Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame] | 1 | /* Create tuned thresholds for various algorithms. |
| 2 | |
| 3 | Copyright 1999-2003, 2005, 2006, 2008-2017 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of the GNU MP Library. |
| 6 | |
| 7 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 8 | it under the terms of either: |
| 9 | |
| 10 | * the GNU Lesser General Public License as published by the Free |
| 11 | Software Foundation; either version 3 of the License, or (at your |
| 12 | option) any later version. |
| 13 | |
| 14 | or |
| 15 | |
| 16 | * the GNU General Public License as published by the Free Software |
| 17 | Foundation; either version 2 of the License, or (at your option) any |
| 18 | later version. |
| 19 | |
| 20 | or both in parallel, as here. |
| 21 | |
| 22 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 23 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 24 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 25 | for more details. |
| 26 | |
| 27 | You should have received copies of the GNU General Public License and the |
| 28 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 29 | see https://www.gnu.org/licenses/. */ |
| 30 | |
| 31 | |
| 32 | /* Usage: tuneup [-t] [-t] [-p precision] |
| 33 | |
| 34 | -t turns on some diagnostic traces, a second -t turns on more traces. |
| 35 | |
| 36 | Notes: |
| 37 | |
| 38 | The code here isn't a vision of loveliness, mainly because it's subject |
| 39 | to ongoing changes according to new things wanting to be tuned, and |
| 40 | practical requirements of systems tested. |
| 41 | |
| 42 | Sometimes running the program twice produces slightly different results. |
| 43 | This is probably because there's so little separating algorithms near |
| 44 | their crossover, and on that basis it should make little or no difference |
| 45 | to the final speed of the relevant routines, but nothing has been done to |
| 46 | check that carefully. |
| 47 | |
| 48 | Algorithm: |
| 49 | |
| 50 | The thresholds are determined as follows. A crossover may not be a |
| 51 | single size but rather a range where it oscillates between method A or |
| 52 | method B faster. If the threshold is set making B used where A is faster |
| 53 | (or vice versa) that's bad. Badness is the percentage time lost and |
| 54 | total badness is the sum of this over all sizes measured. The threshold |
| 55 | is set to minimize total badness. |
| 56 | |
| 57 | Suppose, as sizes increase, method B becomes faster than method A. The |
| 58 | effect of the rule is that, as you look at increasing sizes, isolated |
| 59 | points where B is faster are ignored, but when it's consistently faster, |
| 60 | or faster on balance, then the threshold is set there. The same result |
| 61 | is obtained thinking in the other direction of A becoming faster at |
| 62 | smaller sizes. |
| 63 | |
| 64 | In practice the thresholds tend to be chosen to bring on the next |
| 65 | algorithm fairly quickly. |
| 66 | |
| 67 | This rule is attractive because it's got a basis in reason and is fairly |
| 68 | easy to implement, but no work has been done to actually compare it in |
| 69 | absolute terms to other possibilities. |
| 70 | |
| 71 | Implementation: |
| 72 | |
| 73 | In a normal library build the thresholds are constants. To tune them |
| 74 | selected objects are recompiled with the thresholds as global variables |
| 75 | instead. #define TUNE_PROGRAM_BUILD does this, with help from code at |
| 76 | the end of gmp-impl.h, and rules in tune/Makefile.am. |
| 77 | |
| 78 | MUL_TOOM22_THRESHOLD for example uses a recompiled mpn_mul_n. The |
| 79 | threshold is set to "size+1" to avoid karatsuba, or to "size" to use one |
| 80 | level, but recurse into the basecase. |
| 81 | |
| 82 | MUL_TOOM33_THRESHOLD makes use of the tuned MUL_TOOM22_THRESHOLD value. |
| 83 | Other routines in turn will make use of both of those. Naturally the |
| 84 | dependants must be tuned first. |
| 85 | |
| 86 | In a couple of cases, like DIVEXACT_1_THRESHOLD, there's no recompiling, |
| 87 | just a threshold based on comparing two routines (mpn_divrem_1 and |
| 88 | mpn_divexact_1), and no further use of the value determined. |
| 89 | |
| 90 | Flags like USE_PREINV_MOD_1 or JACOBI_BASE_METHOD are even simpler, being |
| 91 | just comparisons between certain routines on representative data. |
| 92 | |
| 93 | Shortcuts are applied when native (assembler) versions of routines exist. |
| 94 | For instance a native mpn_sqr_basecase is assumed to be always faster |
| 95 | than mpn_mul_basecase, with no measuring. |
| 96 | |
| 97 | No attempt is made to tune within assembler routines, for instance |
| 98 | DIVREM_1_NORM_THRESHOLD. An assembler mpn_divrem_1 is expected to be |
| 99 | written and tuned all by hand. Assembler routines that might have hard |
| 100 | limits are recompiled though, to make them accept a bigger range of sizes |
| 101 | than normal, eg. mpn_sqr_basecase to compare against mpn_toom2_sqr. |
| 102 | |
| 103 | Limitations: |
| 104 | |
| 105 | The FFTs aren't subject to the same badness rule as the other thresholds, |
| 106 | so each k is probably being brought on a touch early. This isn't likely |
| 107 | to make a difference, and the simpler probing means fewer tests. |
| 108 | |
| 109 | */ |
| 110 | |
| 111 | #define TUNE_PROGRAM_BUILD 1 /* for gmp-impl.h */ |
| 112 | |
| 113 | #include "config.h" |
| 114 | |
| 115 | #include <math.h> |
| 116 | #include <stdio.h> |
| 117 | #include <stdlib.h> |
| 118 | #include <time.h> |
| 119 | #if HAVE_UNISTD_H |
| 120 | #include <unistd.h> |
| 121 | #endif |
| 122 | |
| 123 | #include "gmp-impl.h" |
| 124 | #include "longlong.h" |
| 125 | |
| 126 | #include "tests.h" |
| 127 | #include "speed.h" |
| 128 | |
| 129 | #if !HAVE_DECL_OPTARG |
| 130 | extern char *optarg; |
| 131 | extern int optind, opterr; |
| 132 | #endif |
| 133 | |
| 134 | |
| 135 | #define DEFAULT_MAX_SIZE 1000 /* limbs */ |
| 136 | |
| 137 | #if WANT_FFT |
| 138 | mp_size_t option_fft_max_size = 50000; /* limbs */ |
| 139 | #else |
| 140 | mp_size_t option_fft_max_size = 0; |
| 141 | #endif |
| 142 | int option_trace = 0; |
| 143 | int option_fft_trace = 0; |
| 144 | struct speed_params s; |
| 145 | |
| 146 | struct dat_t { |
| 147 | mp_size_t size; |
| 148 | double d; |
| 149 | } *dat = NULL; |
| 150 | int ndat = 0; |
| 151 | int allocdat = 0; |
| 152 | |
| 153 | /* This is not defined if mpn_sqr_basecase doesn't declare a limit. In that |
| 154 | case use zero here, which for params.max_size means no limit. */ |
| 155 | #ifndef TUNE_SQR_TOOM2_MAX |
| 156 | #define TUNE_SQR_TOOM2_MAX 0 |
| 157 | #endif |
| 158 | |
| 159 | mp_size_t mul_toom22_threshold = MP_SIZE_T_MAX; |
| 160 | mp_size_t mul_toom33_threshold = MUL_TOOM33_THRESHOLD_LIMIT; |
| 161 | mp_size_t mul_toom44_threshold = MUL_TOOM44_THRESHOLD_LIMIT; |
| 162 | mp_size_t mul_toom6h_threshold = MUL_TOOM6H_THRESHOLD_LIMIT; |
| 163 | mp_size_t mul_toom8h_threshold = MUL_TOOM8H_THRESHOLD_LIMIT; |
| 164 | mp_size_t mul_toom32_to_toom43_threshold = MP_SIZE_T_MAX; |
| 165 | mp_size_t mul_toom32_to_toom53_threshold = MP_SIZE_T_MAX; |
| 166 | mp_size_t mul_toom42_to_toom53_threshold = MP_SIZE_T_MAX; |
| 167 | mp_size_t mul_toom42_to_toom63_threshold = MP_SIZE_T_MAX; |
| 168 | mp_size_t mul_toom43_to_toom54_threshold = MP_SIZE_T_MAX; |
| 169 | mp_size_t mul_fft_threshold = MP_SIZE_T_MAX; |
| 170 | mp_size_t mul_fft_modf_threshold = MP_SIZE_T_MAX; |
| 171 | mp_size_t sqr_basecase_threshold = MP_SIZE_T_MAX; |
| 172 | mp_size_t sqr_toom2_threshold |
| 173 | = (TUNE_SQR_TOOM2_MAX == 0 ? MP_SIZE_T_MAX : TUNE_SQR_TOOM2_MAX); |
| 174 | mp_size_t sqr_toom3_threshold = SQR_TOOM3_THRESHOLD_LIMIT; |
| 175 | mp_size_t sqr_toom4_threshold = SQR_TOOM4_THRESHOLD_LIMIT; |
| 176 | mp_size_t sqr_toom6_threshold = SQR_TOOM6_THRESHOLD_LIMIT; |
| 177 | mp_size_t sqr_toom8_threshold = SQR_TOOM8_THRESHOLD_LIMIT; |
| 178 | mp_size_t sqr_fft_threshold = MP_SIZE_T_MAX; |
| 179 | mp_size_t sqr_fft_modf_threshold = MP_SIZE_T_MAX; |
| 180 | mp_size_t mullo_basecase_threshold = MP_SIZE_T_MAX; |
| 181 | mp_size_t mullo_dc_threshold = MP_SIZE_T_MAX; |
| 182 | mp_size_t mullo_mul_n_threshold = MP_SIZE_T_MAX; |
| 183 | mp_size_t sqrlo_basecase_threshold = MP_SIZE_T_MAX; |
| 184 | mp_size_t sqrlo_dc_threshold = MP_SIZE_T_MAX; |
| 185 | mp_size_t sqrlo_sqr_threshold = MP_SIZE_T_MAX; |
| 186 | mp_size_t mulmid_toom42_threshold = MP_SIZE_T_MAX; |
| 187 | mp_size_t mulmod_bnm1_threshold = MP_SIZE_T_MAX; |
| 188 | mp_size_t sqrmod_bnm1_threshold = MP_SIZE_T_MAX; |
| 189 | mp_size_t div_qr_2_pi2_threshold = MP_SIZE_T_MAX; |
| 190 | mp_size_t dc_div_qr_threshold = MP_SIZE_T_MAX; |
| 191 | mp_size_t dc_divappr_q_threshold = MP_SIZE_T_MAX; |
| 192 | mp_size_t mu_div_qr_threshold = MP_SIZE_T_MAX; |
| 193 | mp_size_t mu_divappr_q_threshold = MP_SIZE_T_MAX; |
| 194 | mp_size_t mupi_div_qr_threshold = MP_SIZE_T_MAX; |
| 195 | mp_size_t mu_div_q_threshold = MP_SIZE_T_MAX; |
| 196 | mp_size_t dc_bdiv_qr_threshold = MP_SIZE_T_MAX; |
| 197 | mp_size_t dc_bdiv_q_threshold = MP_SIZE_T_MAX; |
| 198 | mp_size_t mu_bdiv_qr_threshold = MP_SIZE_T_MAX; |
| 199 | mp_size_t mu_bdiv_q_threshold = MP_SIZE_T_MAX; |
| 200 | mp_size_t inv_mulmod_bnm1_threshold = MP_SIZE_T_MAX; |
| 201 | mp_size_t inv_newton_threshold = MP_SIZE_T_MAX; |
| 202 | mp_size_t inv_appr_threshold = MP_SIZE_T_MAX; |
| 203 | mp_size_t binv_newton_threshold = MP_SIZE_T_MAX; |
| 204 | mp_size_t redc_1_to_redc_2_threshold = MP_SIZE_T_MAX; |
| 205 | mp_size_t redc_1_to_redc_n_threshold = MP_SIZE_T_MAX; |
| 206 | mp_size_t redc_2_to_redc_n_threshold = MP_SIZE_T_MAX; |
| 207 | mp_size_t matrix22_strassen_threshold = MP_SIZE_T_MAX; |
| 208 | mp_size_t hgcd_threshold = MP_SIZE_T_MAX; |
