Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | |
| 12 | template<typename MatrixType> void matrixVisitor(const MatrixType& p) |
| 13 | { |
| 14 | typedef typename MatrixType::Scalar Scalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 15 | |
| 16 | Index rows = p.rows(); |
| 17 | Index cols = p.cols(); |
| 18 | |
| 19 | // construct a random matrix where all coefficients are different |
| 20 | MatrixType m; |
| 21 | m = MatrixType::Random(rows, cols); |
| 22 | for(Index i = 0; i < m.size(); i++) |
| 23 | for(Index i2 = 0; i2 < i; i2++) |
| 24 | while(m(i) == m(i2)) // yes, == |
| 25 | m(i) = internal::random<Scalar>(); |
| 26 | |
| 27 | Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| 28 | Index minrow=0,mincol=0,maxrow=0,maxcol=0; |
| 29 | for(Index j = 0; j < cols; j++) |
| 30 | for(Index i = 0; i < rows; i++) |
| 31 | { |
| 32 | if(m(i,j) < minc) |
| 33 | { |
| 34 | minc = m(i,j); |
| 35 | minrow = i; |
| 36 | mincol = j; |
| 37 | } |
| 38 | if(m(i,j) > maxc) |
| 39 | { |
| 40 | maxc = m(i,j); |
| 41 | maxrow = i; |
| 42 | maxcol = j; |
| 43 | } |
| 44 | } |
| 45 | Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; |
| 46 | Scalar eigen_minc, eigen_maxc; |
| 47 | eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); |
| 48 | eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| 49 | VERIFY(minrow == eigen_minrow); |
| 50 | VERIFY(maxrow == eigen_maxrow); |
| 51 | VERIFY(mincol == eigen_mincol); |
| 52 | VERIFY(maxcol == eigen_maxcol); |
| 53 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 54 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 55 | VERIFY_IS_APPROX(minc, m.minCoeff()); |
| 56 | VERIFY_IS_APPROX(maxc, m.maxCoeff()); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 57 | |
| 58 | eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame] | 59 | Index maxrow2=0,maxcol2=0; |
| 60 | eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2); |
| 61 | VERIFY(maxrow2 == eigen_maxrow); |
| 62 | VERIFY(maxcol2 == eigen_maxcol); |
| 63 | |
| 64 | if (!NumTraits<Scalar>::IsInteger && m.size() > 2) { |
| 65 | // Test NaN propagation by replacing an element with NaN. |
| 66 | bool stop = false; |
| 67 | for (Index j = 0; j < cols && !stop; ++j) { |
| 68 | for (Index i = 0; i < rows && !stop; ++i) { |
| 69 | if (!(j == mincol && i == minrow) && |
| 70 | !(j == maxcol && i == maxrow)) { |
| 71 | m(i,j) = NumTraits<Scalar>::quiet_NaN(); |
| 72 | stop = true; |
| 73 | break; |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); |
| 79 | eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); |
| 80 | VERIFY(minrow == eigen_minrow); |
| 81 | VERIFY(maxrow == eigen_maxrow); |
| 82 | VERIFY(mincol == eigen_mincol); |
| 83 | VERIFY(maxcol == eigen_maxcol); |
| 84 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 85 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 86 | VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>()); |
| 87 | VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>()); |
| 88 | |
| 89 | eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); |
| 90 | eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); |
| 91 | VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); |
| 92 | VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); |
| 93 | VERIFY((numext::isnan)(eigen_minc)); |
| 94 | VERIFY((numext::isnan)(eigen_maxc)); |
| 95 | } |
| 96 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 97 | } |
| 98 | |
| 99 | template<typename VectorType> void vectorVisitor(const VectorType& w) |
| 100 | { |
| 101 | typedef typename VectorType::Scalar Scalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 102 | |
| 103 | Index size = w.size(); |
| 104 | |
| 105 | // construct a random vector where all coefficients are different |
