Austin Schuh | 085eab9 | 2020-11-26 13:54:51 -0800 | [diff] [blame] | 1 | #!/usr/bin/python3 |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 2 | # This is an initial, hacky implementation of the extended LQR paper. It's just |
| 3 | # a proof of concept, so don't trust it too much. |
| 4 | |
| 5 | import numpy |
| 6 | import scipy.optimize |
| 7 | from matplotlib import pylab |
| 8 | import sys |
| 9 | |
| 10 | from frc971.control_loops.python import controls |
| 11 | |
| 12 | |
| 13 | class ArmDynamics(object): |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 14 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 15 | def __init__(self, dt): |
| 16 | self.dt = dt |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 17 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 18 | self.l1 = 1.0 |
| 19 | self.l2 = 0.8 |
| 20 | self.num_states = 4 |
| 21 | self.num_inputs = 2 |
| 22 | |
| 23 | def dynamics(self, X, U): |
| 24 | """Calculates the dynamics for a double jointed arm. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 25 | |
| 26 | Args: |
| 27 | X, numpy.matrix(4, 1), The state. [theta1, omega1, theta2, omega2] |
| 28 | U, numpy.matrix(2, 1), The input. [torque1, torque2] |
| 29 | |
| 30 | Returns: |
| 31 | numpy.matrix(4, 1), The derivative of the dynamics. |
| 32 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 33 | return numpy.matrix([[X[1, 0]], [U[0, 0]], [X[3, 0]], [U[1, 0]]]) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 34 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 35 | def discrete_dynamics(self, X, U): |
| 36 | return RungeKutta(lambda startingX: self.dynamics(startingX, U), X, dt) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 37 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 38 | def inverse_discrete_dynamics(self, X, U): |
| 39 | return RungeKutta(lambda startingX: -self.dynamics(startingX, U), X, |
| 40 | dt) |
| 41 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 42 | |
| 43 | # Simple implementation for a quadratic cost function. |
| 44 | class ArmCostFunction: |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 45 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 46 | def __init__(self, dt, dynamics): |
| 47 | self.num_states = 4 |
| 48 | self.num_inputs = 2 |
| 49 | self.dt = dt |
| 50 | self.dynamics = dynamics |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 51 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 52 | q_pos = 0.5 |
| 53 | q_vel = 1.65 |
| 54 | self.Q = numpy.matrix( |
| 55 | numpy.diag([ |
| 56 | 1.0 / (q_pos**2.0), 1.0 / (q_vel**2.0), 1.0 / (q_pos**2.0), |
| 57 | 1.0 / (q_vel**2.0) |
| 58 | ])) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 59 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 60 | self.R = numpy.matrix( |
| 61 | numpy.diag([1.0 / (12.0**2.0), 1.0 / (12.0**2.0)])) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 62 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 63 | final_A = numerical_jacobian_x(self.dynamics.discrete_dynamics, |
| 64 | numpy.matrix(numpy.zeros((4, 1))), |
| 65 | numpy.matrix(numpy.zeros((2, 1)))) |
| 66 | final_B = numerical_jacobian_u(self.dynamics.discrete_dynamics, |
| 67 | numpy.matrix(numpy.zeros((4, 1))), |
| 68 | numpy.matrix(numpy.zeros((2, 1)))) |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 69 | print('Final A', final_A) |
| 70 | print('Final B', final_B) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 71 | K, self.S = controls.dlqr(final_A, |
| 72 | final_B, |
| 73 | self.Q, |
| 74 | self.R, |
| 75 | optimal_cost_function=True) |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 76 | print('Final eig:', numpy.linalg.eig(final_A - final_B * K)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 77 | |
| 78 | def final_cost(self, X, U): |
| 79 | """Computes the final cost of being at X |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 80 | |
| 81 | Args: |
| 82 | X: numpy.matrix(self.num_states, 1) |
| 83 | U: numpy.matrix(self.num_inputs, 1), ignored |
| 84 | |
| 85 | Returns: |
| 86 | numpy.matrix(1, 1), The quadratic cost of being at X |
| 87 | """ |
Austin Schuh | 7227a8b | 2024-09-21 16:22:42 -0700 | [diff] [blame] | 88 | print('TODO(austin): S -> X.T * S * X, need to fix if we care') |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 89 | return 0.5 * X.T * self.S * X |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 90 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 91 | def cost(self, X, U): |
| 92 | """Computes the incremental cost given a position and U. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 93 | |
| 94 | Args: |
| 95 | X: numpy.matrix(self.num_states, 1) |
| 96 | U: numpy.matrix(self.num_inputs, 1) |
| 97 | |
| 98 | Returns: |
| 99 | numpy.matrix(1, 1), The quadratic cost of evaluating U. |
