| 81 | NOTE: The space pointed to by PRODP is overwritten before finished with U |
| 82 | and V, so overlap is an error. |
| 83 | |
| 84 | Argument constraints: |
| 85 | 1. UN >= VN. |
| 86 | 2. PRODP != UP and PRODP != VP, i.e. the destination must be distinct from |
| 87 | the multiplier and the multiplicand. */ |
| 88 | |
| 89 | /* |
| 90 | * The cutoff lines in the toomX2 and toomX3 code are now exactly between the |
| 91 | ideal lines of the surrounding algorithms. Is that optimal? |
| 92 | |
| 93 | * The toomX3 code now uses a structure similar to the one of toomX2, except |
| 94 | that it loops longer in the unbalanced case. The result is that the |
| 95 | remaining area might have un < vn. Should we fix the toomX2 code in a |
| 96 | similar way? |
| 97 | |
| 98 | * The toomX3 code is used for the largest non-FFT unbalanced operands. It |
| 99 | therefore calls mpn_mul recursively for certain cases. |
| 100 | |
| 101 | * Allocate static temp space using THRESHOLD variables (except for toom44 |
| 102 | when !WANT_FFT). That way, we can typically have no TMP_ALLOC at all. |
| 103 | |
| 104 | * We sort ToomX2 algorithms together, assuming the toom22, toom32, toom42 |
| 105 | have the same vn threshold. This is not true, we should actually use |
| 106 | mul_basecase for slightly larger operands for toom32 than for toom22, and |
| 107 | even larger for toom42. |
| 108 | |
| 109 | * That problem is even more prevalent for toomX3. We therefore use special |
| 110 | THRESHOLD variables there. |
| 111 | */ |
| 112 | |
| 113 | mp_limb_t |
| 114 | mpn_mul (mp_ptr prodp, |
| 115 | mp_srcptr up, mp_size_t un, |
| 116 | mp_srcptr vp, mp_size_t vn) |
| 117 | { |
| 118 | ASSERT (un >= vn); |
| 119 | ASSERT (vn >= 1); |
| 120 | ASSERT (! MPN_OVERLAP_P (prodp, un+vn, up, un)); |
| 121 | ASSERT (! MPN_OVERLAP_P (prodp, un+vn, vp, vn)); |
| 122 | |
| 123 | if (BELOW_THRESHOLD (un, MUL_TOOM22_THRESHOLD)) |
| 124 | { |
| 125 | /* When un (and thus vn) is below the toom22 range, do mul_basecase. |
| 126 | Test un and not vn here not to thwart the un >> vn code below. |
| 127 | This special case is not necessary, but cuts the overhead for the |
| 128 | smallest operands. */ |
| 129 | mpn_mul_basecase (prodp, up, un, vp, vn); |
| 130 | } |
| 131 | else if (un == vn) |
| 132 | { |
| 133 | mpn_mul_n (prodp, up, vp, un); |
| 134 | } |
| 135 | else if (vn < MUL_TOOM22_THRESHOLD) |
| 136 | { /* plain schoolbook multiplication */ |
| 137 | |
| 138 | /* Unless un is very large, or else if have an applicable mpn_mul_N, |
| 139 | perform basecase multiply directly. */ |
| 140 | if (un <= MUL_BASECASE_MAX_UN |
| 141 | #if HAVE_NATIVE_mpn_mul_2 |