| 209 | mp_size_t hgcd_appr_threshold = MP_SIZE_T_MAX; |
| 210 | mp_size_t hgcd_reduce_threshold = MP_SIZE_T_MAX; |
| 211 | mp_size_t gcd_dc_threshold = MP_SIZE_T_MAX; |
| 212 | mp_size_t gcdext_dc_threshold = MP_SIZE_T_MAX; |
| 213 | int div_qr_1n_pi1_method = 0; |
| 214 | mp_size_t div_qr_1_norm_threshold = MP_SIZE_T_MAX; |
| 215 | mp_size_t div_qr_1_unnorm_threshold = MP_SIZE_T_MAX; |
| 216 | mp_size_t divrem_1_norm_threshold = MP_SIZE_T_MAX; |
| 217 | mp_size_t divrem_1_unnorm_threshold = MP_SIZE_T_MAX; |
| 218 | mp_size_t mod_1_norm_threshold = MP_SIZE_T_MAX; |
| 219 | mp_size_t mod_1_unnorm_threshold = MP_SIZE_T_MAX; |
| 220 | int mod_1_1p_method = 0; |
| 221 | mp_size_t mod_1n_to_mod_1_1_threshold = MP_SIZE_T_MAX; |
| 222 | mp_size_t mod_1u_to_mod_1_1_threshold = MP_SIZE_T_MAX; |
| 223 | mp_size_t mod_1_1_to_mod_1_2_threshold = MP_SIZE_T_MAX; |
| 224 | mp_size_t mod_1_2_to_mod_1_4_threshold = MP_SIZE_T_MAX; |
| 225 | mp_size_t preinv_mod_1_to_mod_1_threshold = MP_SIZE_T_MAX; |
| 226 | mp_size_t divrem_2_threshold = MP_SIZE_T_MAX; |
| 227 | mp_size_t get_str_dc_threshold = MP_SIZE_T_MAX; |
| 228 | mp_size_t get_str_precompute_threshold = MP_SIZE_T_MAX; |
| 229 | mp_size_t set_str_dc_threshold = MP_SIZE_T_MAX; |
| 230 | mp_size_t set_str_precompute_threshold = MP_SIZE_T_MAX; |
| 231 | mp_size_t fac_odd_threshold = 0; |
| 232 | mp_size_t fac_dsc_threshold = FAC_DSC_THRESHOLD_LIMIT; |
| 233 | |
| 234 | mp_size_t fft_modf_sqr_threshold = MP_SIZE_T_MAX; |
| 235 | mp_size_t fft_modf_mul_threshold = MP_SIZE_T_MAX; |
| 236 | |
| 237 | struct param_t { |
| 238 | const char *name; |
| 239 | speed_function_t function; |
| 240 | speed_function_t function2; |
| 241 | double step_factor; /* how much to step relatively */ |
| 242 | int step; /* how much to step absolutely */ |
| 243 | double function_fudge; /* multiplier for "function" speeds */ |
| 244 | int stop_since_change; |
| 245 | double stop_factor; |
| 246 | mp_size_t min_size; |
| 247 | int min_is_always; |
| 248 | mp_size_t max_size; |
| 249 | mp_size_t check_size; |
| 250 | mp_size_t size_extra; |
| 251 | |
| 252 | #define DATA_HIGH_LT_R 1 |
| 253 | #define DATA_HIGH_GE_R 2 |
| 254 | int data_high; |
| 255 | |
| 256 | int noprint; |
| 257 | }; |
| 258 | |
| 259 | |
| 260 | /* These are normally undefined when false, which suits "#if" fine. |
| 261 | But give them zero values so they can be used in plain C "if"s. */ |
| 262 | #ifndef UDIV_PREINV_ALWAYS |
| 263 | #define UDIV_PREINV_ALWAYS 0 |
| 264 | #endif |
| 265 | #ifndef HAVE_NATIVE_mpn_divexact_1 |
| 266 | #define HAVE_NATIVE_mpn_divexact_1 0 |
| 267 | #endif |
| 268 | #ifndef HAVE_NATIVE_mpn_div_qr_1n_pi1 |
| 269 | #define HAVE_NATIVE_mpn_div_qr_1n_pi1 0 |
| 270 | #endif |
| 271 | #ifndef HAVE_NATIVE_mpn_divrem_1 |
| 272 | #define HAVE_NATIVE_mpn_divrem_1 0 |
| 273 | #endif |
| 274 | #ifndef HAVE_NATIVE_mpn_divrem_2 |
| 275 | #define HAVE_NATIVE_mpn_divrem_2 0 |
| 276 | #endif |
| 277 | #ifndef HAVE_NATIVE_mpn_mod_1 |
| 278 | #define HAVE_NATIVE_mpn_mod_1 0 |
| 279 | #endif |
| 280 | #ifndef HAVE_NATIVE_mpn_mod_1_1p |
| 281 | #define HAVE_NATIVE_mpn_mod_1_1p 0 |
| 282 | #endif |
| 283 | #ifndef HAVE_NATIVE_mpn_modexact_1_odd |
| 284 | #define HAVE_NATIVE_mpn_modexact_1_odd 0 |
| 285 | #endif |
| 286 | #ifndef HAVE_NATIVE_mpn_preinv_divrem_1 |
| 287 | #define HAVE_NATIVE_mpn_preinv_divrem_1 0 |
| 288 | #endif |
| 289 | #ifndef HAVE_NATIVE_mpn_preinv_mod_1 |
| 290 | #define HAVE_NATIVE_mpn_preinv_mod_1 0 |
| 291 | #endif |
| 292 | #ifndef HAVE_NATIVE_mpn_sqr_basecase |
| 293 | #define HAVE_NATIVE_mpn_sqr_basecase 0 |
| 294 | #endif |
| 295 | |
| 296 | |
| 297 | #define MAX3(a,b,c) MAX (MAX (a, b), c) |
| 298 | |
| 299 | mp_limb_t |
| 300 | randlimb_norm (void) |
| 301 | { |
| 302 | mp_limb_t n; |
| 303 | mpn_random (&n, 1); |
| 304 | n |= GMP_NUMB_HIGHBIT; |
| 305 | return n; |
| 306 | } |
| 307 | |
| 308 | #define GMP_NUMB_HALFMASK ((CNST_LIMB(1) << (GMP_NUMB_BITS/2)) - 1) |
| 309 | |
| 310 | mp_limb_t |
| 311 | randlimb_half (void) |
| 312 | { |
| 313 | mp_limb_t n; |
| 314 | mpn_random (&n, 1); |
| 315 | n &= GMP_NUMB_HALFMASK; |
| 316 | n += (n==0); |
| 317 | return n; |
| 318 | } |
| 319 | |
| 320 | |
| 321 | /* Add an entry to the end of the dat[] array, reallocing to make it bigger |
| 322 | if necessary. */ |
| 323 | void |
| 324 | add_dat (mp_size_t size, double d) |
| 325 | { |
| 326 | #define ALLOCDAT_STEP 500 |
| 327 | |
| 328 | ASSERT_ALWAYS (ndat <= allocdat); |
| 329 | |
| 330 | if (ndat == allocdat) |
| 331 | { |
| 332 | dat = (struct dat_t *) __gmp_allocate_or_reallocate |
| 333 | (dat, allocdat * sizeof(dat[0]), |
| 334 | (allocdat+ALLOCDAT_STEP) * sizeof(dat[0])); |
| 335 | allocdat += ALLOCDAT_STEP; |
| 336 | } |
| 337 | |
| 338 | dat[ndat].size = size; |
| 339 | dat[ndat].d = d; |
| 340 | ndat++; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | /* Return the threshold size based on the data accumulated. */ |
| 345 | mp_size_t |
| 346 | analyze_dat (int final) |
| 347 | { |
| 348 | double x, min_x; |
| 349 | int j, min_j; |
| 350 | |
| 351 | /* If the threshold is set at dat[0].size, any positive values are bad. */ |
| 352 | x = 0.0; |
| 353 | for (j = 0; j < ndat; j++) |
| 354 | if (dat[j].d > 0.0) |
| 355 | x += dat[j].d; |
| 356 | |
| 357 | if (option_trace >= 2 && final) |
| 358 | { |
| 359 | printf ("\n"); |
| 360 | printf ("x is the sum of the badness from setting thresh at given size\n"); |
| 361 | printf (" (minimum x is sought)\n"); |
| 362 | printf ("size=%ld first x=%.4f\n", (long) dat[j].size, x); |
| 363 | } |
| 364 | |
| 365 | min_x = x; |
| 366 | min_j = 0; |
| 367 | |
| 368 | |
| 369 | /* When stepping to the next dat[j].size, positive values are no longer |
| 370 | bad (so subtracted), negative values become bad (so add the absolute |
| 371 | value, meaning subtract). */ |
| 372 | for (j = 0; j < ndat; x -= dat[j].d, j++) |
| 373 | { |
| 374 | if (option_trace >= 2 && final) |
| 375 | printf ("size=%ld x=%.4f\n", (long) dat[j].size, x); |
| 376 | |
| 377 | if (x < min_x) |
| 378 | { |
| 379 | min_x = x; |
| 380 | min_j = j; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | return min_j; |
| 385 | } |
| 386 | |
| 387 | |
| 388 | /* Measuring for recompiled mpn/generic/div_qr_1.c, |
| 389 | * mpn/generic/divrem_1.c, mpn/generic/mod_1.c and mpz/fac_ui.c */ |
| 390 | |
| 391 | mp_limb_t mpn_div_qr_1_tune (mp_ptr, mp_limb_t *, mp_srcptr, mp_size_t, mp_limb_t); |
| 392 | |
| 393 | #if defined (__cplusplus) |
| 394 | extern "C" { |
| 395 | #endif |
| 396 | |
| 397 | mp_limb_t mpn_divrem_1_tune (mp_ptr, mp_size_t, mp_srcptr, mp_size_t, mp_limb_t); |
| 398 | mp_limb_t mpn_mod_1_tune (mp_srcptr, mp_size_t, mp_limb_t); |
| 399 | void mpz_fac_ui_tune (mpz_ptr, unsigned long); |
| 400 | |
| 401 | #if defined (__cplusplus) |
| 402 | } |
| 403 | #endif |
| 404 | |
| 405 | double |
| 406 | speed_mpn_mod_1_tune (struct speed_params *s) |
| 407 | { |
| 408 | SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_tune); |
| 409 | } |
| 410 | double |
| 411 | speed_mpn_divrem_1_tune (struct speed_params *s) |
| 412 | { |
| 413 | SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_tune); |
| 414 | } |
| 415 | double |
| 416 | speed_mpz_fac_ui_tune (struct speed_params *s) |
| 417 | { |
| 418 | SPEED_ROUTINE_MPZ_FAC_UI (mpz_fac_ui_tune); |
| 419 | } |
| 420 | double |
| 421 | speed_mpn_div_qr_1_tune (struct speed_params *s) |
| 422 | { |
| 423 | SPEED_ROUTINE_MPN_DIV_QR_1 (mpn_div_qr_1_tune); |
| 424 | } |
| 425 | |
| 426 | double |
| 427 | tuneup_measure (speed_function_t fun, |
| 428 | const struct param_t *param, |
| 429 | struct speed_params *s) |
| 430 | { |
| 431 | static struct param_t dummy; |
| 432 | double t; |
| 433 | TMP_DECL; |
| 434 | |
| 435 | if (! param) |
| 436 | param = &dummy; |
| 437 | |
| 438 | s->size += param->size_extra; |
| 439 | |
| 440 | TMP_MARK; |
| 441 | SPEED_TMP_ALLOC_LIMBS (s->xp, s->size, 0); |
| 442 | SPEED_TMP_ALLOC_LIMBS (s->yp, s->size, 0); |
| 443 | |
| 444 | mpn_random (s->xp, s->size); |
| 445 | mpn_random (s->yp, s->size); |
| 446 | |
| 447 | switch (param->data_high) { |
| 448 | case DATA_HIGH_LT_R: |
| 449 | s->xp[s->size-1] %= s->r; |
| 450 | s->yp[s->size-1] %= s->r; |
| 451 | break; |
| 452 | case DATA_HIGH_GE_R: |
| 453 | s->xp[s->size-1] |= s->r; |
| 454 | s->yp[s->size-1] |= s->r; |
| 455 | break; |
| 456 | } |
| 457 | |
| 458 | t = speed_measure (fun, s); |
| 459 | |
| 460 | s->size -= param->size_extra; |
| 461 | |
| 462 | TMP_FREE; |
| 463 | return t; |
| 464 | } |
| 465 | |
| 466 | |
| 467 | #define PRINT_WIDTH 31 |
| 468 | |
| 469 | void |
| 470 | print_define_start (const char *name) |
| 471 | { |
| 472 | printf ("#define %-*s ", PRINT_WIDTH, name); |
| 473 | if (option_trace) |
| 474 | printf ("...\n"); |
| 475 | } |
| 476 | |
| 477 | void |
| 478 | print_define_end_remark (const char *name, mp_size_t value, const char *remark) |
| 479 | { |
| 480 | if (option_trace) |
| 481 | printf ("#define %-*s ", PRINT_WIDTH, name); |
| 482 | |
| 483 | if (value == MP_SIZE_T_MAX) |
| 484 | printf ("MP_SIZE_T_MAX"); |
| 485 | else |
| 486 | printf ("%5ld", (long) value); |
| 487 | |
| 488 | if (remark != NULL) |
| 489 | printf (" /* %s */", remark); |
| 490 | printf ("\n"); |
| 491 | fflush (stdout); |
| 492 | } |
| 493 | |
| 494 | void |
| 495 | print_define_end (const char *name, mp_size_t value) |
| 496 | { |
| 497 | const char *remark; |
| 498 | if (value == MP_SIZE_T_MAX) |
| 499 | remark = "never"; |
| 500 | else if (value == 0) |
| 501 | remark = "always"; |
| 502 | else |
| 503 | remark = NULL; |
| 504 | print_define_end_remark (name, value, remark); |
| 505 | } |
| 506 | |
| 507 | void |
| 508 | print_define (const char *name, mp_size_t value) |
| 509 | { |
| 510 | print_define_start (name); |