| 100 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 101 | return U.T * self.R * U + X.T * self.Q * X |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 102 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 103 | def estimate_Q_final(self, X_hat): |
| 104 | """Returns the quadraticized final Q around X_hat. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 105 | |
| 106 | This is calculated by evaluating partial^2 cost(X_hat) / (partial X * partial X) |
| 107 | |
| 108 | Args: |
| 109 | X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around. |
| 110 | |
| 111 | Result: |
| 112 | numpy.matrix(self.num_states, self.num_states) |
| 113 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 114 | zero_U = numpy.matrix(numpy.zeros((self.num_inputs, 1))) |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 115 | print('S', self.S) |
| 116 | print('Q_final', numerical_jacobian_x_x(self.final_cost, X_hat, |
| 117 | zero_U)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 118 | return numerical_jacobian_x_x(self.final_cost, X_hat, zero_U) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 119 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 120 | def estimate_partial_cost_partial_x_final(self, X_hat): |
| 121 | """Returns \frac{\partial cost}{\partial X}(X_hat) for the final cost. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 122 | |
| 123 | Args: |
| 124 | X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around. |
| 125 | |
| 126 | Result: |
| 127 | numpy.matrix(self.num_states, 1) |
| 128 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 129 | return numerical_jacobian_x( |
| 130 | self.final_cost, X_hat, |
| 131 | numpy.matrix(numpy.zeros((self.num_inputs, 1)))).T |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 132 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 133 | def estimate_q_final(self, X_hat): |
| 134 | """Returns q evaluated at X_hat for the final cost function.""" |
| 135 | return self.estimate_partial_cost_partial_x_final( |
| 136 | X_hat) - self.estimate_Q_final(X_hat) * X_hat |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 137 | |
| 138 | |
| 139 | class SkidSteerDynamics(object): |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 140 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 141 | def __init__(self, dt): |
| 142 | self.width = 0.2 |
| 143 | self.dt = dt |
| 144 | self.num_states = 3 |
| 145 | self.num_inputs = 2 |
| 146 | |
| 147 | def dynamics(self, X, U): |
| 148 | """Calculates the dynamics for a 2 wheeled robot. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 149 | |
| 150 | Args: |
| 151 | X, numpy.matrix(3, 1), The state. [x, y, theta] |
| 152 | U, numpy.matrix(2, 1), The input. [left velocity, right velocity] |
| 153 | |
| 154 | Returns: |
| 155 | numpy.matrix(3, 1), The derivative of the dynamics. |
| 156 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 157 | #return numpy.matrix([[X[1, 0]], |
| 158 | # [X[2, 0]], |
| 159 | # [U[0, 0]]]) |
| 160 | return numpy.matrix([[(U[0, 0] + U[1, 0]) * numpy.cos(X[2, 0]) / 2.0], |
| 161 | [(U[0, 0] + U[1, 0]) * numpy.sin(X[2, 0]) / 2.0], |
| 162 | [(U[1, 0] - U[0, 0]) / self.width]]) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 163 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 164 | def discrete_dynamics(self, X, U): |
| 165 | return RungeKutta(lambda startingX: self.dynamics(startingX, U), X, dt) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 166 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 167 | def inverse_discrete_dynamics(self, X, U): |
| 168 | return RungeKutta(lambda startingX: -self.dynamics(startingX, U), X, |
| 169 | dt) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 170 | |
| 171 | |
| 172 | # Simple implementation for a quadratic cost function. |
| 173 | class CostFunction: |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 174 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 175 | def __init__(self, dt): |
| 176 | self.num_states = 3 |
| 177 | self.num_inputs = 2 |
| 178 | self.dt = dt |
| 179 | self.Q = numpy.matrix([[0.1, 0, 0], [0, 0.6, 0], [0, 0, 0.1] |
| 180 | ]) / self.dt / self.dt |
| 181 | self.R = numpy.matrix([[0.40, 0], [0, 0.40]]) / self.dt / self.dt |
| 182 | |
| 183 | def final_cost(self, X, U): |
| 184 | """Computes the final cost of being at X |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 185 | |
| 186 | Args: |
| 187 | X: numpy.matrix(self.num_states, 1) |
| 188 | U: numpy.matrix(self.num_inputs, 1), ignored |
| 189 | |
| 190 | Returns: |
| 191 | numpy.matrix(1, 1), The quadratic cost of being at X |
| 192 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 193 | return X.T * self.Q * X * 1000 |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 194 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 195 | def cost(self, X, U): |