| 106 | VectorType v; |
| 107 | v = VectorType::Random(size); |
| 108 | for(Index i = 0; i < size; i++) |
| 109 | for(Index i2 = 0; i2 < i; i2++) |
| 110 | while(v(i) == v(i2)) // yes, == |
| 111 | v(i) = internal::random<Scalar>(); |
| 112 | |
| 113 | Scalar minc = v(0), maxc = v(0); |
| 114 | Index minidx=0, maxidx=0; |
| 115 | for(Index i = 0; i < size; i++) |
| 116 | { |
| 117 | if(v(i) < minc) |
| 118 | { |
| 119 | minc = v(i); |
| 120 | minidx = i; |
| 121 | } |
| 122 | if(v(i) > maxc) |
| 123 | { |
| 124 | maxc = v(i); |
| 125 | maxidx = i; |
| 126 | } |
| 127 | } |
| 128 | Index eigen_minidx, eigen_maxidx; |
| 129 | Scalar eigen_minc, eigen_maxc; |
| 130 | eigen_minc = v.minCoeff(&eigen_minidx); |
| 131 | eigen_maxc = v.maxCoeff(&eigen_maxidx); |
| 132 | VERIFY(minidx == eigen_minidx); |
| 133 | VERIFY(maxidx == eigen_maxidx); |
| 134 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 135 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 136 | VERIFY_IS_APPROX(minc, v.minCoeff()); |
| 137 | VERIFY_IS_APPROX(maxc, v.maxCoeff()); |
| 138 | |
| 139 | Index idx0 = internal::random<Index>(0,size-1); |
| 140 | Index idx1 = eigen_minidx; |
| 141 | Index idx2 = eigen_maxidx; |
| 142 | VectorType v1(v), v2(v); |
| 143 | v1(idx0) = v1(idx1); |
| 144 | v2(idx0) = v2(idx2); |
| 145 | v1.minCoeff(&eigen_minidx); |
| 146 | v2.maxCoeff(&eigen_maxidx); |
| 147 | VERIFY(eigen_minidx == (std::min)(idx0,idx1)); |
| 148 | VERIFY(eigen_maxidx == (std::min)(idx0,idx2)); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame] | 149 | |
| 150 | if (!NumTraits<Scalar>::IsInteger && size > 2) { |
| 151 | // Test NaN propagation by replacing an element with NaN. |
| 152 | for (Index i = 0; i < size; ++i) { |
| 153 | if (i != minidx && i != maxidx) { |
| 154 | v(i) = NumTraits<Scalar>::quiet_NaN(); |
| 155 | break; |
| 156 | } |
| 157 | } |
| 158 | eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx); |
| 159 | eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx); |
| 160 | VERIFY(minidx == eigen_minidx); |
| 161 | VERIFY(maxidx == eigen_maxidx); |
| 162 | VERIFY_IS_APPROX(minc, eigen_minc); |
| 163 | VERIFY_IS_APPROX(maxc, eigen_maxc); |
| 164 | VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>()); |
| 165 | VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>()); |
| 166 | |
| 167 | eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx); |
| 168 | eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx); |
| 169 | VERIFY(minidx != eigen_minidx); |
| 170 | VERIFY(maxidx != eigen_maxidx); |
| 171 | VERIFY((numext::isnan)(eigen_minc)); |
| 172 | VERIFY((numext::isnan)(eigen_maxc)); |
| 173 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 174 | } |
| 175 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame] | 176 | EIGEN_DECLARE_TEST(visitor) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 177 | { |
| 178 | for(int i = 0; i < g_repeat; i++) { |
| 179 | CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); |
| 180 | CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); |
| 181 | CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); |
| 182 | CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); |
| 183 | CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); |
| 184 | CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); |
| 185 | } |
| 186 | for(int i = 0; i < g_repeat; i++) { |
| 187 | CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); |
| 188 | CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) ); |
| 189 | CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) ); |
| 190 | CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) ); |
| 191 | CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) ); |
| 192 | } |
| 193 | } |