| 511 | print_define_end (name, value); |
| 512 | } |
| 513 | |
| 514 | void |
| 515 | print_define_remark (const char *name, mp_size_t value, const char *remark) |
| 516 | { |
| 517 | print_define_start (name); |
| 518 | print_define_end_remark (name, value, remark); |
| 519 | } |
| 520 | |
| 521 | void |
| 522 | print_define_with_speedup (const char *name, mp_size_t value, |
| 523 | mp_size_t runner_up, double speedup) |
| 524 | { |
| 525 | char buf[100]; |
| 526 | snprintf (buf, sizeof(buf), "%.2f%% faster than %ld", |
| 527 | 100.0 * (speedup - 1), runner_up); |
| 528 | print_define_remark (name, value, buf); |
| 529 | } |
| 530 | |
| 531 | void |
| 532 | one (mp_size_t *threshold, struct param_t *param) |
| 533 | { |
| 534 | int since_positive, since_thresh_change; |
| 535 | int thresh_idx, new_thresh_idx; |
| 536 | |
| 537 | #define DEFAULT(x,n) do { if (! (x)) (x) = (n); } while (0) |
| 538 | |
| 539 | DEFAULT (param->function_fudge, 1.0); |
| 540 | DEFAULT (param->function2, param->function); |
| 541 | DEFAULT (param->step_factor, 0.01); /* small steps by default */ |
| 542 | DEFAULT (param->step, 1); /* small steps by default */ |
| 543 | DEFAULT (param->stop_since_change, 80); |
| 544 | DEFAULT (param->stop_factor, 1.2); |
| 545 | DEFAULT (param->min_size, 10); |
| 546 | DEFAULT (param->max_size, DEFAULT_MAX_SIZE); |
| 547 | |
| 548 | if (param->check_size != 0) |
| 549 | { |
| 550 | double t1, t2; |
| 551 | s.size = param->check_size; |
| 552 | |
| 553 | *threshold = s.size+1; |
| 554 | t1 = tuneup_measure (param->function, param, &s); |
| 555 | |
| 556 | *threshold = s.size; |
| 557 | t2 = tuneup_measure (param->function2, param, &s); |
| 558 | if (t1 == -1.0 || t2 == -1.0) |
| 559 | { |
| 560 | printf ("Oops, can't run both functions at size %ld\n", |
| 561 | (long) s.size); |
| 562 | abort (); |
| 563 | } |
| 564 | t1 *= param->function_fudge; |
| 565 | |
| 566 | /* ask that t2 is at least 4% below t1 */ |
| 567 | if (t1 < t2*1.04) |
| 568 | { |
| 569 | if (option_trace) |
| 570 | printf ("function2 never enough faster: t1=%.9f t2=%.9f\n", t1, t2); |
| 571 | *threshold = MP_SIZE_T_MAX; |
| 572 | if (! param->noprint) |
| 573 | print_define (param->name, *threshold); |
| 574 | return; |
| 575 | } |
| 576 | |
| 577 | if (option_trace >= 2) |
| 578 | printf ("function2 enough faster at size=%ld: t1=%.9f t2=%.9f\n", |
| 579 | (long) s.size, t1, t2); |
| 580 | } |
| 581 | |
| 582 | if (! param->noprint || option_trace) |
| 583 | print_define_start (param->name); |
| 584 | |
| 585 | ndat = 0; |
| 586 | since_positive = 0; |
| 587 | since_thresh_change = 0; |
| 588 | thresh_idx = 0; |
| 589 | |
| 590 | if (option_trace >= 2) |
| 591 | { |
| 592 | printf (" algorithm-A algorithm-B ratio possible\n"); |
| 593 | printf (" (seconds) (seconds) diff thresh\n"); |
| 594 | } |
| 595 | |
| 596 | for (s.size = param->min_size; |
| 597 | s.size < param->max_size; |
| 598 | s.size += MAX ((mp_size_t) floor (s.size * param->step_factor), param->step)) |
| 599 | { |
| 600 | double ti, tiplus1, d; |
| 601 | |
| 602 | /* |
| 603 | FIXME: check minimum size requirements are met, possibly by just |
| 604 | checking for the -1 returns from the speed functions. |
| 605 | */ |
| 606 | |
| 607 | /* using method A at this size */ |
| 608 | *threshold = s.size+1; |
| 609 | ti = tuneup_measure (param->function, param, &s); |
| 610 | if (ti == -1.0) |
| 611 | abort (); |
| 612 | ti *= param->function_fudge; |
| 613 | |
| 614 | /* using method B at this size */ |
| 615 | *threshold = s.size; |
| 616 | tiplus1 = tuneup_measure (param->function2, param, &s); |
| 617 | if (tiplus1 == -1.0) |
| 618 | abort (); |
| 619 | |
| 620 | /* Calculate the fraction by which the one or the other routine is |
| 621 | slower. */ |
| 622 | if (tiplus1 >= ti) |
| 623 | d = (tiplus1 - ti) / tiplus1; /* negative */ |
| 624 | else |
| 625 | d = (tiplus1 - ti) / ti; /* positive */ |
| 626 | |
| 627 | add_dat (s.size, d); |
| 628 | |
| 629 | new_thresh_idx = analyze_dat (0); |
| 630 | |
| 631 | if (option_trace >= 2) |
| 632 | printf ("size=%ld %.9f %.9f % .4f %c %ld\n", |
| 633 | (long) s.size, ti, tiplus1, d, |
| 634 | ti > tiplus1 ? '#' : ' ', |
| 635 | (long) dat[new_thresh_idx].size); |
| 636 | |
| 637 | /* Stop if the last time method i was faster was more than a |
| 638 | certain number of measurements ago. */ |
| 639 | #define STOP_SINCE_POSITIVE 200 |
| 640 | if (d >= 0) |
| 641 | since_positive = 0; |
| 642 | else |
| 643 | if (++since_positive > STOP_SINCE_POSITIVE) |
| 644 | { |
| 645 | if (option_trace >= 1) |
| 646 | printf ("stopped due to since_positive (%d)\n", |
| 647 | STOP_SINCE_POSITIVE); |
| 648 | break; |
| 649 | } |
| 650 | |
| 651 | /* Stop if method A has become slower by a certain factor. */ |
| 652 | if (ti >= tiplus1 * param->stop_factor) |
| 653 | { |
| 654 | if (option_trace >= 1) |
| 655 | printf ("stopped due to ti >= tiplus1 * factor (%.1f)\n", |
| 656 | param->stop_factor); |
| 657 | break; |
| 658 | } |
| 659 | |
| 660 | /* Stop if the threshold implied hasn't changed in a certain |
| 661 | number of measurements. (It's this condition that usually |
| 662 | stops the loop.) */ |
| 663 | if (thresh_idx != new_thresh_idx) |
| 664 | since_thresh_change = 0, thresh_idx = new_thresh_idx; |
| 665 | else |
| 666 | if (++since_thresh_change > param->stop_since_change) |
| 667 | { |
| 668 | if (option_trace >= 1) |
| 669 | printf ("stopped due to since_thresh_change (%d)\n", |
| 670 | param->stop_since_change); |
| 671 | break; |
| 672 | } |
| 673 | |
| 674 | /* Stop if the threshold implied is more than a certain number of |
| 675 | measurements ago. */ |
| 676 | #define STOP_SINCE_AFTER 500 |
| 677 | if (ndat - thresh_idx > STOP_SINCE_AFTER) |
| 678 | { |
| 679 | if (option_trace >= 1) |
| 680 | printf ("stopped due to ndat - thresh_idx > amount (%d)\n", |
| 681 | STOP_SINCE_AFTER); |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | /* Stop when the size limit is reached before the end of the |
| 686 | crossover, but only show this as an error for >= the default max |
| 687 | size. FIXME: Maybe should make it a param choice whether this is |
| 688 | an error. */ |
| 689 | if (s.size >= param->max_size && param->max_size >= DEFAULT_MAX_SIZE) |
| 690 | { |
| 691 | fprintf (stderr, "%s\n", param->name); |
| 692 | fprintf (stderr, "sizes %ld to %ld total %d measurements\n", |
| 693 | (long) dat[0].size, (long) dat[ndat-1].size, ndat); |
| 694 | fprintf (stderr, " max size reached before end of crossover\n"); |
| 695 | break; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | if (option_trace >= 1) |
| 700 | printf ("sizes %ld to %ld total %d measurements\n", |
| 701 | (long) dat[0].size, (long) dat[ndat-1].size, ndat); |
| 702 | |
| 703 | *threshold = dat[analyze_dat (1)].size; |
| 704 | |
| 705 | if (param->min_is_always) |
| 706 | { |
| 707 | if (*threshold == param->min_size) |
| 708 | *threshold = 0; |
| 709 | } |
| 710 | |
| 711 | if (! param->noprint || option_trace) |
| 712 | print_define_end (param->name, *threshold); |
| 713 | } |
| 714 | |
| 715 | /* Time N different FUNCTIONS with the same parameters and size, to |
| 716 | select the fastest. Since *_METHOD defines start numbering from |
| 717 | one, if functions[i] is fastest, the value of the define is i+1. |
| 718 | Also output a comment with speedup compared to the next fastest |
| 719 | function. The NAME argument is used only for trace output. |
| 720 | |
| 721 | Returns the index of the fastest function. |
| 722 | */ |
| 723 | int |
| 724 | one_method (int n, speed_function_t *functions, |
| 725 | const char *name, const char *define, |
| 726 | const struct param_t *param) |
| 727 | { |
| 728 | double *t; |
| 729 | int i; |
| 730 | int method; |
| 731 | int method_runner_up; |
| 732 | |
| 733 | TMP_DECL; |
| 734 | TMP_MARK; |
| 735 | t = (double*) TMP_ALLOC (n * sizeof (*t)); |
| 736 | |
| 737 | for (i = 0; i < n; i++) |
| 738 | { |
| 739 | t[i] = tuneup_measure (functions[i], param, &s); |
| 740 | if (option_trace >= 1) |
| 741 | printf ("size=%ld, %s, method %d %.9f\n", |
| 742 | (long) s.size, name, i + 1, t[i]); |
| 743 | if (t[i] == -1.0) |
| 744 | { |
| 745 | printf ("Oops, can't measure all %s methods\n", name); |
| 746 | abort (); |
| 747 | } |
| 748 | } |
| 749 | method = 0; |
| 750 | for (i = 1; i < n; i++) |
| 751 | if (t[i] < t[method]) |
| 752 | method = i; |
| 753 | |
| 754 | method_runner_up = (method == 0); |
| 755 | for (i = 0; i < n; i++) |
| 756 | if (i != method && t[i] < t[method_runner_up]) |
| 757 | method_runner_up = i; |
| 758 | |
| 759 | print_define_with_speedup (define, method + 1, method_runner_up + 1, |
| 760 | t[method_runner_up] / t[method]); |
| 761 | |
| 762 | TMP_FREE; |
| 763 | return method; |
| 764 | } |
| 765 | |
| 766 | |
| 767 | /* Special probing for the fft thresholds. The size restrictions on the |
| 768 | FFTs mean the graph of time vs size has a step effect. See this for |
| 769 | example using |
| 770 | |
| 771 | ./speed -s 4096-16384 -t 128 -P foo mpn_mul_fft.8 mpn_mul_fft.9 |
| 772 | gnuplot foo.gnuplot |
| 773 | |
| 774 | The current approach is to compare routines at the midpoint of relevant |
| 775 | steps. Arguably a more sophisticated system of threshold data is wanted |
| 776 | if this step effect remains. */ |
| 777 | |
| 778 | struct fft_param_t { |
| 779 | const char *table_name; |
| 780 | const char *threshold_name; |
| 781 | const char *modf_threshold_name; |
| 782 | mp_size_t *p_threshold; |
| 783 | mp_size_t *p_modf_threshold; |
| 784 | mp_size_t first_size; |
| 785 | mp_size_t max_size; |
| 786 | speed_function_t function; |
| 787 | speed_function_t mul_modf_function; |
| 788 | speed_function_t mul_function; |
| 789 | mp_size_t sqr; |
| 790 | }; |