| 196 | """Computes the incremental cost given a position and U. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 197 | |
| 198 | Args: |
| 199 | X: numpy.matrix(self.num_states, 1) |
| 200 | U: numpy.matrix(self.num_inputs, 1) |
| 201 | |
| 202 | Returns: |
| 203 | numpy.matrix(1, 1), The quadratic cost of evaluating U. |
| 204 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 205 | return U.T * self.R * U + X.T * self.Q * X |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 206 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 207 | def estimate_Q_final(self, X_hat): |
| 208 | """Returns the quadraticized final Q around X_hat. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 209 | |
| 210 | This is calculated by evaluating partial^2 cost(X_hat) / (partial X * partial X) |
| 211 | |
| 212 | Args: |
| 213 | X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around. |
| 214 | |
| 215 | Result: |
| 216 | numpy.matrix(self.num_states, self.num_states) |
| 217 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 218 | zero_U = numpy.matrix(numpy.zeros((self.num_inputs, 1))) |
| 219 | return numerical_jacobian_x_x(self.final_cost, X_hat, zero_U) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 220 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 221 | def estimate_partial_cost_partial_x_final(self, X_hat): |
| 222 | """Returns \frac{\partial cost}{\partial X}(X_hat) for the final cost. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 223 | |
| 224 | Args: |
| 225 | X_hat: numpy.matrix(self.num_states, 1), The state to quadraticize around. |
| 226 | |
| 227 | Result: |
| 228 | numpy.matrix(self.num_states, 1) |
| 229 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 230 | return numerical_jacobian_x( |
| 231 | self.final_cost, X_hat, |
| 232 | numpy.matrix(numpy.zeros((self.num_inputs, 1)))).T |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 233 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 234 | def estimate_q_final(self, X_hat): |
| 235 | """Returns q evaluated at X_hat for the final cost function.""" |
| 236 | return self.estimate_partial_cost_partial_x_final( |
| 237 | X_hat) - self.estimate_Q_final(X_hat) * X_hat |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 238 | |
| 239 | |
| 240 | def RungeKutta(f, x, dt): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 241 | """4th order RungeKutta integration of F starting at X.""" |
| 242 | a = f(x) |
| 243 | b = f(x + dt / 2.0 * a) |
| 244 | c = f(x + dt / 2.0 * b) |
| 245 | d = f(x + dt * c) |
| 246 | return x + dt * (a + 2.0 * b + 2.0 * c + d) / 6.0 |
| 247 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 248 | |
| 249 | def numerical_jacobian_x(fn, X, U, epsilon=1e-4): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 250 | """Numerically estimates the jacobian around X, U in X. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 251 | |
| 252 | Args: |
| 253 | fn: A function of X, U. |
| 254 | X: numpy.matrix(num_states, 1), The state vector to take the jacobian |
| 255 | around. |
| 256 | U: numpy.matrix(num_inputs, 1), The input vector to take the jacobian |
| 257 | around. |
| 258 | |
| 259 | Returns: |
| 260 | numpy.matrix(num_states, num_states), The jacobian of fn with X as the |
| 261 | variable. |
| 262 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 263 | num_states = X.shape[0] |
| 264 | nominal = fn(X, U) |
| 265 | answer = numpy.matrix(numpy.zeros((nominal.shape[0], num_states))) |
| 266 | # It's more expensive, but +- epsilon will be more reliable |
| 267 | for i in range(0, num_states): |
| 268 | dX_plus = X.copy() |
| 269 | dX_plus[i] += epsilon |
| 270 | dX_minus = X.copy() |
| 271 | dX_minus[i] -= epsilon |
| 272 | answer[:, i] = (fn(dX_plus, U) - fn(dX_minus, U)) / epsilon / 2.0 |
| 273 | return answer |
| 274 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 275 | |
| 276 | def numerical_jacobian_u(fn, X, U, epsilon=1e-4): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 277 | """Numerically estimates the jacobian around X, U in U. |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 278 | |
| 279 | Args: |
| 280 | fn: A function of X, U. |
| 281 | X: numpy.matrix(num_states, 1), The state vector to take the jacobian |
| 282 | around. |
| 283 | U: numpy.matrix(num_inputs, 1), The input vector to take the jacobian |
| 284 | around. |
| 285 | |
| 286 | Returns: |
| 287 | numpy.matrix(num_states, num_inputs), The jacobian of fn with U as the |
| 288 | variable. |
| 289 | """ |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 290 | num_states = X.shape[0] |
| 291 | num_inputs = U.shape[0] |
| 292 | nominal = fn(X, U) |
| 293 | answer = numpy.matrix(numpy.zeros((nominal.shape[0], num_inputs))) |
| 294 | for i in range(0, num_inputs): |
| 295 | dU_plus = U.copy() |
| 296 | dU_plus[i] += epsilon |
