blob: 9bc74d59e8d104b76aff8565903fa98de2f21b0b [file] [log] [blame]
Alex Perrycb7da4b2019-08-28 19:35:56 -07001#include "aos/events/simulated_event_loop.h"
2
3#include <algorithm>
4#include <deque>
5
6#include "absl/container/btree_map.h"
7#include "absl/container/btree_set.h"
8#include "aos/json_to_flatbuffer.h"
9#include "aos/util/phased_loop.h"
10
11namespace aos {
12
13// Container for both a message, and the context for it for simulation. This
14// makes tracking the timestamps associated with the data easy.
15struct SimulatedMessage {
16 // Struct to let us force data to be well aligned.
17 struct OveralignedChar {
18 char data alignas(32);
19 };
20
21 // Context for the data.
22 Context context;
23
24 // The data.
25 char *data() { return reinterpret_cast<char *>(&actual_data[0]); }
26
27 // Then the data.
28 OveralignedChar actual_data[];
29};
30
31class SimulatedFetcher;
32
33class SimulatedChannel {
34 public:
35 explicit SimulatedChannel(const Channel *channel, EventScheduler *scheduler)
36 : channel_(CopyFlatBuffer(channel)),
37 scheduler_(scheduler),
38 next_queue_index_(ipc_lib::QueueIndex::Zero(channel->max_size())) {}
39
40 ~SimulatedChannel() { CHECK_EQ(0u, fetchers_.size()); }
41
42 // Makes a connected raw sender which calls Send below.
43 ::std::unique_ptr<RawSender> MakeRawSender(EventLoop *event_loop);
44
45 // Makes a connected raw fetcher.
46 ::std::unique_ptr<RawFetcher> MakeRawFetcher();
47
48 // Registers a watcher for the queue.
49 void MakeRawWatcher(
50 ::std::function<void(const Context &context, const void *message)>
51 watcher);
52
53 // Sends the message to all the connected receivers and fetchers.
54 void Send(std::shared_ptr<SimulatedMessage> message);
55
56 // Unregisters a fetcher.
57 void UnregisterFetcher(SimulatedFetcher *fetcher);
58
59 std::shared_ptr<SimulatedMessage> latest_message() { return latest_message_; }
60
61 size_t max_size() const { return channel_.message().max_size(); }
62
63 const absl::string_view name() const {
64 return channel_.message().name()->string_view();
65 }
66
67 const Channel *channel() const { return &channel_.message(); }
68
69 private:
70 const FlatbufferDetachedBuffer<Channel> channel_;
71
72 // List of all watchers.
73 ::std::vector<
74 std::function<void(const Context &context, const void *message)>>
75 watchers_;
76
77 // List of all fetchers.
78 ::std::vector<SimulatedFetcher *> fetchers_;
79 std::shared_ptr<SimulatedMessage> latest_message_;
80 EventScheduler *scheduler_;
81
82 ipc_lib::QueueIndex next_queue_index_;
83};
84
85namespace {
86
87// Creates a SimulatedMessage with size bytes of storage.
88// This is a shared_ptr so we don't have to implement refcounting or copying.
89std::shared_ptr<SimulatedMessage> MakeSimulatedMessage(size_t size) {
90 SimulatedMessage *message = reinterpret_cast<SimulatedMessage *>(
91 malloc(sizeof(SimulatedMessage) + size));
92 message->context.size = size;
93 message->context.data = message->data();
94
95 return std::shared_ptr<SimulatedMessage>(message, free);
96}
97
98class SimulatedSender : public RawSender {
99 public:
100 SimulatedSender(SimulatedChannel *simulated_channel, EventLoop *event_loop)
101 : simulated_channel_(simulated_channel), event_loop_(event_loop) {}
102 ~SimulatedSender() {}
103
104 void *data() override {
105 if (!message_) {
106 message_ = MakeSimulatedMessage(simulated_channel_->max_size());
107 }
108 return message_->data();
109 }
110
111 size_t size() override { return simulated_channel_->max_size(); }
112
113 bool Send(size_t length) override {
114 CHECK_LE(length, size()) << ": Attempting to send too big a message.";
115 message_->context.monotonic_sent_time = event_loop_->monotonic_now();
116 message_->context.realtime_sent_time = event_loop_->realtime_now();
117 CHECK_LE(length, message_->context.size);
118 message_->context.size = length;
119
120 // TODO(austin): Track sending too fast.
121 simulated_channel_->Send(message_);
122
123 // Drop the reference to the message so that we allocate a new message for
124 // next time. Otherwise we will continue to reuse the same memory for all
125 // messages and corrupt it.