| 791 | |
| 792 | |
| 793 | /* mpn_mul_fft requires pl a multiple of 2^k limbs, but with |
| 794 | N=pl*BIT_PER_MP_LIMB it internally also pads out so N/2^k is a multiple |
| 795 | of 2^(k-1) bits. */ |
| 796 | |
| 797 | mp_size_t |
| 798 | fft_step_size (int k) |
| 799 | { |
| 800 | mp_size_t step; |
| 801 | |
| 802 | step = MAX ((mp_size_t) 1 << (k-1), GMP_LIMB_BITS) / GMP_LIMB_BITS; |
| 803 | step *= (mp_size_t) 1 << k; |
| 804 | |
| 805 | if (step <= 0) |
| 806 | { |
| 807 | printf ("Can't handle k=%d\n", k); |
| 808 | abort (); |
| 809 | } |
| 810 | |
| 811 | return step; |
| 812 | } |
| 813 | |
| 814 | mp_size_t |
| 815 | fft_next_size (mp_size_t pl, int k) |
| 816 | { |
| 817 | mp_size_t m = fft_step_size (k); |
| 818 | |
| 819 | /* printf ("[k=%d %ld] %ld ->", k, m, pl); */ |
| 820 | |
| 821 | if (pl == 0 || (pl & (m-1)) != 0) |
| 822 | pl = (pl | (m-1)) + 1; |
| 823 | |
| 824 | /* printf (" %ld\n", pl); */ |
| 825 | return pl; |
| 826 | } |
| 827 | |
| 828 | #define NMAX_DEFAULT 1000000 |
| 829 | #define MAX_REPS 25 |
| 830 | #define MIN_REPS 5 |
| 831 | |
| 832 | static inline size_t |
| 833 | mpn_mul_fft_lcm (size_t a, unsigned int k) |
| 834 | { |
| 835 | unsigned int l = k; |
| 836 | |
| 837 | while (a % 2 == 0 && k > 0) |
| 838 | { |
| 839 | a >>= 1; |
| 840 | k--; |
| 841 | } |
| 842 | return a << l; |
| 843 | } |
| 844 | |
| 845 | mp_size_t |
| 846 | fftfill (mp_size_t pl, int k, int sqr) |
| 847 | { |
| 848 | mp_size_t maxLK; |
| 849 | mp_bitcnt_t N, Nprime, nprime, M; |
| 850 | |
| 851 | N = pl * GMP_NUMB_BITS; |
| 852 | M = N >> k; |
| 853 | |
| 854 | maxLK = mpn_mul_fft_lcm ((unsigned long) GMP_NUMB_BITS, k); |
| 855 | |
| 856 | Nprime = (1 + (2 * M + k + 2) / maxLK) * maxLK; |
| 857 | nprime = Nprime / GMP_NUMB_BITS; |
| 858 | if (nprime >= (sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD)) |
| 859 | { |
| 860 | size_t K2; |
| 861 | for (;;) |
| 862 | { |
| 863 | K2 = 1L << mpn_fft_best_k (nprime, sqr); |
| 864 | if ((nprime & (K2 - 1)) == 0) |
| 865 | break; |
| 866 | nprime = (nprime + K2 - 1) & -K2; |
| 867 | Nprime = nprime * GMP_LIMB_BITS; |
| 868 | } |
| 869 | } |
| 870 | ASSERT_ALWAYS (nprime < pl); |
| 871 | |
| 872 | return Nprime; |
| 873 | } |
| 874 | |
| 875 | static int |
| 876 | compare_double (const void *ap, const void *bp) |
| 877 | { |
| 878 | double a = * (const double *) ap; |
| 879 | double b = * (const double *) bp; |
| 880 | |
| 881 | if (a < b) |
| 882 | return -1; |
| 883 | else if (a > b) |
| 884 | return 1; |
| 885 | else |
| 886 | return 0; |
| 887 | } |
| 888 | |
| 889 | double |
| 890 | median (double *times, int n) |
| 891 | { |
| 892 | qsort (times, n, sizeof (double), compare_double); |
| 893 | return times[n/2]; |
| 894 | } |
| 895 | |
| 896 | #define FFT_CACHE_SIZE 25 |
| 897 | typedef struct fft_cache |
| 898 | { |
| 899 | mp_size_t n; |
| 900 | double time; |
| 901 | } fft_cache_t; |
| 902 | |
| 903 | fft_cache_t fft_cache[FFT_CACHE_SIZE]; |
| 904 | |
| 905 | double |
| 906 | cached_measure (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n, int k, |
| 907 | int n_measurements) |
| 908 | { |
| 909 | int i; |
| 910 | double t, ttab[MAX_REPS]; |
| 911 | |
| 912 | if (fft_cache[k].n == n) |
| 913 | return fft_cache[k].time; |
| 914 | |
| 915 | for (i = 0; i < n_measurements; i++) |
| 916 | { |
| 917 | speed_starttime (); |
| 918 | mpn_mul_fft (rp, n, ap, n, bp, n, k); |
| 919 | ttab[i] = speed_endtime (); |
| 920 | } |
| 921 | |
| 922 | t = median (ttab, n_measurements); |
| 923 | fft_cache[k].n = n; |
| 924 | fft_cache[k].time = t; |
| 925 | return t; |
| 926 | } |
| 927 | |
| 928 | #define INSERT_FFTTAB(idx, nval, kval) \ |
| 929 | do { \ |
| 930 | fft_tab[idx].n = nval; \ |
| 931 | fft_tab[idx].k = kval; \ |
| 932 | fft_tab[idx+1].n = (1 << 27) - 1; /* sentinel, 27b wide field */ \ |
| 933 | fft_tab[idx+1].k = (1 << 5) - 1; \ |
| 934 | } while (0) |
| 935 | |
| 936 | int |
| 937 | fftmes (mp_size_t nmin, mp_size_t nmax, int initial_k, struct fft_param_t *p, int idx, int print) |
| 938 | { |
| 939 | mp_size_t n, n1, prev_n1; |
| 940 | int k, best_k, last_best_k, kmax; |
| 941 | int eff, prev_eff; |
| 942 | double t0, t1; |
| 943 | int n_measurements; |
| 944 | mp_limb_t *ap, *bp, *rp; |
| 945 | mp_size_t alloc; |
| 946 | struct fft_table_nk *fft_tab; |
| 947 | |
| 948 | fft_tab = mpn_fft_table3[p->sqr]; |
| 949 | |
| 950 | for (k = 0; k < FFT_CACHE_SIZE; k++) |
| 951 | fft_cache[k].n = 0; |
| 952 | |
| 953 | if (nmin < (p->sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD)) |
| 954 | { |
| 955 | nmin = (p->sqr ? SQR_FFT_MODF_THRESHOLD : MUL_FFT_MODF_THRESHOLD); |
| 956 | } |
| 957 | |
| 958 | if (print) |
| 959 | printf ("#define %s%*s", p->table_name, 38, ""); |
| 960 | |
| 961 | if (idx == 0) |
| 962 | { |
| 963 | INSERT_FFTTAB (0, nmin, initial_k); |
| 964 | |
| 965 | if (print) |
| 966 | { |
| 967 | printf ("\\\n { "); |
| 968 | printf ("{%7u,%2u}", fft_tab[0].n, fft_tab[0].k); |
| 969 | } |
| 970 | |
| 971 | idx = 1; |
| 972 | } |
| 973 | |
| 974 | ap = (mp_ptr) malloc (sizeof (mp_limb_t)); |
| 975 | if (p->sqr) |
| 976 | bp = ap; |
| 977 | else |
| 978 | bp = (mp_ptr) malloc (sizeof (mp_limb_t)); |
| 979 | rp = (mp_ptr) malloc (sizeof (mp_limb_t)); |
| 980 | alloc = 1; |
| 981 | |
| 982 | /* Round n to comply to initial k value */ |
| 983 | n = (nmin + ((1ul << initial_k) - 1)) & (MP_SIZE_T_MAX << initial_k); |
| 984 | |
| 985 | n_measurements = (18 - initial_k) | 1; |
| 986 | n_measurements = MAX (n_measurements, MIN_REPS); |
| 987 | n_measurements = MIN (n_measurements, MAX_REPS); |
| 988 | |
| 989 | last_best_k = initial_k; |
| 990 | best_k = initial_k; |
| 991 | |
| 992 | while (n < nmax) |
| 993 | { |
| 994 | int start_k, end_k; |
| 995 | |
| 996 | /* Assume the current best k is best until we hit its next FFT step. */ |
| 997 | t0 = 99999; |
| 998 | |
| 999 | prev_n1 = n + 1; |
| 1000 | |
| 1001 | start_k = MAX (4, best_k - 4); |
| 1002 | end_k = MIN (24, best_k + 4); |
| 1003 | for (k = start_k; k <= end_k; k++) |
| 1004 | { |
| 1005 | n1 = mpn_fft_next_size (prev_n1, k); |
| 1006 | |
| 1007 | eff = 200 * (n1 * GMP_NUMB_BITS >> k) / fftfill (n1, k, p->sqr); |
| 1008 | |
| 1009 | if (eff < 70) /* avoid measuring too slow fft:s */ |
| 1010 | continue; |
| 1011 | |
| 1012 | if (n1 > alloc) |
| 1013 | { |
| 1014 | alloc = n1; |
| 1015 | if (p->sqr) |
| 1016 | { |
| 1017 | ap = (mp_ptr) realloc (ap, sizeof (mp_limb_t)); |
| 1018 | rp = (mp_ptr) realloc (rp, sizeof (mp_limb_t)); |
| 1019 | ap = bp = (mp_ptr) realloc (ap, alloc * sizeof (mp_limb_t)); |
| 1020 | mpn_random (ap, alloc); |
| 1021 | rp = (mp_ptr) realloc (rp, alloc * sizeof (mp_limb_t)); |
| 1022 | } |
| 1023 | else |
| 1024 | { |
| 1025 | ap = (mp_ptr) realloc (ap, sizeof (mp_limb_t)); |
| 1026 | bp = (mp_ptr) realloc (bp, sizeof (mp_limb_t)); |
| 1027 | rp = (mp_ptr) realloc (rp, sizeof (mp_limb_t)); |
| 1028 | ap = (mp_ptr) realloc (ap, alloc * sizeof (mp_limb_t)); |
| 1029 | mpn_random (ap, alloc); |
| 1030 | bp = (mp_ptr) realloc (bp, alloc * sizeof (mp_limb_t)); |
| 1031 | mpn_random (bp, alloc); |
| 1032 | rp = (mp_ptr) realloc (rp, alloc * sizeof (mp_limb_t)); |
| 1033 | } |
| 1034 | } |
| 1035 | |
| 1036 | t1 = cached_measure (rp, ap, bp, n1, k, n_measurements); |
| 1037 | |
| 1038 | if (t1 * n_measurements > 0.3) |
| 1039 | n_measurements -= 2; |
| 1040 | n_measurements = MAX (n_measurements, MIN_REPS); |
| 1041 | |
| 1042 | if (t1 < t0) |
| 1043 | { |
| 1044 | best_k = k; |
| 1045 | t0 = t1; |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | n1 = mpn_fft_next_size (prev_n1, best_k); |
| 1050 | |
| 1051 | if (last_best_k != best_k) |
| 1052 | { |
| 1053 | ASSERT_ALWAYS ((prev_n1 & ((1ul << last_best_k) - 1)) == 1); |
| 1054 | |
| 1055 | if (idx >= FFT_TABLE3_SIZE) |
| 1056 | { |
| 1057 | printf ("FFT table exhausted, increase FFT_TABLE3_SIZE in gmp-impl.h\n"); |
| 1058 | abort (); |
| 1059 | } |
| 1060 | INSERT_FFTTAB (idx, prev_n1 >> last_best_k, best_k); |
| 1061 | |
| 1062 | if (print) |
| 1063 | { |
| 1064 | printf (", "); |
| 1065 | if (idx % 4 == 0) |
| 1066 | printf ("\\\n "); |
| 1067 | printf ("{%7u,%2u}", fft_tab[idx].n, fft_tab[idx].k); |
| 1068 | } |
| 1069 | |
| 1070 | if (option_trace >= 2) |
| 1071 | { |
| 1072 | printf ("{%lu,%u}\n", prev_n1, best_k); |
| 1073 | fflush (stdout); |
| 1074 | } |
| 1075 | |
| 1076 | last_best_k = best_k; |
| 1077 | idx++; |
| 1078 | } |
| 1079 | |
| 1080 | for (;;) |
| 1081 | { |
| 1082 | prev_n1 = n1; |
| 1083 | prev_eff = fftfill (prev_n1, best_k, p->sqr); |
| 1084 | n1 = mpn_fft_next_size (prev_n1 + 1, best_k); |
| 1085 | eff = fftfill (n1, best_k, p->sqr); |
| 1086 | |
| 1087 | if (eff != prev_eff) |
| 1088 | break; |
| 1089 | } |
| 1090 | |
| 1091 | n = prev_n1; |
| 1092 | } |
| 1093 | |
| 1094 | kmax = sizeof (mp_size_t) * 4; /* GMP_MP_SIZE_T_BITS / 2 */ |
| 1095 | kmax = MIN (kmax, 25-1); |
| 1096 | for (k = last_best_k + 1; k <= kmax; k++) |
| 1097 | { |
| 1098 | if (idx >= FFT_TABLE3_SIZE) |
| 1099 | { |
| 1100 | printf ("FFT table exhausted, increase FFT_TABLE3_SIZE in gmp-impl.h\n"); |
| 1101 | abort (); |
| 1102 | } |
| 1103 | INSERT_FFTTAB (idx, ((1ul << (2*k-2)) + 1) >> (k-1), k); |
| 1104 | |
| 1105 | if (print) |
| 1106 | { |
| 1107 | printf (", "); |
| 1108 | if (idx % 4 == 0) |
| 1109 | printf ("\\\n "); |
| 1110 | printf ("{%7u,%2u}", fft_tab[idx].n, fft_tab[idx].k); |
| 1111 | } |
| 1112 | |
| 1113 | idx++; |
| 1114 | } |
| 1115 | |
| 1116 | if (print) |
| 1117 | printf (" }\n"); |
| 1118 | |
| 1119 | free (ap); |
| 1120 | if (! p->sqr) |
| 1121 | free (bp); |
| 1122 | free (rp); |
| 1123 | |
| 1124 | return idx; |
| 1125 | } |
| 1126 | |
| 1127 | void |
| 1128 | fft (struct fft_param_t *p) |
| 1129 | { |
| 1130 | mp_size_t size; |