| 297 | dU_minus = U.copy() |
| 298 | dU_minus[i] -= epsilon |
| 299 | answer[:, i] = (fn(X, dU_plus) - fn(X, dU_minus)) / epsilon / 2.0 |
| 300 | return answer |
| 301 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 302 | |
| 303 | def numerical_jacobian_x_x(fn, X, U): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 304 | return numerical_jacobian_x( |
| 305 | lambda X_inner, U_inner: numerical_jacobian_x(fn, X_inner, U_inner).T, |
| 306 | X, U) |
| 307 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 308 | |
| 309 | def numerical_jacobian_x_u(fn, X, U): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 310 | return numerical_jacobian_x( |
| 311 | lambda X_inner, U_inner: numerical_jacobian_u(fn, X_inner, U_inner).T, |
| 312 | X, U) |
| 313 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 314 | |
| 315 | def numerical_jacobian_u_x(fn, X, U): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 316 | return numerical_jacobian_u( |
| 317 | lambda X_inner, U_inner: numerical_jacobian_x(fn, X_inner, U_inner).T, |
| 318 | X, U) |
| 319 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 320 | |
| 321 | def numerical_jacobian_u_u(fn, X, U): |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 322 | return numerical_jacobian_u( |
| 323 | lambda X_inner, U_inner: numerical_jacobian_u(fn, X_inner, U_inner).T, |
| 324 | X, U) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 325 | |
| 326 | |
| 327 | class ELQR(object): |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 328 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 329 | def __init__(self, dynamics, cost): |
| 330 | self.dynamics = dynamics |
| 331 | self.cost = cost |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 332 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 333 | def Solve(self, x_hat_initial, horizon, iterations): |
| 334 | l = horizon |
| 335 | num_states = self.dynamics.num_states |
| 336 | num_inputs = self.dynamics.num_inputs |
| 337 | self.S_bar_t = [ |
| 338 | numpy.matrix(numpy.zeros((num_states, num_states))) |
| 339 | for _ in range(l + 1) |
| 340 | ] |
| 341 | self.s_bar_t = [ |
| 342 | numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1) |
| 343 | ] |
| 344 | self.s_scalar_bar_t = [ |
| 345 | numpy.matrix(numpy.zeros((1, 1))) for _ in range(l + 1) |
| 346 | ] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 347 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 348 | self.L_t = [ |
| 349 | numpy.matrix(numpy.zeros((num_inputs, num_states))) |
| 350 | for _ in range(l + 1) |
| 351 | ] |
| 352 | self.l_t = [ |
| 353 | numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1) |
| 354 | ] |
| 355 | self.L_bar_t = [ |
| 356 | numpy.matrix(numpy.zeros((num_inputs, num_states))) |
| 357 | for _ in range(l + 1) |
| 358 | ] |
| 359 | self.l_bar_t = [ |
| 360 | numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1) |
| 361 | ] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 362 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 363 | self.S_t = [ |
| 364 | numpy.matrix(numpy.zeros((num_states, num_states))) |
| 365 | for _ in range(l + 1) |
| 366 | ] |
| 367 | self.s_t = [ |
| 368 | numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1) |
| 369 | ] |
| 370 | self.s_scalar_t = [ |
| 371 | numpy.matrix(numpy.zeros((1, 1))) for _ in range(l + 1) |
| 372 | ] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 373 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 374 | self.last_x_hat_t = [ |
| 375 | numpy.matrix(numpy.zeros((num_states, 1))) for _ in range(l + 1) |
| 376 | ] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 377 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 378 | # Iterate the solver |
| 379 | for a in range(iterations): |
| 380 | x_hat = x_hat_initial |
| 381 | u_t = self.L_t[0] * x_hat + self.l_t[0] |
| 382 | self.S_bar_t[0] = numpy.matrix( |
| 383 | numpy.zeros((num_states, num_states))) |
| 384 | self.s_bar_t[0] = numpy.matrix(numpy.zeros((num_states, 1))) |
| 385 | self.s_scalar_bar_t[0] = numpy.matrix([[0]]) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 386 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 387 | self.last_x_hat_t[0] = x_hat_initial |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 388 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 389 | Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat_initial, u_t) |
| 390 | P_t = numerical_jacobian_x_u(self.cost.cost, x_hat_initial, u_t) |
| 391 | R_t = numerical_jacobian_u_u(self.cost.cost, x_hat_initial, u_t) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 392 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 393 | q_t = numerical_jacobian_x(self.cost.cost, x_hat_initial, u_t).T \ |
| 394 | - Q_t * x_hat_initial - P_t.T * u_t |
| 395 | r_t = numerical_jacobian_u(self.cost.cost, x_hat_initial, u_t).T \ |