126 message_.reset();
127 return true;
128 }
129
130 bool Send(void *msg, size_t size) override {
131 CHECK_LE(size, this->size()) << ": Attempting to send too big a message.";
132
133 // This is wasteful, but since flatbuffers fill from the back end of the
134 // queue, we need it to be full sized.
135 message_ = MakeSimulatedMessage(simulated_channel_->max_size());
136
137 // Now fill in the message. size is already populated above, and
138 // queue_index will be populated in queue_. Put this at the back of the
139 // data segment.
140 memcpy(message_->data() + simulated_channel_->max_size() - size, msg, size);
141
142 return Send(size);
143 }
144
145 const absl::string_view name() const override {
146 return simulated_channel_->name();
147 }
148
149 private:
150 SimulatedChannel *simulated_channel_;
151 EventLoop *event_loop_;
152
153 std::shared_ptr<SimulatedMessage> message_;
154};
155} // namespace
156
157class SimulatedFetcher : public RawFetcher {
158 public:
159 explicit SimulatedFetcher(SimulatedChannel *queue) : queue_(queue) {}
160 ~SimulatedFetcher() { queue_->UnregisterFetcher(this); }
161
162 bool FetchNext() override {
163 if (msgs_.size() == 0) return false;
164
165 SetMsg(msgs_.front());
166 msgs_.pop_front();
167 return true;
168 }
169
170 bool Fetch() override {
171 if (msgs_.size() == 0) {
172 if (!msg_ && queue_->latest_message()) {
173 SetMsg(queue_->latest_message());
174 return true;
175 } else {
176 return false;
177 }
178 }
179
180 // We've had a message enqueued, so we don't need to go looking for the
181 // latest message from before we started.
182 SetMsg(msgs_.back());
183 msgs_.clear();
184 return true;
185 }
186
187 private:
188 friend class SimulatedChannel;
189
190 // Updates the state inside RawFetcher to point to the data in msg_.
191 void SetMsg(std::shared_ptr<SimulatedMessage> msg) {
192 msg_ = msg;
193 data_ = msg_->context.data;
194 context_ = msg_->context;
195 }
196
197 // Internal method for Simulation to add a message to the buffer.
198 void Enqueue(std::shared_ptr<SimulatedMessage> buffer) {
199 msgs_.emplace_back(buffer);
200 }
201
202 SimulatedChannel *queue_;
203 std::shared_ptr<SimulatedMessage> msg_;
204
205 // Messages queued up but not in use.
206 ::std::deque<std::shared_ptr<SimulatedMessage>> msgs_;
207};
208
209class SimulatedTimerHandler : public TimerHandler {
210 public:
211 explicit SimulatedTimerHandler(EventScheduler *scheduler,
212 ::std::function<void()> fn)
213 : scheduler_(scheduler), token_(scheduler_->InvalidToken()), fn_(fn) {}
214 ~SimulatedTimerHandler() {}
215
216 void Setup(monotonic_clock::time_point base,
217 monotonic_clock::duration repeat_offset) override {
218 Disable();
219 const ::aos::monotonic_clock::time_point monotonic_now =
220 scheduler_->monotonic_now();
221 base_ = base;
222 repeat_offset_ = repeat_offset;
223 if (base < monotonic_now) {
224 token_ = scheduler_->Schedule(monotonic_now, [this]() { HandleEvent(); });
225 } else {
226 token_ = scheduler_->Schedule(base, [this]() { HandleEvent(); });
227 }
228 }
229
230 void HandleEvent() {
231 const ::aos::monotonic_clock::time_point monotonic_now =
232 scheduler_->monotonic_now();
233 if (repeat_offset_ != ::aos::monotonic_clock::zero()) {
234 // Reschedule.
235 while (base_ <= monotonic_now) base_ += repeat_offset_;
236 token_ = scheduler_->Schedule(base_, [this]() { HandleEvent(); });
237 } else {
238 token_ = scheduler_->InvalidToken();
239 }
240 fn_();
241 }
242
243 void Disable() override {
244 if (token_ != scheduler_->InvalidToken()) {
245 scheduler_->Deschedule(token_);
246 token_ = scheduler_->InvalidToken();
247 }
248 }
249
250 ::aos::monotonic_clock::time_point monotonic_now() const {
251 return scheduler_->monotonic_now();
252 }
253
254 private:
255 EventScheduler *scheduler_;
256 EventScheduler::Token token_;
257 // Function to be run on the thread
258 ::std::function<void()> fn_;
259 monotonic_clock::time_point base_;
260 monotonic_clock::duration repeat_offset_;
261};
262
263class SimulatedPhasedLoopHandler : public PhasedLoopHandler {
264 public:
265 SimulatedPhasedLoopHandler(EventScheduler *scheduler,
266 ::std::function<void(int)> fn,
267 const monotonic_clock::duration interval,
268 const monotonic_clock::duration offset)
269 : simulated_timer_handler_(scheduler, [this]() { HandleTimerWakeup(); }),
270 phased_loop_(interval, simulated_timer_handler_.monotonic_now(),
271 offset),
272 fn_(fn) {
273 // TODO(austin): This assumes time doesn't change between when the
274 // constructor is called and when we start running. It's probably a safe
275 // assumption.