| 1131 | int k, idx, initial_k; |
| 1132 | |
| 1133 | /*** Generate MUL_FFT_MODF_THRESHOLD / SQR_FFT_MODF_THRESHOLD ***/ |
| 1134 | |
| 1135 | #if 1 |
| 1136 | { |
| 1137 | /* Use plain one() mechanism, for some reasonable initial values of k. The |
| 1138 | advantage is that we don't depend on mpn_fft_table3, which can therefore |
| 1139 | leave it completely uninitialized. */ |
| 1140 | |
| 1141 | static struct param_t param; |
| 1142 | mp_size_t thres, best_thres; |
| 1143 | int best_k; |
| 1144 | char buf[20]; |
| 1145 | |
| 1146 | best_thres = MP_SIZE_T_MAX; |
| 1147 | best_k = -1; |
| 1148 | |
| 1149 | for (k = 5; k <= 7; k++) |
| 1150 | { |
| 1151 | param.name = p->modf_threshold_name; |
| 1152 | param.min_size = 100; |
| 1153 | param.max_size = 2000; |
| 1154 | param.function = p->mul_function; |
| 1155 | param.step_factor = 0.0; |
| 1156 | param.step = 4; |
| 1157 | param.function2 = p->mul_modf_function; |
| 1158 | param.noprint = 1; |
| 1159 | s.r = k; |
| 1160 | one (&thres, ¶m); |
| 1161 | if (thres < best_thres) |
| 1162 | { |
| 1163 | best_thres = thres; |
| 1164 | best_k = k; |
| 1165 | } |
| 1166 | } |
| 1167 | |
| 1168 | *(p->p_modf_threshold) = best_thres; |
| 1169 | sprintf (buf, "k = %d", best_k); |
| 1170 | print_define_remark (p->modf_threshold_name, best_thres, buf); |
| 1171 | initial_k = best_k; |
| 1172 | } |
| 1173 | #else |
| 1174 | size = p->first_size; |
| 1175 | for (;;) |
| 1176 | { |
| 1177 | double tk, tm; |
| 1178 | |
| 1179 | size = mpn_fft_next_size (size+1, mpn_fft_best_k (size+1, p->sqr)); |
| 1180 | k = mpn_fft_best_k (size, p->sqr); |
| 1181 | |
| 1182 | if (size >= p->max_size) |
| 1183 | break; |
| 1184 | |
| 1185 | s.size = size + fft_step_size (k) / 2; |
| 1186 | s.r = k; |
| 1187 | tk = tuneup_measure (p->mul_modf_function, NULL, &s); |
| 1188 | if (tk == -1.0) |
| 1189 | abort (); |
| 1190 | |
| 1191 | tm = tuneup_measure (p->mul_function, NULL, &s); |
| 1192 | if (tm == -1.0) |
| 1193 | abort (); |
| 1194 | |
| 1195 | if (option_trace >= 2) |
| 1196 | printf ("at %ld size=%ld k=%d %.9f size=%ld modf %.9f\n", |
| 1197 | (long) size, |
| 1198 | (long) size + fft_step_size (k) / 2, k, tk, |
| 1199 | (long) s.size, tm); |
| 1200 | |
| 1201 | if (tk < tm) |
| 1202 | { |
| 1203 | *p->p_modf_threshold = s.size; |
| 1204 | print_define (p->modf_threshold_name, *p->p_modf_threshold); |
| 1205 | break; |
| 1206 | } |
| 1207 | } |
| 1208 | initial_k = ?; |
| 1209 | #endif |
| 1210 | |
| 1211 | /*** Generate MUL_FFT_TABLE3 / SQR_FFT_TABLE3 ***/ |
| 1212 | |
| 1213 | idx = fftmes (*p->p_modf_threshold, p->max_size, initial_k, p, 0, 1); |
| 1214 | printf ("#define %s_SIZE %d\n", p->table_name, idx); |
| 1215 | |
| 1216 | /*** Generate MUL_FFT_THRESHOLD / SQR_FFT_THRESHOLD ***/ |
| 1217 | |
| 1218 | size = 2 * *p->p_modf_threshold; /* OK? */ |
| 1219 | for (;;) |
| 1220 | { |
| 1221 | double tk, tm; |
| 1222 | mp_size_t mulmod_size, mul_size;; |
| 1223 | |
| 1224 | if (size >= p->max_size) |
| 1225 | break; |
| 1226 | |
| 1227 | mulmod_size = mpn_mulmod_bnm1_next_size (2 * (size + 1)) / 2; |
| 1228 | mul_size = (size + mulmod_size) / 2; /* middle of step */ |
| 1229 | |
| 1230 | s.size = mulmod_size; |
| 1231 | tk = tuneup_measure (p->function, NULL, &s); |
| 1232 | if (tk == -1.0) |
| 1233 | abort (); |
| 1234 | |
| 1235 | s.size = mul_size; |
| 1236 | tm = tuneup_measure (p->mul_function, NULL, &s); |
| 1237 | if (tm == -1.0) |
| 1238 | abort (); |
| 1239 | |
| 1240 | if (option_trace >= 2) |
| 1241 | printf ("at %ld size=%ld %.9f size=%ld mul %.9f\n", |
| 1242 | (long) size, |
| 1243 | (long) mulmod_size, tk, |
| 1244 | (long) mul_size, tm); |
| 1245 | |
| 1246 | size = mulmod_size; |
| 1247 | |
| 1248 | if (tk < tm) |
| 1249 | { |
| 1250 | *p->p_threshold = s.size; |
| 1251 | print_define (p->threshold_name, *p->p_threshold); |
| 1252 | break; |
| 1253 | } |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | /* Compare mpn_mul_1 to whatever fast exact single-limb division we have. This |
| 1258 | is currently mpn_divexact_1, but will become mpn_bdiv_1_qr_pi2 or somesuch. |
| 1259 | This is used in get_str and set_str. */ |
| 1260 | void |
| 1261 | relspeed_div_1_vs_mul_1 (void) |
| 1262 | { |
| 1263 | const size_t max_opsize = 100; |
| 1264 | mp_size_t n; |
| 1265 | long j; |
| 1266 | mp_limb_t rp[max_opsize]; |
| 1267 | mp_limb_t ap[max_opsize]; |
| 1268 | double multime, divtime; |
| 1269 | |
| 1270 | mpn_random (ap, max_opsize); |
| 1271 | |
| 1272 | multime = 0; |
| 1273 | for (n = max_opsize; n > 1; n--) |
| 1274 | { |
| 1275 | mpn_mul_1 (rp, ap, n, MP_BASES_BIG_BASE_10); |
| 1276 | speed_starttime (); |
| 1277 | for (j = speed_precision; j != 0 ; j--) |
| 1278 | mpn_mul_1 (rp, ap, n, MP_BASES_BIG_BASE_10); |
| 1279 | multime += speed_endtime () / n; |
| 1280 | } |
| 1281 | |
| 1282 | divtime = 0; |
| 1283 | for (n = max_opsize; n > 1; n--) |
| 1284 | { |
| 1285 | /* Make input divisible for good measure. */ |
| 1286 | ap[n - 1] = mpn_mul_1 (ap, ap, n - 1, MP_BASES_BIG_BASE_10); |
| 1287 | |
| 1288 | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 || ! HAVE_NATIVE_mpn_divexact_1 |
| 1289 | mpn_pi1_bdiv_q_1 (rp, ap, n, MP_BASES_BIG_BASE_10, |
| 1290 | MP_BASES_BIG_BASE_BINVERTED_10, |
| 1291 | MP_BASES_BIG_BASE_CTZ_10); |
| 1292 | #else |
| 1293 | mpn_divexact_1 (rp, ap, n, MP_BASES_BIG_BASE_10); |
| 1294 | #endif |
| 1295 | speed_starttime (); |
| 1296 | for (j = speed_precision; j != 0 ; j--) |
| 1297 | { |
| 1298 | #if HAVE_NATIVE_mpn_pi1_bdiv_q_1 || ! HAVE_NATIVE_mpn_divexact_1 |
| 1299 | mpn_pi1_bdiv_q_1 (rp, ap, n, MP_BASES_BIG_BASE_10, |
| 1300 | MP_BASES_BIG_BASE_BINVERTED_10, |
| 1301 | MP_BASES_BIG_BASE_CTZ_10); |
| 1302 | #else |
| 1303 | mpn_divexact_1 (rp, ap, n, MP_BASES_BIG_BASE_10); |
| 1304 | #endif |
| 1305 | } |
| 1306 | divtime += speed_endtime () / n; |
| 1307 | } |
| 1308 | |
| 1309 | print_define ("DIV_1_VS_MUL_1_PERCENT", (int) (100 * divtime/multime)); |
| 1310 | } |
| 1311 | |
| 1312 | |
| 1313 | /* Start karatsuba from 4, since the Cray t90 ieee code is much faster at 2, |
| 1314 | giving wrong results. */ |
| 1315 | void |
| 1316 | tune_mul_n (void) |
| 1317 | { |
| 1318 | static struct param_t param; |
| 1319 | mp_size_t next_toom_start; |
| 1320 | int something_changed; |
| 1321 | |
| 1322 | param.function = speed_mpn_mul_n; |
| 1323 | |
| 1324 | param.name = "MUL_TOOM22_THRESHOLD"; |
| 1325 | param.min_size = MAX (4, MPN_TOOM22_MUL_MINSIZE); |
| 1326 | param.max_size = MUL_TOOM22_THRESHOLD_LIMIT-1; |
| 1327 | one (&mul_toom22_threshold, ¶m); |
| 1328 | |
| 1329 | param.noprint = 1; |
| 1330 | |
| 1331 | /* Threshold sequence loop. Disable functions that would be used in a very |
| 1332 | narrow range, re-measuring things when that happens. */ |
| 1333 | something_changed = 1; |
| 1334 | while (something_changed) |
| 1335 | { |
| 1336 | something_changed = 0; |
| 1337 | |
| 1338 | next_toom_start = mul_toom22_threshold; |
| 1339 | |
| 1340 | if (mul_toom33_threshold != 0) |
| 1341 | { |
| 1342 | param.name = "MUL_TOOM33_THRESHOLD"; |
| 1343 | param.min_size = MAX (next_toom_start, MPN_TOOM33_MUL_MINSIZE); |
| 1344 | param.max_size = MUL_TOOM33_THRESHOLD_LIMIT-1; |
| 1345 | one (&mul_toom33_threshold, ¶m); |
| 1346 | |
| 1347 | if (next_toom_start * 1.05 >= mul_toom33_threshold) |
| 1348 | { |
| 1349 | mul_toom33_threshold = 0; |
| 1350 | something_changed = 1; |
| 1351 | } |
| 1352 | } |
| 1353 | |
| 1354 | next_toom_start = MAX (next_toom_start, mul_toom33_threshold); |
| 1355 | |
| 1356 | if (mul_toom44_threshold != 0) |
| 1357 | { |
| 1358 | param.name = "MUL_TOOM44_THRESHOLD"; |
| 1359 | param.min_size = MAX (next_toom_start, MPN_TOOM44_MUL_MINSIZE); |
| 1360 | param.max_size = MUL_TOOM44_THRESHOLD_LIMIT-1; |
| 1361 | one (&mul_toom44_threshold, ¶m); |
| 1362 | |
| 1363 | if (next_toom_start * 1.05 >= mul_toom44_threshold) |
| 1364 | { |
| 1365 | mul_toom44_threshold = 0; |
| 1366 | something_changed = 1; |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | next_toom_start = MAX (next_toom_start, mul_toom44_threshold); |
| 1371 | |
| 1372 | if (mul_toom6h_threshold != 0) |
| 1373 | { |
| 1374 | param.name = "MUL_TOOM6H_THRESHOLD"; |
| 1375 | param.min_size = MAX (next_toom_start, MPN_TOOM6H_MUL_MINSIZE); |
| 1376 | param.max_size = MUL_TOOM6H_THRESHOLD_LIMIT-1; |
| 1377 | one (&mul_toom6h_threshold, ¶m); |
| 1378 | |
| 1379 | if (next_toom_start * 1.05 >= mul_toom6h_threshold) |
| 1380 | { |
| 1381 | mul_toom6h_threshold = 0; |
| 1382 | something_changed = 1; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | next_toom_start = MAX (next_toom_start, mul_toom6h_threshold); |
| 1387 | |
| 1388 | if (mul_toom8h_threshold != 0) |
| 1389 | { |
| 1390 | param.name = "MUL_TOOM8H_THRESHOLD"; |
| 1391 | param.min_size = MAX (next_toom_start, MPN_TOOM8H_MUL_MINSIZE); |
| 1392 | param.max_size = MUL_TOOM8H_THRESHOLD_LIMIT-1; |
| 1393 | one (&mul_toom8h_threshold, ¶m); |
| 1394 | |
| 1395 | if (next_toom_start * 1.05 >= mul_toom8h_threshold) |
| 1396 | { |
| 1397 | mul_toom8h_threshold = 0; |
| 1398 | something_changed = 1; |
| 1399 | } |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | print_define ("MUL_TOOM33_THRESHOLD", MUL_TOOM33_THRESHOLD); |
| 1404 | print_define ("MUL_TOOM44_THRESHOLD", MUL_TOOM44_THRESHOLD); |
| 1405 | print_define ("MUL_TOOM6H_THRESHOLD", MUL_TOOM6H_THRESHOLD); |
| 1406 | print_define ("MUL_TOOM8H_THRESHOLD", MUL_TOOM8H_THRESHOLD); |
| 1407 | |
| 1408 | /* disabled until tuned */ |
| 1409 | MUL_FFT_THRESHOLD = MP_SIZE_T_MAX; |
| 1410 | } |
| 1411 | |
| 1412 | void |
| 1413 | tune_mul (void) |
| 1414 | { |
| 1415 | static struct param_t param; |
| 1416 | mp_size_t thres; |
| 1417 | |
| 1418 | param.noprint = 1; |
| 1419 | |
| 1420 | param.function = speed_mpn_toom32_for_toom43_mul; |