| 396 | - P_t * x_hat_initial - R_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 397 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 398 | q_scalar_t = self.cost.cost(x_hat_initial, u_t) \ |
| 399 | - 0.5 * (x_hat_initial.T * (Q_t * x_hat_initial + P_t.T * u_t) \ |
| 400 | + u_t.T * (P_t * x_hat_initial + R_t * u_t)) \ |
| 401 | - x_hat_initial.T * q_t - u_t.T * r_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 402 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 403 | start_A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics, |
| 404 | x_hat_initial, u_t) |
| 405 | start_B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics, |
| 406 | x_hat_initial, u_t) |
| 407 | x_hat_next = self.dynamics.discrete_dynamics(x_hat_initial, u_t) |
| 408 | start_c_t = x_hat_next - start_A_t * x_hat_initial - start_B_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 409 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 410 | B_svd_u, B_svd_sigma_diag, B_svd_v = numpy.linalg.svd(start_B_t) |
| 411 | B_svd_sigma = numpy.matrix(numpy.zeros(start_B_t.shape)) |
| 412 | B_svd_sigma[0:B_svd_sigma_diag.shape[0], 0:B_svd_sigma_diag.shape[0]] = \ |
| 413 | numpy.diag(B_svd_sigma_diag) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 414 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 415 | B_svd_sigma_inv = numpy.matrix(numpy.zeros(start_B_t.shape)).T |
| 416 | B_svd_sigma_inv[0:B_svd_sigma_diag.shape[0], |
| 417 | 0:B_svd_sigma_diag.shape[0]] = \ |
| 418 | numpy.linalg.inv(numpy.diag(B_svd_sigma_diag)) |
| 419 | B_svd_inv = B_svd_v.T * B_svd_sigma_inv * B_svd_u.T |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 420 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 421 | self.L_bar_t[1] = B_svd_inv |
| 422 | self.l_bar_t[1] = -B_svd_inv * (start_A_t * x_hat_initial + |
| 423 | start_c_t) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 424 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 425 | self.S_bar_t[1] = self.L_bar_t[1].T * R_t * self.L_bar_t[1] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 426 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 427 | TotalS_1 = start_B_t.T * self.S_t[1] * start_B_t + R_t |
| 428 | Totals_1 = start_B_t.T * self.S_t[1] * (start_c_t + start_A_t * x_hat_initial) \ |
| 429 | + start_B_t.T * self.s_t[1] + P_t * x_hat_initial + r_t |
| 430 | Totals_scalar_1 = 0.5 * (start_c_t.T + x_hat_initial.T * start_A_t.T) * self.S_t[1] * (start_c_t + start_A_t * x_hat_initial) \ |
| 431 | + self.s_scalar_t[1] + x_hat_initial.T * q_t + q_scalar_t \ |
| 432 | + 0.5 * x_hat_initial.T * Q_t * x_hat_initial \ |
| 433 | + (start_c_t.T + x_hat_initial.T * start_A_t.T) * self.s_t[1] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 434 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 435 | optimal_u_1 = -numpy.linalg.solve(TotalS_1, Totals_1) |
| 436 | optimal_x_1 = start_A_t * x_hat_initial \ |
| 437 | + start_B_t * optimal_u_1 + start_c_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 438 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 439 | # TODO(austin): Disable this if we are controlable. It should not be needed then. |
| 440 | S_bar_1_eigh_eigenvalues, S_bar_1_eigh_eigenvectors = \ |
| 441 | numpy.linalg.eigh(self.S_bar_t[1]) |
| 442 | S_bar_1_eigh = numpy.matrix(numpy.diag(S_bar_1_eigh_eigenvalues)) |
| 443 | S_bar_1_eigh_eigenvalues_stiff = S_bar_1_eigh_eigenvalues.copy() |
| 444 | for i in range(S_bar_1_eigh_eigenvalues_stiff.shape[0]): |
| 445 | if abs(S_bar_1_eigh_eigenvalues_stiff[i]) < 1e-8: |
| 446 | S_bar_1_eigh_eigenvalues_stiff[i] = max( |
| 447 | S_bar_1_eigh_eigenvalues_stiff) * 1.0 |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 448 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 449 | S_bar_stiff = S_bar_1_eigh_eigenvectors * numpy.matrix( |
| 450 | numpy.diag(S_bar_1_eigh_eigenvalues_stiff) |
| 451 | ) * S_bar_1_eigh_eigenvectors.T |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 452 | |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 453 | print('Min u', -numpy.linalg.solve(TotalS_1, Totals_1)) |
| 454 | print('Min x_hat', optimal_x_1) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 455 | self.s_bar_t[1] = -self.s_t[1] - (S_bar_stiff + |
| 456 | self.S_t[1]) * optimal_x_1 |
| 457 | self.s_scalar_bar_t[1] = 0.5 * (optimal_u_1.T * TotalS_1 * optimal_u_1 \ |
| 458 | - optimal_x_1.T * (S_bar_stiff + self.S_t[1]) * optimal_x_1) \ |
| 459 | + optimal_u_1.T * Totals_1 \ |
| 460 | - optimal_x_1.T * (self.s_bar_t[1] + self.s_t[1]) \ |
| 461 | - self.s_scalar_t[1] + Totals_scalar_1 |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 462 | |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 463 | print('optimal_u_1', optimal_u_1) |
| 464 | print('TotalS_1', TotalS_1) |
| 465 | print('Totals_1', Totals_1) |