| 142 | || vn <= 2 |
| 143 | #else |
| 144 | || vn == 1 |
| 145 | #endif |
| 146 | ) |
| 147 | mpn_mul_basecase (prodp, up, un, vp, vn); |
| 148 | else |
| 149 | { |
| 150 | /* We have un >> MUL_BASECASE_MAX_UN > vn. For better memory |
| 151 | locality, split up[] into MUL_BASECASE_MAX_UN pieces and multiply |
| 152 | these pieces with the vp[] operand. After each such partial |
| 153 | multiplication (but the last) we copy the most significant vn |
| 154 | limbs into a temporary buffer since that part would otherwise be |
| 155 | overwritten by the next multiplication. After the next |
| 156 | multiplication, we add it back. This illustrates the situation: |
| 157 | |
| 158 | -->vn<-- |
| 159 | | |<------- un ------->| |
| 160 | _____________________| |
| 161 | X /| |
| 162 | /XX__________________/ | |
| 163 | _____________________ | |
| 164 | X / | |
| 165 | /XX__________________/ | |
| 166 | _____________________ | |
| 167 | / / | |
| 168 | /____________________/ | |
| 169 | ================================================================== |
| 170 | |
| 171 | The parts marked with X are the parts whose sums are copied into |
| 172 | the temporary buffer. */ |
| 173 | |
| 174 | mp_limb_t tp[MUL_TOOM22_THRESHOLD_LIMIT]; |
| 175 | mp_limb_t cy; |
| 176 | ASSERT (MUL_TOOM22_THRESHOLD <= MUL_TOOM22_THRESHOLD_LIMIT); |
| 177 | |
| 178 | mpn_mul_basecase (prodp, up, MUL_BASECASE_MAX_UN, vp, vn); |
| 179 | prodp += MUL_BASECASE_MAX_UN; |
| 180 | MPN_COPY (tp, prodp, vn); /* preserve high triangle */ |
| 181 | up += MUL_BASECASE_MAX_UN; |
| 182 | un -= MUL_BASECASE_MAX_UN; |
| 183 | while (un > MUL_BASECASE_MAX_UN) |
| 184 | { |
| 185 | mpn_mul_basecase (prodp, up, MUL_BASECASE_MAX_UN, vp, vn); |
| 186 | cy = mpn_add_n (prodp, prodp, tp, vn); /* add back preserved triangle */ |
| 187 | mpn_incr_u (prodp + vn, cy); |
| 188 | prodp += MUL_BASECASE_MAX_UN; |
| 189 | MPN_COPY (tp, prodp, vn); /* preserve high triangle */ |
| 190 | up += MUL_BASECASE_MAX_UN; |
| 191 | un -= MUL_BASECASE_MAX_UN; |
| 192 | } |
| 193 | if (un > vn) |
| 194 | { |
| 195 | mpn_mul_basecase (prodp, up, un, vp, vn); |
| 196 | } |
| 197 | else |
| 198 | { |
| 199 | ASSERT (un > 0); |
| 200 | mpn_mul_basecase (prodp, vp, vn, up, un); |
| 201 | } |
| 202 | cy = mpn_add_n (prodp, prodp, tp, vn); /* add back preserved triangle */ |
| 203 | mpn_incr_u (prodp + vn, cy); |
| 204 | } |
| 205 | } |
| 206 | else if (BELOW_THRESHOLD (vn, MUL_TOOM33_THRESHOLD)) |
| 207 | { |
| 208 | /* Use ToomX2 variants */ |
| 209 | mp_ptr scratch; |
| 210 | TMP_SDECL; TMP_SMARK; |
| 211 | |
| 212 | #define ITCH_TOOMX2 (9 * vn / 2 + GMP_NUMB_BITS * 2) |