| 1421 | param.function2 = speed_mpn_toom43_for_toom32_mul; |
| 1422 | param.name = "MUL_TOOM32_TO_TOOM43_THRESHOLD"; |
| 1423 | param.min_size = MPN_TOOM43_MUL_MINSIZE * 24 / 17; |
| 1424 | one (&thres, ¶m); |
| 1425 | mul_toom32_to_toom43_threshold = thres * 17 / 24; |
| 1426 | print_define ("MUL_TOOM32_TO_TOOM43_THRESHOLD", mul_toom32_to_toom43_threshold); |
| 1427 | |
| 1428 | param.function = speed_mpn_toom32_for_toom53_mul; |
| 1429 | param.function2 = speed_mpn_toom53_for_toom32_mul; |
| 1430 | param.name = "MUL_TOOM32_TO_TOOM53_THRESHOLD"; |
| 1431 | param.min_size = MPN_TOOM53_MUL_MINSIZE * 30 / 19; |
| 1432 | one (&thres, ¶m); |
| 1433 | mul_toom32_to_toom53_threshold = thres * 19 / 30; |
| 1434 | print_define ("MUL_TOOM32_TO_TOOM53_THRESHOLD", mul_toom32_to_toom53_threshold); |
| 1435 | |
| 1436 | param.function = speed_mpn_toom42_for_toom53_mul; |
| 1437 | param.function2 = speed_mpn_toom53_for_toom42_mul; |
| 1438 | param.name = "MUL_TOOM42_TO_TOOM53_THRESHOLD"; |
| 1439 | param.min_size = MPN_TOOM53_MUL_MINSIZE * 20 / 11; |
| 1440 | one (&thres, ¶m); |
| 1441 | mul_toom42_to_toom53_threshold = thres * 11 / 20; |
| 1442 | print_define ("MUL_TOOM42_TO_TOOM53_THRESHOLD", mul_toom42_to_toom53_threshold); |
| 1443 | |
| 1444 | param.function = speed_mpn_toom42_mul; |
| 1445 | param.function2 = speed_mpn_toom63_mul; |
| 1446 | param.name = "MUL_TOOM42_TO_TOOM63_THRESHOLD"; |
| 1447 | param.min_size = MPN_TOOM63_MUL_MINSIZE * 2; |
| 1448 | one (&thres, ¶m); |
| 1449 | mul_toom42_to_toom63_threshold = thres / 2; |
| 1450 | print_define ("MUL_TOOM42_TO_TOOM63_THRESHOLD", mul_toom42_to_toom63_threshold); |
| 1451 | |
| 1452 | /* Use ratio 5/6 when measuring, the middle of the range 2/3 to 1. */ |
| 1453 | param.function = speed_mpn_toom43_for_toom54_mul; |
| 1454 | param.function2 = speed_mpn_toom54_for_toom43_mul; |
| 1455 | param.name = "MUL_TOOM43_TO_TOOM54_THRESHOLD"; |
| 1456 | param.min_size = MPN_TOOM54_MUL_MINSIZE * 6 / 5; |
| 1457 | one (&thres, ¶m); |
| 1458 | mul_toom43_to_toom54_threshold = thres * 5 / 6; |
| 1459 | print_define ("MUL_TOOM43_TO_TOOM54_THRESHOLD", mul_toom43_to_toom54_threshold); |
| 1460 | } |
| 1461 | |
| 1462 | |
| 1463 | void |
| 1464 | tune_mullo (void) |
| 1465 | { |
| 1466 | static struct param_t param; |
| 1467 | |
| 1468 | param.function = speed_mpn_mullo_n; |
| 1469 | |
| 1470 | param.name = "MULLO_BASECASE_THRESHOLD"; |
| 1471 | param.min_size = 2; |
| 1472 | param.min_is_always = 1; |
| 1473 | param.max_size = MULLO_BASECASE_THRESHOLD_LIMIT-1; |
| 1474 | param.stop_factor = 1.5; |
| 1475 | param.noprint = 1; |
| 1476 | one (&mullo_basecase_threshold, ¶m); |
| 1477 | |
| 1478 | param.name = "MULLO_DC_THRESHOLD"; |
| 1479 | param.min_size = 8; |
| 1480 | param.min_is_always = 0; |
| 1481 | param.max_size = 1000; |
| 1482 | one (&mullo_dc_threshold, ¶m); |
| 1483 | |
| 1484 | if (mullo_basecase_threshold >= mullo_dc_threshold) |
| 1485 | { |
| 1486 | print_define ("MULLO_BASECASE_THRESHOLD", mullo_dc_threshold); |
| 1487 | print_define_remark ("MULLO_DC_THRESHOLD", 0, "never mpn_mullo_basecase"); |
| 1488 | } |
| 1489 | else |
| 1490 | { |
| 1491 | print_define ("MULLO_BASECASE_THRESHOLD", mullo_basecase_threshold); |
| 1492 | print_define ("MULLO_DC_THRESHOLD", mullo_dc_threshold); |
| 1493 | } |
| 1494 | |
| 1495 | if (WANT_FFT && mul_fft_threshold < MP_SIZE_T_MAX / 2) |
| 1496 | { |
| 1497 | param.name = "MULLO_MUL_N_THRESHOLD"; |
| 1498 | param.min_size = mullo_dc_threshold; |
| 1499 | param.max_size = 2 * mul_fft_threshold; |
| 1500 | param.noprint = 0; |
| 1501 | param.step_factor = 0.03; |
| 1502 | one (&mullo_mul_n_threshold, ¶m); |
| 1503 | } |
| 1504 | else |
| 1505 | print_define_remark ("MULLO_MUL_N_THRESHOLD", MP_SIZE_T_MAX, |
| 1506 | "without FFT use mullo forever"); |
| 1507 | } |
| 1508 | |
| 1509 | void |
| 1510 | tune_sqrlo (void) |
| 1511 | { |
| 1512 | static struct param_t param; |
| 1513 | |
| 1514 | param.function = speed_mpn_sqrlo; |
| 1515 | |
| 1516 | param.name = "SQRLO_BASECASE_THRESHOLD"; |
| 1517 | param.min_size = 2; |
| 1518 | param.min_is_always = 1; |
| 1519 | param.max_size = SQRLO_BASECASE_THRESHOLD_LIMIT-1; |
| 1520 | param.stop_factor = 1.5; |
| 1521 | param.noprint = 1; |
| 1522 | one (&sqrlo_basecase_threshold, ¶m); |
| 1523 | |
| 1524 | param.name = "SQRLO_DC_THRESHOLD"; |
| 1525 | param.min_size = 8; |
| 1526 | param.min_is_always = 0; |
| 1527 | param.max_size = SQRLO_DC_THRESHOLD_LIMIT-1; |
| 1528 | one (&sqrlo_dc_threshold, ¶m); |
| 1529 | |
| 1530 | if (sqrlo_basecase_threshold >= sqrlo_dc_threshold) |
| 1531 | { |
| 1532 | print_define ("SQRLO_BASECASE_THRESHOLD", sqrlo_dc_threshold); |
| 1533 | print_define_remark ("SQRLO_DC_THRESHOLD", 0, "never mpn_sqrlo_basecase"); |
| 1534 | } |
| 1535 | else |
| 1536 | { |
| 1537 | print_define ("SQRLO_BASECASE_THRESHOLD", sqrlo_basecase_threshold); |
| 1538 | print_define ("SQRLO_DC_THRESHOLD", sqrlo_dc_threshold); |
| 1539 | } |
| 1540 | |
| 1541 | if (WANT_FFT && sqr_fft_threshold < MP_SIZE_T_MAX / 2) |
| 1542 | { |
| 1543 | param.name = "SQRLO_SQR_THRESHOLD"; |
| 1544 | param.min_size = sqrlo_dc_threshold; |
| 1545 | param.max_size = 2 * sqr_fft_threshold; |
| 1546 | param.noprint = 0; |
| 1547 | param.step_factor = 0.03; |
| 1548 | one (&sqrlo_sqr_threshold, ¶m); |
| 1549 | } |
| 1550 | else |
| 1551 | print_define_remark ("SQRLO_SQR_THRESHOLD", MP_SIZE_T_MAX, |
| 1552 | "without FFT use sqrlo forever"); |
| 1553 | } |
| 1554 | |
| 1555 | void |
| 1556 | tune_mulmid (void) |
| 1557 | { |
| 1558 | static struct param_t param; |
| 1559 | |
| 1560 | param.name = "MULMID_TOOM42_THRESHOLD"; |
| 1561 | param.function = speed_mpn_mulmid_n; |
| 1562 | param.min_size = 4; |
| 1563 | param.max_size = 100; |
| 1564 | one (&mulmid_toom42_threshold, ¶m); |
| 1565 | } |
| 1566 | |
| 1567 | void |
| 1568 | tune_mulmod_bnm1 (void) |
| 1569 | { |
| 1570 | static struct param_t param; |
| 1571 | |
| 1572 | param.name = "MULMOD_BNM1_THRESHOLD"; |
| 1573 | param.function = speed_mpn_mulmod_bnm1; |
| 1574 | param.min_size = 4; |
| 1575 | param.max_size = 100; |
| 1576 | one (&mulmod_bnm1_threshold, ¶m); |
| 1577 | } |
| 1578 | |
| 1579 | void |
| 1580 | tune_sqrmod_bnm1 (void) |
| 1581 | { |
| 1582 | static struct param_t param; |
| 1583 | |
| 1584 | param.name = "SQRMOD_BNM1_THRESHOLD"; |
| 1585 | param.function = speed_mpn_sqrmod_bnm1; |
| 1586 | param.min_size = 4; |
| 1587 | param.max_size = 100; |
| 1588 | one (&sqrmod_bnm1_threshold, ¶m); |
| 1589 | } |
| 1590 | |
| 1591 | |
| 1592 | /* Start the basecase from 3, since 1 is a special case, and if mul_basecase |
| 1593 | is faster only at size==2 then we don't want to bother with extra code |
| 1594 | just for that. Start karatsuba from 4 same as MUL above. */ |
| 1595 | |
| 1596 | void |
| 1597 | tune_sqr (void) |
| 1598 | { |
| 1599 | /* disabled until tuned */ |
| 1600 | SQR_FFT_THRESHOLD = MP_SIZE_T_MAX; |
| 1601 | |
| 1602 | if (HAVE_NATIVE_mpn_sqr_basecase) |
| 1603 | { |
| 1604 | print_define_remark ("SQR_BASECASE_THRESHOLD", 0, "always (native)"); |
| 1605 | sqr_basecase_threshold = 0; |
| 1606 | } |
| 1607 | else |
| 1608 | { |
| 1609 | static struct param_t param; |
| 1610 | param.name = "SQR_BASECASE_THRESHOLD"; |
| 1611 | param.function = speed_mpn_sqr; |
| 1612 | param.min_size = 3; |
| 1613 | param.min_is_always = 1; |
| 1614 | param.max_size = TUNE_SQR_TOOM2_MAX; |
| 1615 | param.noprint = 1; |
| 1616 | one (&sqr_basecase_threshold, ¶m); |
| 1617 | } |
| 1618 | |
| 1619 | { |
| 1620 | static struct param_t param; |
| 1621 | param.name = "SQR_TOOM2_THRESHOLD"; |
| 1622 | param.function = speed_mpn_sqr; |
| 1623 | param.min_size = MAX (4, MPN_TOOM2_SQR_MINSIZE); |
| 1624 | param.max_size = TUNE_SQR_TOOM2_MAX; |
| 1625 | param.noprint = 1; |
| 1626 | one (&sqr_toom2_threshold, ¶m); |
| 1627 | |
| 1628 | if (! HAVE_NATIVE_mpn_sqr_basecase |
| 1629 | && sqr_toom2_threshold < sqr_basecase_threshold) |
| 1630 | { |
| 1631 | /* Karatsuba becomes faster than mul_basecase before |
| 1632 | sqr_basecase does. Arrange for the expression |
| 1633 | "BELOW_THRESHOLD (un, SQR_TOOM2_THRESHOLD))" which |
| 1634 | selects mpn_sqr_basecase in mpn_sqr to be false, by setting |
| 1635 | SQR_TOOM2_THRESHOLD to zero, making |
| 1636 | SQR_BASECASE_THRESHOLD the toom2 threshold. */ |
| 1637 | |
| 1638 | sqr_basecase_threshold = SQR_TOOM2_THRESHOLD; |
| 1639 | SQR_TOOM2_THRESHOLD = 0; |
| 1640 | |
| 1641 | print_define_remark ("SQR_BASECASE_THRESHOLD", sqr_basecase_threshold, |
| 1642 | "toom2"); |
| 1643 | print_define_remark ("SQR_TOOM2_THRESHOLD",SQR_TOOM2_THRESHOLD, |
| 1644 | "never sqr_basecase"); |
| 1645 | } |
| 1646 | else |
| 1647 | { |
| 1648 | if (! HAVE_NATIVE_mpn_sqr_basecase) |
| 1649 | print_define ("SQR_BASECASE_THRESHOLD", sqr_basecase_threshold); |
| 1650 | print_define ("SQR_TOOM2_THRESHOLD", SQR_TOOM2_THRESHOLD); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | { |
| 1655 | static struct param_t param; |
| 1656 | mp_size_t next_toom_start; |
| 1657 | int something_changed; |
| 1658 | |
| 1659 | param.function = speed_mpn_sqr; |
| 1660 | param.noprint = 1; |
| 1661 | |
| 1662 | /* Threshold sequence loop. Disable functions that would be used in a very |
| 1663 | narrow range, re-measuring things when that happens. */ |
| 1664 | something_changed = 1; |
| 1665 | while (something_changed) |
| 1666 | { |
| 1667 | something_changed = 0; |
| 1668 | |
| 1669 | next_toom_start = MAX (sqr_toom2_threshold, sqr_basecase_threshold); |
| 1670 | |
| 1671 | sqr_toom3_threshold = SQR_TOOM3_THRESHOLD_LIMIT; |
| 1672 | param.name = "SQR_TOOM3_THRESHOLD"; |
| 1673 | param.min_size = MAX (next_toom_start, MPN_TOOM3_SQR_MINSIZE); |
| 1674 | param.max_size = SQR_TOOM3_THRESHOLD_LIMIT-1; |