| 466 | print('Totals_scalar_1', Totals_scalar_1) |
| 467 | print('overall cost 1', 0.5 * (optimal_u_1.T * TotalS_1 * optimal_u_1) \ |
| 468 | + optimal_u_1.T * Totals_1 + Totals_scalar_1) |
| 469 | print('overall cost 0', 0.5 * (x_hat_initial.T * self.S_t[0] * x_hat_initial) \ |
| 470 | + x_hat_initial.T * self.s_t[0] + self.s_scalar_t[0]) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 471 | |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 472 | print('t forward 0') |
| 473 | print('x_hat_initial[ 0]: %s' % (x_hat_initial)) |
| 474 | print('x_hat[%2d]: %s' % (0, x_hat.T)) |
| 475 | print('x_hat_next[%2d]: %s' % (0, x_hat_next.T)) |
| 476 | print('u[%2d]: %s' % (0, u_t.T)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 477 | print('L[ 0]: %s' % (self.L_t[0], )).replace('\n', '\n ') |
| 478 | print('l[ 0]: %s' % (self.l_t[0], )).replace('\n', '\n ') |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 479 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 480 | print('A_t[%2d]: %s' % (0, start_A_t)).replace('\n', '\n ') |
| 481 | print('B_t[%2d]: %s' % (0, start_B_t)).replace('\n', '\n ') |
| 482 | print('c_t[%2d]: %s' % (0, start_c_t)).replace('\n', '\n ') |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 483 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 484 | # TODO(austin): optimal_x_1 is x_hat |
| 485 | x_hat = -numpy.linalg.solve((self.S_t[1] + S_bar_stiff), |
| 486 | (self.s_t[1] + self.s_bar_t[1])) |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 487 | print('new xhat', x_hat) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 488 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 489 | self.S_bar_t[1] = S_bar_stiff |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 490 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 491 | self.last_x_hat_t[1] = x_hat |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 492 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 493 | for t in range(1, l): |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 494 | print('t forward', t) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 495 | u_t = self.L_t[t] * x_hat + self.l_t[t] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 496 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 497 | x_hat_next = self.dynamics.discrete_dynamics(x_hat, u_t) |
| 498 | A_bar_t = numerical_jacobian_x( |
| 499 | self.dynamics.inverse_discrete_dynamics, x_hat_next, u_t) |
| 500 | B_bar_t = numerical_jacobian_u( |
| 501 | self.dynamics.inverse_discrete_dynamics, x_hat_next, u_t) |
| 502 | c_bar_t = x_hat - A_bar_t * x_hat_next - B_bar_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 503 | |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 504 | print('x_hat[%2d]: %s' % (t, x_hat.T)) |
| 505 | print('x_hat_next[%2d]: %s' % (t, x_hat_next.T)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 506 | print('L[%2d]: %s' % ( |
| 507 | t, |
| 508 | self.L_t[t], |
| 509 | )).replace('\n', '\n ') |
| 510 | print('l[%2d]: %s' % ( |
| 511 | t, |
| 512 | self.l_t[t], |
| 513 | )).replace('\n', '\n ') |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 514 | print('u[%2d]: %s' % (t, u_t.T)) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 515 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 516 | print('A_bar_t[%2d]: %s' % (t, A_bar_t)).replace( |
| 517 | '\n', '\n ') |
| 518 | print('B_bar_t[%2d]: %s' % (t, B_bar_t)).replace( |
| 519 | '\n', '\n ') |
| 520 | print('c_bar_t[%2d]: %s' % (t, c_bar_t)).replace( |
| 521 | '\n', '\n ') |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 522 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 523 | Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat, u_t) |
| 524 | P_t = numerical_jacobian_x_u(self.cost.cost, x_hat, u_t) |
| 525 | R_t = numerical_jacobian_u_u(self.cost.cost, x_hat, u_t) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 526 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 527 | q_t = numerical_jacobian_x(self.cost.cost, x_hat, u_t).T \ |
| 528 | - Q_t * x_hat - P_t.T * u_t |
| 529 | r_t = numerical_jacobian_u(self.cost.cost, x_hat, u_t).T \ |
| 530 | - P_t * x_hat - R_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 531 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 532 | q_scalar_t = self.cost.cost(x_hat, u_t) \ |
| 533 | - 0.5 * (x_hat.T * (Q_t * x_hat + P_t.T * u_t) \ |
| 534 | + u_t.T * (P_t * x_hat + R_t * u_t)) - x_hat.T * q_t - u_t.T * r_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 535 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 536 | C_bar_t = B_bar_t.T * (self.S_bar_t[t] + |
| 537 | Q_t) * A_bar_t + P_t * A_bar_t |
| 538 | D_bar_t = A_bar_t.T * (self.S_bar_t[t] + Q_t) * A_bar_t |
| 539 | E_bar_t = B_bar_t.T * (self.S_bar_t[t] + Q_t) * B_bar_t + R_t \ |
| 540 | + P_t * B_bar_t + B_bar_t.T * P_t.T |