| 213 | scratch = TMP_SALLOC_LIMBS (ITCH_TOOMX2); |
| 214 | ASSERT (mpn_toom22_mul_itch ((5*vn-1)/4, vn) <= ITCH_TOOMX2); /* 5vn/2+ */ |
| 215 | ASSERT (mpn_toom32_mul_itch ((7*vn-1)/4, vn) <= ITCH_TOOMX2); /* 7vn/6+ */ |
| 216 | ASSERT (mpn_toom42_mul_itch (3 * vn - 1, vn) <= ITCH_TOOMX2); /* 9vn/2+ */ |
| 217 | #undef ITCH_TOOMX2 |
| 218 | |
| 219 | /* FIXME: This condition (repeated in the loop below) leaves from a vn*vn |
| 220 | square to a (3vn-1)*vn rectangle. Leaving such a rectangle is hardly |
| 221 | wise; we would get better balance by slightly moving the bound. We |
| 222 | will sometimes end up with un < vn, like in the X3 arm below. */ |
| 223 | if (un >= 3 * vn) |
| 224 | { |
| 225 | mp_limb_t cy; |
| 226 | mp_ptr ws; |
| 227 | |
| 228 | /* The maximum ws usage is for the mpn_mul result. */ |
| 229 | ws = TMP_SALLOC_LIMBS (4 * vn); |
| 230 | |
| 231 | mpn_toom42_mul (prodp, up, 2 * vn, vp, vn, scratch); |
| 232 | un -= 2 * vn; |
| 233 | up += 2 * vn; |
| 234 | prodp += 2 * vn; |
| 235 | |
| 236 | while (un >= 3 * vn) |
| 237 | { |
| 238 | mpn_toom42_mul (ws, up, 2 * vn, vp, vn, scratch); |
| 239 | un -= 2 * vn; |
| 240 | up += 2 * vn; |
| 241 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 242 | MPN_COPY (prodp + vn, ws + vn, 2 * vn); |
| 243 | mpn_incr_u (prodp + vn, cy); |
| 244 | prodp += 2 * vn; |
| 245 | } |
| 246 | |
| 247 | /* vn <= un < 3vn */ |
| 248 | |
| 249 | if (4 * un < 5 * vn) |
| 250 | mpn_toom22_mul (ws, up, un, vp, vn, scratch); |
| 251 | else if (4 * un < 7 * vn) |
| 252 | mpn_toom32_mul (ws, up, un, vp, vn, scratch); |
| 253 | else |
| 254 | mpn_toom42_mul (ws, up, un, vp, vn, scratch); |
| 255 | |
| 256 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 257 | MPN_COPY (prodp + vn, ws + vn, un); |
| 258 | mpn_incr_u (prodp + vn, cy); |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | if (4 * un < 5 * vn) |
| 263 | mpn_toom22_mul (prodp, up, un, vp, vn, scratch); |
| 264 | else if (4 * un < 7 * vn) |
| 265 | mpn_toom32_mul (prodp, up, un, vp, vn, scratch); |
| 266 | else |
| 267 | mpn_toom42_mul (prodp, up, un, vp, vn, scratch); |
| 268 | } |
| 269 | TMP_SFREE; |
| 270 | } |
| 271 | else if (BELOW_THRESHOLD ((un + vn) >> 1, MUL_FFT_THRESHOLD) || |
| 272 | BELOW_THRESHOLD (3 * vn, MUL_FFT_THRESHOLD)) |
| 273 | { |
| 274 | /* Handle the largest operands that are not in the FFT range. The 2nd |
| 275 | condition makes very unbalanced operands avoid the FFT code (except |
| 276 | perhaps as coefficient products of the Toom code. */ |
| 277 | |
| 278 | if (BELOW_THRESHOLD (vn, MUL_TOOM44_THRESHOLD) || !TOOM44_OK (un, vn)) |
| 279 | { |
| 280 | /* Use ToomX3 variants */ |