| 1675 | one (&sqr_toom3_threshold, ¶m); |
| 1676 | |
| 1677 | next_toom_start = MAX (next_toom_start, sqr_toom3_threshold); |
| 1678 | |
| 1679 | if (sqr_toom4_threshold != 0) |
| 1680 | { |
| 1681 | param.name = "SQR_TOOM4_THRESHOLD"; |
| 1682 | sqr_toom4_threshold = SQR_TOOM4_THRESHOLD_LIMIT; |
| 1683 | param.min_size = MAX (next_toom_start, MPN_TOOM4_SQR_MINSIZE); |
| 1684 | param.max_size = SQR_TOOM4_THRESHOLD_LIMIT-1; |
| 1685 | one (&sqr_toom4_threshold, ¶m); |
| 1686 | |
| 1687 | if (next_toom_start * 1.05 >= sqr_toom4_threshold) |
| 1688 | { |
| 1689 | sqr_toom4_threshold = 0; |
| 1690 | something_changed = 1; |
| 1691 | } |
| 1692 | } |
| 1693 | |
| 1694 | next_toom_start = MAX (next_toom_start, sqr_toom4_threshold); |
| 1695 | |
| 1696 | if (sqr_toom6_threshold != 0) |
| 1697 | { |
| 1698 | param.name = "SQR_TOOM6_THRESHOLD"; |
| 1699 | sqr_toom6_threshold = SQR_TOOM6_THRESHOLD_LIMIT; |
| 1700 | param.min_size = MAX (next_toom_start, MPN_TOOM6_SQR_MINSIZE); |
| 1701 | param.max_size = SQR_TOOM6_THRESHOLD_LIMIT-1; |
| 1702 | one (&sqr_toom6_threshold, ¶m); |
| 1703 | |
| 1704 | if (next_toom_start * 1.05 >= sqr_toom6_threshold) |
| 1705 | { |
| 1706 | sqr_toom6_threshold = 0; |
| 1707 | something_changed = 1; |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | next_toom_start = MAX (next_toom_start, sqr_toom6_threshold); |
| 1712 | |
| 1713 | if (sqr_toom8_threshold != 0) |
| 1714 | { |
| 1715 | param.name = "SQR_TOOM8_THRESHOLD"; |
| 1716 | sqr_toom8_threshold = SQR_TOOM8_THRESHOLD_LIMIT; |
| 1717 | param.min_size = MAX (next_toom_start, MPN_TOOM8_SQR_MINSIZE); |
| 1718 | param.max_size = SQR_TOOM8_THRESHOLD_LIMIT-1; |
| 1719 | one (&sqr_toom8_threshold, ¶m); |
| 1720 | |
| 1721 | if (next_toom_start * 1.05 >= sqr_toom8_threshold) |
| 1722 | { |
| 1723 | sqr_toom8_threshold = 0; |
| 1724 | something_changed = 1; |
| 1725 | } |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | print_define ("SQR_TOOM3_THRESHOLD", SQR_TOOM3_THRESHOLD); |
| 1730 | print_define ("SQR_TOOM4_THRESHOLD", SQR_TOOM4_THRESHOLD); |
| 1731 | print_define ("SQR_TOOM6_THRESHOLD", SQR_TOOM6_THRESHOLD); |
| 1732 | print_define ("SQR_TOOM8_THRESHOLD", SQR_TOOM8_THRESHOLD); |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | |
| 1737 | void |
| 1738 | tune_dc_div (void) |
| 1739 | { |
| 1740 | s.r = 0; /* clear to make speed function do 2n/n */ |
| 1741 | { |
| 1742 | static struct param_t param; |
| 1743 | param.name = "DC_DIV_QR_THRESHOLD"; |
| 1744 | param.function = speed_mpn_sbpi1_div_qr; |
| 1745 | param.function2 = speed_mpn_dcpi1_div_qr; |
| 1746 | param.min_size = 6; |
| 1747 | one (&dc_div_qr_threshold, ¶m); |
| 1748 | } |
| 1749 | { |
| 1750 | static struct param_t param; |
| 1751 | param.name = "DC_DIVAPPR_Q_THRESHOLD"; |
| 1752 | param.function = speed_mpn_sbpi1_divappr_q; |
| 1753 | param.function2 = speed_mpn_dcpi1_divappr_q; |
| 1754 | param.min_size = 6; |
| 1755 | one (&dc_divappr_q_threshold, ¶m); |
| 1756 | } |
| 1757 | } |
| 1758 | |
| 1759 | static double |
| 1760 | speed_mpn_sbordcpi1_div_qr (struct speed_params *s) |
| 1761 | { |
| 1762 | if (s->size < DC_DIV_QR_THRESHOLD) |
| 1763 | return speed_mpn_sbpi1_div_qr (s); |
| 1764 | else |
| 1765 | return speed_mpn_dcpi1_div_qr (s); |
| 1766 | } |
| 1767 | |
| 1768 | void |
| 1769 | tune_mu_div (void) |
| 1770 | { |
| 1771 | s.r = 0; /* clear to make speed function do 2n/n */ |
| 1772 | { |
| 1773 | static struct param_t param; |
| 1774 | param.name = "MU_DIV_QR_THRESHOLD"; |
| 1775 | param.function = speed_mpn_dcpi1_div_qr; |
| 1776 | param.function2 = speed_mpn_mu_div_qr; |
| 1777 | param.min_size = mul_toom22_threshold; |
| 1778 | param.max_size = 5000; |
| 1779 | param.step_factor = 0.02; |
| 1780 | one (&mu_div_qr_threshold, ¶m); |
| 1781 | } |
| 1782 | { |
| 1783 | static struct param_t param; |
| 1784 | param.name = "MU_DIVAPPR_Q_THRESHOLD"; |
| 1785 | param.function = speed_mpn_dcpi1_divappr_q; |
| 1786 | param.function2 = speed_mpn_mu_divappr_q; |
| 1787 | param.min_size = mul_toom22_threshold; |
| 1788 | param.max_size = 5000; |
| 1789 | param.step_factor = 0.02; |
| 1790 | one (&mu_divappr_q_threshold, ¶m); |
| 1791 | } |
| 1792 | { |
| 1793 | static struct param_t param; |
| 1794 | param.name = "MUPI_DIV_QR_THRESHOLD"; |
| 1795 | param.function = speed_mpn_sbordcpi1_div_qr; |
| 1796 | param.function2 = speed_mpn_mupi_div_qr; |
| 1797 | param.min_size = 6; |
| 1798 | param.min_is_always = 1; |
| 1799 | param.max_size = 1000; |
| 1800 | param.step_factor = 0.02; |
| 1801 | one (&mupi_div_qr_threshold, ¶m); |
| 1802 | } |
| 1803 | } |
| 1804 | |
| 1805 | void |
| 1806 | tune_dc_bdiv (void) |
| 1807 | { |
| 1808 | s.r = 0; /* clear to make speed function do 2n/n*/ |
| 1809 | { |
| 1810 | static struct param_t param; |
| 1811 | param.name = "DC_BDIV_QR_THRESHOLD"; |
| 1812 | param.function = speed_mpn_sbpi1_bdiv_qr; |
| 1813 | param.function2 = speed_mpn_dcpi1_bdiv_qr; |
| 1814 | param.min_size = 4; |
| 1815 | one (&dc_bdiv_qr_threshold, ¶m); |
| 1816 | } |
| 1817 | { |
| 1818 | static struct param_t param; |
| 1819 | param.name = "DC_BDIV_Q_THRESHOLD"; |
| 1820 | param.function = speed_mpn_sbpi1_bdiv_q; |
| 1821 | param.function2 = speed_mpn_dcpi1_bdiv_q; |
| 1822 | param.min_size = 4; |
| 1823 | one (&dc_bdiv_q_threshold, ¶m); |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | void |
| 1828 | tune_mu_bdiv (void) |
| 1829 | { |
| 1830 | s.r = 0; /* clear to make speed function do 2n/n*/ |
| 1831 | { |
| 1832 | static struct param_t param; |
| 1833 | param.name = "MU_BDIV_QR_THRESHOLD"; |
| 1834 | param.function = speed_mpn_dcpi1_bdiv_qr; |
| 1835 | param.function2 = speed_mpn_mu_bdiv_qr; |
| 1836 | param.min_size = dc_bdiv_qr_threshold; |
| 1837 | param.max_size = 5000; |
| 1838 | param.step_factor = 0.02; |
| 1839 | one (&mu_bdiv_qr_threshold, ¶m); |
| 1840 | } |
| 1841 | { |
| 1842 | static struct param_t param; |
| 1843 | param.name = "MU_BDIV_Q_THRESHOLD"; |
| 1844 | param.function = speed_mpn_dcpi1_bdiv_q; |
| 1845 | param.function2 = speed_mpn_mu_bdiv_q; |
| 1846 | param.min_size = dc_bdiv_q_threshold; |
| 1847 | param.max_size = 5000; |
| 1848 | param.step_factor = 0.02; |
| 1849 | one (&mu_bdiv_q_threshold, ¶m); |
| 1850 | } |
| 1851 | } |
| 1852 | |
| 1853 | void |
| 1854 | tune_invertappr (void) |
| 1855 | { |
| 1856 | static struct param_t param; |
| 1857 | |
| 1858 | param.function = speed_mpn_ni_invertappr; |
| 1859 | param.name = "INV_MULMOD_BNM1_THRESHOLD"; |
| 1860 | param.min_size = 5; |
| 1861 | one (&inv_mulmod_bnm1_threshold, ¶m); |
| 1862 | |
| 1863 | param.function = speed_mpn_invertappr; |
| 1864 | param.name = "INV_NEWTON_THRESHOLD"; |
| 1865 | param.min_size = 5; |
| 1866 | one (&inv_newton_threshold, ¶m); |
| 1867 | } |
| 1868 | |
| 1869 | void |
| 1870 | tune_invert (void) |
| 1871 | { |
| 1872 | static struct param_t param; |
| 1873 | |
| 1874 | param.function = speed_mpn_invert; |
| 1875 | param.name = "INV_APPR_THRESHOLD"; |
| 1876 | param.min_size = 5; |
| 1877 | one (&inv_appr_threshold, ¶m); |
| 1878 | } |
| 1879 | |
| 1880 | void |
| 1881 | tune_binvert (void) |
| 1882 | { |
| 1883 | static struct param_t param; |
| 1884 | |
| 1885 | param.function = speed_mpn_binvert; |
| 1886 | param.name = "BINV_NEWTON_THRESHOLD"; |
| 1887 | param.min_size = 8; /* pointless with smaller operands */ |
| 1888 | one (&binv_newton_threshold, ¶m); |
| 1889 | } |
| 1890 | |
| 1891 | void |
| 1892 | tune_redc (void) |
| 1893 | { |
| 1894 | #define TUNE_REDC_2_MAX 100 |
| 1895 | #if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2 |
| 1896 | #define WANT_REDC_2 1 |
| 1897 | #endif |
| 1898 | |
| 1899 | #if WANT_REDC_2 |
| 1900 | { |
| 1901 | static struct param_t param; |
| 1902 | param.name = "REDC_1_TO_REDC_2_THRESHOLD"; |
| 1903 | param.function = speed_mpn_redc_1; |
| 1904 | param.function2 = speed_mpn_redc_2; |
| 1905 | param.min_size = 1; |
| 1906 | param.min_is_always = 1; |
| 1907 | param.max_size = TUNE_REDC_2_MAX; |
| 1908 | param.noprint = 1; |
| 1909 | param.stop_factor = 1.5; |
| 1910 | one (&redc_1_to_redc_2_threshold, ¶m); |
| 1911 | } |
| 1912 | { |
| 1913 | static struct param_t param; |
| 1914 | param.name = "REDC_2_TO_REDC_N_THRESHOLD"; |
| 1915 | param.function = speed_mpn_redc_2; |
| 1916 | param.function2 = speed_mpn_redc_n; |
| 1917 | param.min_size = 16; |
| 1918 | param.noprint = 1; |
| 1919 | one (&redc_2_to_redc_n_threshold, ¶m); |
| 1920 | } |
| 1921 | if (redc_1_to_redc_2_threshold >= redc_2_to_redc_n_threshold) |
| 1922 | { |
| 1923 | redc_2_to_redc_n_threshold = 0; /* disable redc_2 */ |
| 1924 | |
| 1925 | /* Never use redc2, measure redc_1 -> redc_n cutoff, store result as |
| 1926 | REDC_1_TO_REDC_2_THRESHOLD. */ |
| 1927 | { |
| 1928 | static struct param_t param; |
| 1929 | param.name = "REDC_1_TO_REDC_2_THRESHOLD"; |
| 1930 | param.function = speed_mpn_redc_1; |
| 1931 | param.function2 = speed_mpn_redc_n; |
| 1932 | param.min_size = 16; |
| 1933 | param.noprint = 1; |
| 1934 | one (&redc_1_to_redc_2_threshold, ¶m); |
| 1935 | } |
| 1936 | } |
| 1937 | print_define ("REDC_1_TO_REDC_2_THRESHOLD", REDC_1_TO_REDC_2_THRESHOLD); |
| 1938 | print_define ("REDC_2_TO_REDC_N_THRESHOLD", REDC_2_TO_REDC_N_THRESHOLD); |
| 1939 | #else |
| 1940 | { |
| 1941 | static struct param_t param; |
| 1942 | param.name = "REDC_1_TO_REDC_N_THRESHOLD"; |
| 1943 | param.function = speed_mpn_redc_1; |
| 1944 | param.function2 = speed_mpn_redc_n; |
| 1945 | param.min_size = 16; |
| 1946 | one (&redc_1_to_redc_n_threshold, ¶m); |
| 1947 | } |
| 1948 | #endif |
| 1949 | } |
| 1950 | |
| 1951 | void |
| 1952 | tune_matrix22_mul (void) |
| 1953 | { |
| 1954 | static struct param_t param; |
| 1955 | param.name = "MATRIX22_STRASSEN_THRESHOLD"; |
| 1956 | param.function = speed_mpn_matrix22_mul; |