| 541 | d_bar_t = A_bar_t.T * (self.s_bar_t[t] + q_t) \ |
| 542 | + A_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t |
| 543 | e_bar_t = r_t + P_t * c_bar_t + B_bar_t.T * self.s_bar_t[t] \ |
| 544 | + B_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 545 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 546 | self.L_bar_t[t + 1] = -numpy.linalg.inv(E_bar_t) * C_bar_t |
| 547 | self.l_bar_t[t + 1] = -numpy.linalg.inv(E_bar_t) * e_bar_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 548 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 549 | self.S_bar_t[t + 1] = D_bar_t + C_bar_t.T * self.L_bar_t[t + 1] |
| 550 | self.s_bar_t[t + 1] = d_bar_t + C_bar_t.T * self.l_bar_t[t + 1] |
| 551 | self.s_scalar_bar_t[t + 1] = \ |
| 552 | -0.5 * e_bar_t.T * numpy.linalg.inv(E_bar_t) * e_bar_t \ |
| 553 | + 0.5 * c_bar_t.T * (self.S_bar_t[t] + Q_t) * c_bar_t \ |
| 554 | + c_bar_t.T * self.s_bar_t[t] + c_bar_t.T * q_t \ |
| 555 | + self.s_scalar_bar_t[t] + q_scalar_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 556 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 557 | x_hat = -numpy.linalg.solve( |
| 558 | (self.S_t[t + 1] + self.S_bar_t[t + 1]), |
| 559 | (self.s_t[t + 1] + self.s_bar_t[t + 1])) |
| 560 | self.S_t[l] = self.cost.estimate_Q_final(x_hat) |
| 561 | self.s_t[l] = self.cost.estimate_q_final(x_hat) |
| 562 | x_hat = -numpy.linalg.inv(self.S_t[l] + self.S_bar_t[l]) \ |
| 563 | * (self.s_t[l] + self.s_bar_t[l]) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 564 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 565 | for t in reversed(range(l)): |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 566 | print('t backward', t) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 567 | # TODO(austin): I don't think we can use L_t like this here. |
| 568 | # I think we are off by 1 somewhere... |
| 569 | u_t = self.L_bar_t[t + 1] * x_hat + self.l_bar_t[t + 1] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 570 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 571 | x_hat_prev = self.dynamics.inverse_discrete_dynamics( |
| 572 | x_hat, u_t) |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 573 | print('x_hat[%2d]: %s' % (t, x_hat.T)) |
| 574 | print('x_hat_prev[%2d]: %s' % (t, x_hat_prev.T)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 575 | print('L_bar[%2d]: %s' % (t + 1, self.L_bar_t[t + 1])).replace( |
| 576 | '\n', '\n ') |
| 577 | print('l_bar[%2d]: %s' % (t + 1, self.l_bar_t[t + 1])).replace( |
| 578 | '\n', '\n ') |
Austin Schuh | ea5f0a7 | 2024-09-02 15:02:36 -0700 | [diff] [blame] | 579 | print('u[%2d]: %s' % (t, u_t.T)) |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 580 | # Now compute the linearized A, B, and C |
| 581 | # Start by doing it numerically, and then optimize. |
| 582 | A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics, |
| 583 | x_hat_prev, u_t) |
| 584 | B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics, |
| 585 | x_hat_prev, u_t) |
| 586 | c_t = x_hat - A_t * x_hat_prev - B_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 587 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 588 | print('A_t[%2d]: %s' % (t, A_t)).replace('\n', '\n ') |
| 589 | print('B_t[%2d]: %s' % (t, B_t)).replace('\n', '\n ') |
| 590 | print('c_t[%2d]: %s' % (t, c_t)).replace('\n', '\n ') |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 591 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 592 | Q_t = numerical_jacobian_x_x(self.cost.cost, x_hat_prev, u_t) |
| 593 | P_t = numerical_jacobian_x_u(self.cost.cost, x_hat_prev, u_t) |
| 594 | P_T_t = numerical_jacobian_u_x(self.cost.cost, x_hat_prev, u_t) |
| 595 | R_t = numerical_jacobian_u_u(self.cost.cost, x_hat_prev, u_t) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 596 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 597 | q_t = numerical_jacobian_x(self.cost.cost, x_hat_prev, u_t).T \ |
| 598 | - Q_t * x_hat_prev - P_T_t * u_t |
| 599 | r_t = numerical_jacobian_u(self.cost.cost, x_hat_prev, u_t).T \ |
| 600 | - P_t * x_hat_prev - R_t * u_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 601 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 602 | q_scalar_t = self.cost.cost(x_hat_prev, u_t) \ |
| 603 | - 0.5 * (x_hat_prev.T * (Q_t * x_hat_prev + P_t.T * u_t) \ |
| 604 | + u_t.T * (P_t * x_hat_prev + R_t * u_t)) \ |
| 605 | - x_hat_prev.T * q_t - u_t.T * r_t |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 606 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 607 | C_t = P_t + B_t.T * self.S_t[t + 1] * A_t |
| 608 | D_t = Q_t + A_t.T * self.S_t[t + 1] * A_t |
| 609 | E_t = R_t + B_t.T * self.S_t[t + 1] * B_t |
| 610 | d_t = q_t + A_t.T * self.s_t[t + 1] + A_t.T * self.S_t[t + |
| 611 | 1] * c_t |
| 612 | e_t = r_t + B_t.T * self.s_t[t + 1] + B_t.T * self.S_t[t + |
| 613 | 1] * c_t |