| 281 | mp_ptr scratch; |
| 282 | TMP_DECL; TMP_MARK; |
| 283 | |
| 284 | #define ITCH_TOOMX3 (4 * vn + GMP_NUMB_BITS) |
| 285 | scratch = TMP_ALLOC_LIMBS (ITCH_TOOMX3); |
| 286 | ASSERT (mpn_toom33_mul_itch ((7*vn-1)/6, vn) <= ITCH_TOOMX3); /* 7vn/2+ */ |
| 287 | ASSERT (mpn_toom43_mul_itch ((3*vn-1)/2, vn) <= ITCH_TOOMX3); /* 9vn/4+ */ |
| 288 | ASSERT (mpn_toom32_mul_itch ((7*vn-1)/4, vn) <= ITCH_TOOMX3); /* 7vn/6+ */ |
| 289 | ASSERT (mpn_toom53_mul_itch ((11*vn-1)/6, vn) <= ITCH_TOOMX3); /* 11vn/3+ */ |
| 290 | ASSERT (mpn_toom42_mul_itch ((5*vn-1)/2, vn) <= ITCH_TOOMX3); /* 15vn/4+ */ |
| 291 | ASSERT (mpn_toom63_mul_itch ((5*vn-1)/2, vn) <= ITCH_TOOMX3); /* 15vn/4+ */ |
| 292 | #undef ITCH_TOOMX3 |
| 293 | |
| 294 | if (2 * un >= 5 * vn) |
| 295 | { |
| 296 | mp_limb_t cy; |
| 297 | mp_ptr ws; |
| 298 | |
| 299 | /* The maximum ws usage is for the mpn_mul result. */ |
| 300 | ws = TMP_ALLOC_LIMBS (7 * vn >> 1); |
| 301 | |
| 302 | if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD)) |
| 303 | mpn_toom42_mul (prodp, up, 2 * vn, vp, vn, scratch); |
| 304 | else |
| 305 | mpn_toom63_mul (prodp, up, 2 * vn, vp, vn, scratch); |
| 306 | un -= 2 * vn; |
| 307 | up += 2 * vn; |
| 308 | prodp += 2 * vn; |
| 309 | |
| 310 | while (2 * un >= 5 * vn) /* un >= 2.5vn */ |
| 311 | { |
| 312 | if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD)) |
| 313 | mpn_toom42_mul (ws, up, 2 * vn, vp, vn, scratch); |
| 314 | else |
| 315 | mpn_toom63_mul (ws, up, 2 * vn, vp, vn, scratch); |
| 316 | un -= 2 * vn; |
| 317 | up += 2 * vn; |
| 318 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 319 | MPN_COPY (prodp + vn, ws + vn, 2 * vn); |
| 320 | mpn_incr_u (prodp + vn, cy); |
| 321 | prodp += 2 * vn; |
| 322 | } |
| 323 | |
| 324 | /* vn / 2 <= un < 2.5vn */ |
| 325 | |
| 326 | if (un < vn) |
| 327 | mpn_mul (ws, vp, vn, up, un); |
| 328 | else |
| 329 | mpn_mul (ws, up, un, vp, vn); |
| 330 | |
| 331 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 332 | MPN_COPY (prodp + vn, ws + vn, un); |
| 333 | mpn_incr_u (prodp + vn, cy); |
| 334 | } |
| 335 | else |
| 336 | { |
| 337 | if (6 * un < 7 * vn) |
| 338 | mpn_toom33_mul (prodp, up, un, vp, vn, scratch); |
| 339 | else if (2 * un < 3 * vn) |
| 340 | { |
| 341 | if (BELOW_THRESHOLD (vn, MUL_TOOM32_TO_TOOM43_THRESHOLD)) |
| 342 | mpn_toom32_mul (prodp, up, un, vp, vn, scratch); |
| 343 | else |
| 344 | mpn_toom43_mul (prodp, up, un, vp, vn, scratch); |
| 345 | } |
| 346 | else if (6 * un < 11 * vn) |
| 347 | { |
| 348 | if (4 * un < 7 * vn) |
| 349 | { |
| 350 | if (BELOW_THRESHOLD (vn, MUL_TOOM32_TO_TOOM53_THRESHOLD)) |
| 351 | mpn_toom32_mul (prodp, up, un, vp, vn, scratch); |