276 Reschedule();
277 }
278
279 void HandleTimerWakeup() {
280 fn_(cycles_elapsed_);
281 Reschedule();
282 }
283
284 void set_interval_and_offset(
285 const monotonic_clock::duration interval,
286 const monotonic_clock::duration offset) override {
287 phased_loop_.set_interval_and_offset(interval, offset);
288 }
289
290 void Reschedule() {
291 cycles_elapsed_ =
292 phased_loop_.Iterate(simulated_timer_handler_.monotonic_now());
293 simulated_timer_handler_.Setup(phased_loop_.sleep_time(),
294 ::aos::monotonic_clock::zero());
295 }
296
297 private:
298 SimulatedTimerHandler simulated_timer_handler_;
299
300 time::PhasedLoop phased_loop_;
301
302 int cycles_elapsed_ = 1;
303
304 ::std::function<void(int)> fn_;
305};
306
307class SimulatedEventLoop : public EventLoop {
308 public:
309 explicit SimulatedEventLoop(
310 EventScheduler *scheduler,
311 absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>>
312 *channels,
313 const Configuration *configuration,
314 std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
315 *raw_event_loops)
316 : EventLoop(configuration),
317 scheduler_(scheduler),
318 channels_(channels),
319 raw_event_loops_(raw_event_loops) {
320 raw_event_loops_->push_back(
321 std::make_pair(this, [this](bool value) { set_is_running(value); }));
322 }
323 ~SimulatedEventLoop() override {
324 for (auto it = raw_event_loops_->begin(); it != raw_event_loops_->end();
325 ++it) {
326 if (it->first == this) {
327 raw_event_loops_->erase(it);
328 break;
329 }
330 }
331 }
332
333 ::aos::monotonic_clock::time_point monotonic_now() override {
334 return scheduler_->monotonic_now();
335 }
336
337 ::aos::realtime_clock::time_point realtime_now() override {
338 return scheduler_->realtime_now();
339 }
340
341 ::std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) override;
342
343 ::std::unique_ptr<RawFetcher> MakeRawFetcher(const Channel *channel) override;
344
345 void MakeRawWatcher(
346 const Channel *channel,
347 ::std::function<void(const Context &context, const void *message)>
348 watcher) override;
349
350 TimerHandler *AddTimer(::std::function<void()> callback) override {
351 timers_.emplace_back(new SimulatedTimerHandler(scheduler_, callback));
352 return timers_.back().get();
353 }
354
355 PhasedLoopHandler *AddPhasedLoop(::std::function<void(int)> callback,
356 const monotonic_clock::duration interval,
357 const monotonic_clock::duration offset =
358 ::std::chrono::seconds(0)) override {
359 phased_loops_.emplace_back(
360 new SimulatedPhasedLoopHandler(scheduler_, callback, interval, offset));
361 return phased_loops_.back().get();
362 }
363
364 void OnRun(::std::function<void()> on_run) override {
365 scheduler_->Schedule(scheduler_->monotonic_now(), on_run);
366 }
367
368 void set_name(const absl::string_view name) override {
369 name_ = std::string(name);
370 }
371 const absl::string_view name() const override { return name_; }
372
373 SimulatedChannel *GetSimulatedChannel(const Channel *channel);
374
375 void Take(const Channel *channel);
376
377 void SetRuntimeRealtimePriority(int /*priority*/) override {
378 CHECK(!is_running()) << ": Cannot set realtime priority while running.";
379 }
380
381 private:
382 EventScheduler *scheduler_;
383 absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> *channels_;
384 std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
385 *raw_event_loops_;
386 absl::btree_set<SimpleChannel> taken_;
387 ::std::vector<std::unique_ptr<TimerHandler>> timers_;
388 ::std::vector<std::unique_ptr<PhasedLoopHandler>> phased_loops_;
389
390 ::std::string name_;
391};
392
393void SimulatedEventLoop::MakeRawWatcher(
394 const Channel *channel,
395 std::function<void(const Context &channel, const void *message)> watcher) {
396 Take(channel);
397 GetSimulatedChannel(channel)->MakeRawWatcher(watcher);