| 614 | self.L_t[t] = -numpy.linalg.inv(E_t) * C_t |
| 615 | self.l_t[t] = -numpy.linalg.inv(E_t) * e_t |
| 616 | self.s_t[t] = d_t + C_t.T * self.l_t[t] |
| 617 | self.S_t[t] = D_t + C_t.T * self.L_t[t] |
| 618 | self.s_scalar_t[t] = q_scalar_t \ |
| 619 | - 0.5 * e_t.T * numpy.linalg.inv(E_t) * e_t \ |
| 620 | + 0.5 * c_t.T * self.S_t[t + 1] * c_t \ |
| 621 | + c_t.T * self.s_t[t + 1] \ |
| 622 | + self.s_scalar_t[t + 1] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 623 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 624 | x_hat = -numpy.linalg.solve((self.S_t[t] + self.S_bar_t[t]), |
| 625 | (self.s_t[t] + self.s_bar_t[t])) |
| 626 | if t == 0: |
| 627 | self.last_x_hat_t[t] = x_hat_initial |
| 628 | else: |
| 629 | self.last_x_hat_t[t] = x_hat |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 630 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 631 | x_hat_t = [x_hat_initial] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 632 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 633 | pylab.figure('states %d' % a) |
| 634 | pylab.ion() |
| 635 | for dim in range(num_states): |
| 636 | pylab.plot( |
| 637 | numpy.arange(len(self.last_x_hat_t)), |
| 638 | [x_hat_loop[dim, 0] for x_hat_loop in self.last_x_hat_t], |
| 639 | marker='o', |
| 640 | label='Xhat[%d]' % dim) |
| 641 | pylab.legend() |
| 642 | pylab.draw() |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 643 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 644 | pylab.figure('xy %d' % a) |
| 645 | pylab.ion() |
| 646 | pylab.plot([x_hat_loop[0, 0] for x_hat_loop in self.last_x_hat_t], |
| 647 | [x_hat_loop[1, 0] for x_hat_loop in self.last_x_hat_t], |
| 648 | marker='o', |
| 649 | label='trajectory') |
| 650 | pylab.legend() |
| 651 | pylab.draw() |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 652 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 653 | final_u_t = [ |
| 654 | numpy.matrix(numpy.zeros((num_inputs, 1))) for _ in range(l + 1) |
| 655 | ] |
| 656 | cost_to_go = [] |
| 657 | cost_to_come = [] |
| 658 | cost = [] |
| 659 | for t in range(l): |
| 660 | cost_to_go.append( |
| 661 | (0.5 * self.last_x_hat_t[t].T * self.S_t[t] * self.last_x_hat_t[t] \ |
| 662 | + self.last_x_hat_t[t].T * self.s_t[t] + self.s_scalar_t[t])[0, 0]) |
| 663 | cost_to_come.append( |
| 664 | (0.5 * self.last_x_hat_t[t].T * self.S_bar_t[t] * self.last_x_hat_t[t] \ |
| 665 | + self.last_x_hat_t[t].T * self.s_bar_t[t] + self.s_scalar_bar_t[t])[0, 0]) |
| 666 | cost.append(cost_to_go[-1] + cost_to_come[-1]) |
| 667 | final_u_t[t] = self.L_t[t] * self.last_x_hat_t[t] + self.l_t[t] |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 668 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 669 | for t in range(l): |
| 670 | A_t = numerical_jacobian_x(self.dynamics.discrete_dynamics, |
| 671 | self.last_x_hat_t[t], final_u_t[t]) |
| 672 | B_t = numerical_jacobian_u(self.dynamics.discrete_dynamics, |
| 673 | self.last_x_hat_t[t], final_u_t[t]) |
| 674 | c_t = self.dynamics.discrete_dynamics(self.last_x_hat_t[t], final_u_t[t]) \ |
| 675 | - A_t * self.last_x_hat_t[t] - B_t * final_u_t[t] |
| 676 | print("Infeasability at", t, "is", |
| 677 | ((A_t * self.last_x_hat_t[t] + B_t * final_u_t[t] + c_t) \ |
| 678 | - self.last_x_hat_t[t + 1]).T) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 679 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 680 | pylab.figure('u') |
| 681 | samples = numpy.arange(len(final_u_t)) |
| 682 | for i in range(num_inputs): |
| 683 | pylab.plot(samples, [u[i, 0] for u in final_u_t], |
| 684 | label='u[%d]' % i, |
| 685 | marker='o') |
| 686 | pylab.legend() |
| 687 | |
| 688 | pylab.figure('cost') |
| 689 | cost_samples = numpy.arange(len(cost)) |
| 690 | pylab.plot(cost_samples, cost_to_go, label='cost to go', marker='o') |
| 691 | pylab.plot(cost_samples, |
| 692 | cost_to_come, |
| 693 | label='cost to come', |
| 694 | marker='o') |
| 695 | pylab.plot(cost_samples, cost, label='cost', marker='o') |
| 696 | pylab.legend() |
| 697 | |
| 698 | pylab.ioff() |
| 699 | pylab.show() |
| 700 | |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 701 | |
| 702 | if __name__ == '__main__': |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 703 | dt = 0.05 |
| 704 | #arm_dynamics = ArmDynamics(dt=dt) |
| 705 | #elqr = ELQR(arm_dynamics, ArmCostFunction(dt=dt, dynamics=arm_dynamics)) |
| 706 | #x_hat_initial = numpy.matrix([[0.10], [1.0], [0.0], [0.0]]) |
| 707 | #elqr.Solve(x_hat_initial, 100, 3) |
Austin Schuh | 434c837 | 2018-01-21 16:30:06 -0800 | [diff] [blame] | 708 | |
Ravago Jones | 5127ccc | 2022-07-31 16:32:45 -0700 | [diff] [blame] | 709 | elqr = ELQR(SkidSteerDynamics(dt=dt), CostFunction(dt=dt)) |
| 710 | x_hat_initial = numpy.matrix([[0.10], [1.0], [0.0]]) |
| 711 | elqr.Solve(x_hat_initial, 100, 15) |
| 712 | sys.exit(1) |