| 352 | else |
| 353 | mpn_toom53_mul (prodp, up, un, vp, vn, scratch); |
| 354 | } |
| 355 | else |
| 356 | { |
| 357 | if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM53_THRESHOLD)) |
| 358 | mpn_toom42_mul (prodp, up, un, vp, vn, scratch); |
| 359 | else |
| 360 | mpn_toom53_mul (prodp, up, un, vp, vn, scratch); |
| 361 | } |
| 362 | } |
| 363 | else |
| 364 | { |
| 365 | if (BELOW_THRESHOLD (vn, MUL_TOOM42_TO_TOOM63_THRESHOLD)) |
| 366 | mpn_toom42_mul (prodp, up, un, vp, vn, scratch); |
| 367 | else |
| 368 | mpn_toom63_mul (prodp, up, un, vp, vn, scratch); |
| 369 | } |
| 370 | } |
| 371 | TMP_FREE; |
| 372 | } |
| 373 | else |
| 374 | { |
| 375 | mp_ptr scratch; |
| 376 | TMP_DECL; TMP_MARK; |
| 377 | |
| 378 | if (BELOW_THRESHOLD (vn, MUL_TOOM6H_THRESHOLD)) |
| 379 | { |
| 380 | scratch = TMP_SALLOC_LIMBS (mpn_toom44_mul_itch (un, vn)); |
| 381 | mpn_toom44_mul (prodp, up, un, vp, vn, scratch); |
| 382 | } |
| 383 | else if (BELOW_THRESHOLD (vn, MUL_TOOM8H_THRESHOLD)) |
| 384 | { |
| 385 | scratch = TMP_SALLOC_LIMBS (mpn_toom6h_mul_itch (un, vn)); |
| 386 | mpn_toom6h_mul (prodp, up, un, vp, vn, scratch); |
| 387 | } |
| 388 | else |
| 389 | { |
| 390 | scratch = TMP_ALLOC_LIMBS (mpn_toom8h_mul_itch (un, vn)); |
| 391 | mpn_toom8h_mul (prodp, up, un, vp, vn, scratch); |
| 392 | } |
| 393 | TMP_FREE; |
| 394 | } |
| 395 | } |
| 396 | else |
| 397 | { |
| 398 | if (un >= 8 * vn) |
| 399 | { |
| 400 | mp_limb_t cy; |
| 401 | mp_ptr ws; |
| 402 | TMP_DECL; TMP_MARK; |
| 403 | |
| 404 | /* The maximum ws usage is for the mpn_mul result. */ |
| 405 | ws = TMP_BALLOC_LIMBS (9 * vn >> 1); |
| 406 | |
| 407 | mpn_fft_mul (prodp, up, 3 * vn, vp, vn); |
| 408 | un -= 3 * vn; |
| 409 | up += 3 * vn; |
| 410 | prodp += 3 * vn; |
| 411 | |
| 412 | while (2 * un >= 7 * vn) /* un >= 3.5vn */ |
| 413 | { |
| 414 | mpn_fft_mul (ws, up, 3 * vn, vp, vn); |
| 415 | un -= 3 * vn; |
| 416 | up += 3 * vn; |
| 417 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 418 | MPN_COPY (prodp + vn, ws + vn, 3 * vn); |
| 419 | mpn_incr_u (prodp + vn, cy); |
| 420 | prodp += 3 * vn; |
| 421 | } |
| 422 | |
| 423 | /* vn / 2 <= un < 3.5vn */ |
| 424 | |
| 425 | if (un < vn) |
| 426 | mpn_mul (ws, vp, vn, up, un); |
| 427 | else |
| 428 | mpn_mul (ws, up, un, vp, vn); |
| 429 | |
| 430 | cy = mpn_add_n (prodp, prodp, ws, vn); |
| 431 | MPN_COPY (prodp + vn, ws + vn, un); |
| 432 | mpn_incr_u (prodp + vn, cy); |
| 433 | |
| 434 | TMP_FREE; |
| 435 | } |
| 436 | else |
| 437 | mpn_fft_mul (prodp, up, un, vp, vn); |
| 438 | } |
| 439 | |
| 440 | return prodp[un + vn - 1]; /* historic */ |
| 441 | } |