398}
399
400std::unique_ptr<RawSender> SimulatedEventLoop::MakeRawSender(
401 const Channel *channel) {
402 Take(channel);
403 return GetSimulatedChannel(channel)->MakeRawSender(this);
404}
405
406std::unique_ptr<RawFetcher> SimulatedEventLoop::MakeRawFetcher(
407 const Channel *channel) {
408 return GetSimulatedChannel(channel)->MakeRawFetcher();
409}
410
411SimulatedChannel *SimulatedEventLoop::GetSimulatedChannel(
412 const Channel *channel) {
413 auto it = channels_->find(SimpleChannel(channel));
414 if (it == channels_->end()) {
415 it = channels_
416 ->emplace(SimpleChannel(channel),
417 std::unique_ptr<SimulatedChannel>(
418 new SimulatedChannel(channel, scheduler_)))
419 .first;
420 }
421 return it->second.get();
422}
423
424void SimulatedChannel::MakeRawWatcher(
425 ::std::function<void(const Context &context, const void *message)>
426 watcher) {
427 watchers_.push_back(watcher);
428}
429
430::std::unique_ptr<RawSender> SimulatedChannel::MakeRawSender(
431 EventLoop *event_loop) {
432 return ::std::unique_ptr<RawSender>(new SimulatedSender(this, event_loop));
433}
434
435::std::unique_ptr<RawFetcher> SimulatedChannel::MakeRawFetcher() {
436 ::std::unique_ptr<SimulatedFetcher> fetcher(new SimulatedFetcher(this));
437 fetchers_.push_back(fetcher.get());
438 return ::std::move(fetcher);
439}
440
441void SimulatedChannel::Send(std::shared_ptr<SimulatedMessage> message) {
442 message->context.queue_index = next_queue_index_.index();
443 message->context.data =
444 message->data() + channel()->max_size() - message->context.size;
445 next_queue_index_ = next_queue_index_.Increment();
446
447 latest_message_ = message;
448 if (scheduler_->is_running()) {
449 for (auto &watcher : watchers_) {
450 scheduler_->Schedule(scheduler_->monotonic_now(), [watcher, message]() {
451 watcher(message->context, message->context.data);
452 });
453 }
454 }
455 for (auto &fetcher : fetchers_) {
456 fetcher->Enqueue(message);
457 }
458}
459
460void SimulatedChannel::UnregisterFetcher(SimulatedFetcher *fetcher) {
461 fetchers_.erase(::std::find(fetchers_.begin(), fetchers_.end(), fetcher));
462}
463
464SimpleChannel::SimpleChannel(const Channel *channel)
465 : name(CHECK_NOTNULL(CHECK_NOTNULL(channel)->name())->str()),
466 type(CHECK_NOTNULL(CHECK_NOTNULL(channel)->type())->str()) {}
467
468void SimulatedEventLoop::Take(const Channel *channel) {
469 CHECK(!is_running()) << ": Cannot add new objects while running.";
470
471 auto result = taken_.insert(SimpleChannel(channel));
472 CHECK(result.second) << ": " << FlatbufferToJson(channel)
473 << " is already being used.";
474}
475
476SimulatedEventLoopFactory::SimulatedEventLoopFactory(
477 const Configuration *configuration)
478 : configuration_(configuration) {}
479SimulatedEventLoopFactory::~SimulatedEventLoopFactory() {}
480
481::std::unique_ptr<EventLoop> SimulatedEventLoopFactory::MakeEventLoop() {
482 return ::std::unique_ptr<EventLoop>(new SimulatedEventLoop(
483 &scheduler_, &channels_, configuration_, &raw_event_loops_));
484}
485
486void SimulatedEventLoopFactory::RunFor(monotonic_clock::duration duration) {
487 for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
488 raw_event_loops_) {
489 event_loop.second(true);
490 }
491 scheduler_.RunFor(duration);
492 if (!scheduler_.is_running()) {
493 for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
494 raw_event_loops_) {
495 event_loop.second(false);
496 }
497 }
498}
499
500void SimulatedEventLoopFactory::Run() {
501 for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
502 raw_event_loops_) {
503 event_loop.second(true);
504 }
505 scheduler_.Run();
506 if (!scheduler_.is_running()) {
507 for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
508 raw_event_loops_) {
509 event_loop.second(false);
510 }
511 }
512}
513
514} // namespace aos