| 1957 | param.min_size = 2; |
| 1958 | one (&matrix22_strassen_threshold, ¶m); |
| 1959 | } |
| 1960 | |
| 1961 | void |
| 1962 | tune_hgcd2 (void) |
| 1963 | { |
| 1964 | static struct param_t param; |
| 1965 | hgcd2_func_t *f[5] = |
| 1966 | { mpn_hgcd2_1, |
| 1967 | mpn_hgcd2_2, |
| 1968 | mpn_hgcd2_3, |
| 1969 | mpn_hgcd2_4, |
| 1970 | mpn_hgcd2_5 }; |
| 1971 | speed_function_t speed_f[5] = |
| 1972 | { speed_mpn_hgcd2_1, |
| 1973 | speed_mpn_hgcd2_2, |
| 1974 | speed_mpn_hgcd2_3, |
| 1975 | speed_mpn_hgcd2_4, |
| 1976 | speed_mpn_hgcd2_5 }; |
| 1977 | int best; |
| 1978 | |
| 1979 | s.size = 1; |
| 1980 | best = one_method (5, speed_f, "mpn_hgcd2", "HGCD2_DIV1_METHOD", ¶m); |
| 1981 | |
| 1982 | /* Use selected function when tuning hgcd and gcd */ |
| 1983 | hgcd2_func = f[best]; |
| 1984 | } |
| 1985 | |
| 1986 | void |
| 1987 | tune_hgcd (void) |
| 1988 | { |
| 1989 | static struct param_t param; |
| 1990 | param.name = "HGCD_THRESHOLD"; |
| 1991 | param.function = speed_mpn_hgcd; |
| 1992 | /* We seem to get strange results for small sizes */ |
| 1993 | param.min_size = 30; |
| 1994 | one (&hgcd_threshold, ¶m); |
| 1995 | } |
| 1996 | |
| 1997 | void |
| 1998 | tune_hgcd_appr (void) |
| 1999 | { |
| 2000 | static struct param_t param; |
| 2001 | param.name = "HGCD_APPR_THRESHOLD"; |
| 2002 | param.function = speed_mpn_hgcd_appr; |
| 2003 | /* We seem to get strange results for small sizes */ |
| 2004 | param.min_size = 50; |
| 2005 | param.stop_since_change = 150; |
| 2006 | one (&hgcd_appr_threshold, ¶m); |
| 2007 | } |
| 2008 | |
| 2009 | void |
| 2010 | tune_hgcd_reduce (void) |
| 2011 | { |
| 2012 | static struct param_t param; |
| 2013 | param.name = "HGCD_REDUCE_THRESHOLD"; |
| 2014 | param.function = speed_mpn_hgcd_reduce; |
| 2015 | param.min_size = 30; |
| 2016 | param.max_size = 7000; |
| 2017 | param.step_factor = 0.04; |
| 2018 | one (&hgcd_reduce_threshold, ¶m); |
| 2019 | } |
| 2020 | |
| 2021 | void |
| 2022 | tune_gcd_dc (void) |
| 2023 | { |
| 2024 | static struct param_t param; |
| 2025 | param.name = "GCD_DC_THRESHOLD"; |
| 2026 | param.function = speed_mpn_gcd; |
| 2027 | param.min_size = hgcd_threshold; |
| 2028 | param.max_size = 3000; |
| 2029 | param.step_factor = 0.02; |
| 2030 | one (&gcd_dc_threshold, ¶m); |
| 2031 | } |
| 2032 | |
| 2033 | void |
| 2034 | tune_gcdext_dc (void) |
| 2035 | { |
| 2036 | static struct param_t param; |
| 2037 | param.name = "GCDEXT_DC_THRESHOLD"; |
| 2038 | param.function = speed_mpn_gcdext; |
| 2039 | param.min_size = hgcd_threshold; |
| 2040 | param.max_size = 3000; |
| 2041 | param.step_factor = 0.02; |
| 2042 | one (&gcdext_dc_threshold, ¶m); |
| 2043 | } |
| 2044 | |
| 2045 | /* In tune_powm_sec we compute the table used by the win_size function. The |
| 2046 | cutoff points are in exponent bits, disregarding other operand sizes. It is |
| 2047 | not possible to use the one framework since it currently uses a granularity |
| 2048 | of full limbs. |
| 2049 | */ |
| 2050 | |
| 2051 | /* This win_size replaces the variant in the powm code, allowing us to |
| 2052 | control k in the k-ary algorithms. */ |
| 2053 | int winsize; |
| 2054 | int |
| 2055 | win_size (mp_bitcnt_t eb) |
| 2056 | { |
| 2057 | return winsize; |
| 2058 | } |
| 2059 | |
| 2060 | void |
| 2061 | tune_powm_sec (void) |
| 2062 | { |
| 2063 | mp_size_t n; |
| 2064 | int k, i; |
| 2065 | mp_size_t itch; |
| 2066 | mp_bitcnt_t nbits, nbits_next, possible_nbits_cutoff; |
| 2067 | const int n_max = 3000 / GMP_NUMB_BITS; |
| 2068 | const int n_measurements = 5; |
| 2069 | mp_ptr rp, bp, ep, mp, tp; |
| 2070 | double ttab[n_measurements], tk, tkp1; |
| 2071 | TMP_DECL; |
| 2072 | TMP_MARK; |
| 2073 | |
| 2074 | possible_nbits_cutoff = 0; |
| 2075 | |
| 2076 | k = 1; |
| 2077 | |
| 2078 | winsize = 10; /* the itch function needs this */ |
| 2079 | itch = mpn_sec_powm_itch (n_max, n_max * GMP_NUMB_BITS, n_max); |
| 2080 | |
| 2081 | rp = TMP_ALLOC_LIMBS (n_max); |
| 2082 | bp = TMP_ALLOC_LIMBS (n_max); |
| 2083 | ep = TMP_ALLOC_LIMBS (n_max); |
| 2084 | mp = TMP_ALLOC_LIMBS (n_max); |
| 2085 | tp = TMP_ALLOC_LIMBS (itch); |
| 2086 | |
| 2087 | mpn_random (bp, n_max); |
| 2088 | mpn_random (mp, n_max); |
| 2089 | mp[0] |= 1; |
| 2090 | |
| 2091 | /* How about taking the M operand size into account? |
| 2092 | |
| 2093 | An operation R=powm(B,E,N) will take time O(log(E)*M(log(N))) (assuming |
| 2094 | B = O(M)). |
| 2095 | |
| 2096 | Using k-ary and no sliding window, the precomputation will need time |
| 2097 | O(2^(k-1)*M(log(N))) and the main computation will need O(log(E)*S(N)) + |
| 2098 | O(log(E)/k*M(N)), for the squarings, multiplications, respectively. |
| 2099 | |
| 2100 | An operation R=powm_sec(B,E,N) will take time like powm. |
| 2101 | |
| 2102 | Using k-ary, the precomputation will need time O(2^k*M(log(N))) and the |
| 2103 | main computation will need O(log(E)*S(N)) + O(log(E)/k*M(N)) + |
| 2104 | O(log(E)/k*2^k*log(N)), for the squarings, multiplications, and full |
| 2105 | table reads, respectively. */ |
| 2106 | |
| 2107 | printf ("#define POWM_SEC_TABLE "); |
| 2108 | |
| 2109 | /* For nbits == 1, we should always use k == 1, so no need to tune |
| 2110 | that. Starting with nbits == 2 also ensure that nbits always is |
| 2111 | larger than the windowsize k+1. */ |
| 2112 | for (nbits = 2; nbits <= n_max * GMP_NUMB_BITS; ) |
| 2113 | { |
| 2114 | n = (nbits - 1) / GMP_NUMB_BITS + 1; |
| 2115 | |
| 2116 | /* Generate E such that sliding-window for k and k+1 works equally |
| 2117 | well/poorly (but sliding is not used in powm_sec, of course). */ |
| 2118 | for (i = 0; i < n; i++) |
| 2119 | ep[i] = ~CNST_LIMB(0); |
| 2120 | |
| 2121 | winsize = k; |
| 2122 | for (i = 0; i < n_measurements; i++) |
| 2123 | { |
| 2124 | speed_starttime (); |
| 2125 | mpn_sec_powm (rp, bp, n, ep, nbits, mp, n, tp); |
| 2126 | ttab[i] = speed_endtime (); |
| 2127 | } |
| 2128 | tk = median (ttab, n_measurements); |
| 2129 | |
| 2130 | winsize = k + 1; |
| 2131 | speed_starttime (); |
| 2132 | for (i = 0; i < n_measurements; i++) |
| 2133 | { |
| 2134 | speed_starttime (); |
| 2135 | mpn_sec_powm (rp, bp, n, ep, nbits, mp, n, tp); |
| 2136 | ttab[i] = speed_endtime (); |
| 2137 | } |
| 2138 | tkp1 = median (ttab, n_measurements); |
| 2139 | /* |
| 2140 | printf ("testing: %ld, %d", nbits, k, ep[n-1]); |
| 2141 | printf (" %10.5f %10.5f\n", tk, tkp1); |
| 2142 | */ |
| 2143 | if (tkp1 < tk) |
| 2144 | { |
| 2145 | if (possible_nbits_cutoff) |
| 2146 | { |
| 2147 | /* Two consecutive sizes indicate k increase, obey. */ |
| 2148 | |
| 2149 | /* Must always have x[k] >= k */ |
| 2150 | ASSERT_ALWAYS (possible_nbits_cutoff >= k); |
| 2151 | |
| 2152 | if (k > 1) |
| 2153 | printf (","); |
| 2154 | printf ("%ld", (long) possible_nbits_cutoff); |
| 2155 | k++; |
| 2156 | possible_nbits_cutoff = 0; |
| 2157 | } |
| 2158 | else |
| 2159 | { |
| 2160 | /* One measurement indicate k increase, save nbits for further |
| 2161 | consideration. */ |
| 2162 | /* The new larger k gets used for sizes > the cutoff |
| 2163 | value, hence the cutoff should be one less than the |
| 2164 | smallest size where it gives a speedup. */ |
| 2165 | possible_nbits_cutoff = nbits - 1; |
| 2166 | } |
| 2167 | } |
| 2168 | else |
| 2169 | possible_nbits_cutoff = 0; |
| 2170 | |
| 2171 | nbits_next = nbits * 65 / 64; |
| 2172 | nbits = nbits_next + (nbits_next == nbits); |
| 2173 | } |
| 2174 | printf ("\n"); |
| 2175 | TMP_FREE; |
| 2176 | } |
| 2177 | |
| 2178 | |
| 2179 | /* size_extra==1 reflects the fact that with high<divisor one division is |
| 2180 | always skipped. Forcing high<divisor while testing ensures consistency |
| 2181 | while stepping through sizes, ie. that size-1 divides will be done each |
| 2182 | time. |
| 2183 | |
| 2184 | min_size==2 and min_is_always are used so that if plain division is only |
| 2185 | better at size==1 then don't bother including that code just for that |
| 2186 | case, instead go with preinv always and get a size saving. */ |
| 2187 | |
| 2188 | #define DIV_1_PARAMS \ |
| 2189 | param.check_size = 256; \ |
| 2190 | param.min_size = 2; \ |
| 2191 | param.min_is_always = 1; \ |
| 2192 | param.data_high = DATA_HIGH_LT_R; \ |
| 2193 | param.size_extra = 1; \ |
| 2194 | param.stop_factor = 2.0; |
| 2195 | |
| 2196 | |
| 2197 | double (*tuned_speed_mpn_divrem_1) (struct speed_params *); |
| 2198 | |
| 2199 | void |
| 2200 | tune_divrem_1 (void) |
| 2201 | { |
| 2202 | /* plain version by default */ |
| 2203 | tuned_speed_mpn_divrem_1 = speed_mpn_divrem_1; |
| 2204 | |
| 2205 | /* No support for tuning native assembler code, do that by hand and put |
| 2206 | the results in the .asm file, there's no need for such thresholds to |
| 2207 | appear in gmp-mparam.h. */ |
| 2208 | if (HAVE_NATIVE_mpn_divrem_1) |
| 2209 | return; |
| 2210 | |
| 2211 | if (GMP_NAIL_BITS != 0) |
| 2212 | { |
| 2213 | print_define_remark ("DIVREM_1_NORM_THRESHOLD", MP_SIZE_T_MAX, |
| 2214 | "no preinv with nails"); |
| 2215 | print_define_remark ("DIVREM_1_UNNORM_THRESHOLD", MP_SIZE_T_MAX, |
| 2216 | "no preinv with nails"); |
| 2217 | return; |
| 2218 | } |
| 2219 | |
| 2220 | if (UDIV_PREINV_ALWAYS) |
| 2221 | { |
| 2222 | print_define_remark ("DIVREM_1_NORM_THRESHOLD", 0L, "preinv always"); |
| 2223 | print_define ("DIVREM_1_UNNORM_THRESHOLD", 0L); |
| 2224 | return; |
| 2225 | } |
| 2226 | |
| 2227 | tuned_speed_mpn_divrem_1 = speed_mpn_divrem_1_tune; |
| 2228 | |
| 2229 | /* Tune for the integer part of mpn_divrem_1. This will very possibly be |
| 2230 | a bit out for the fractional part, but that's too bad, the integer part |
| 2231 | is more important. */ |
| 2232 | { |
| 2233 | static struct param_t param; |
| 2234 | param.name = "DIVREM_1_NORM_THRESHOLD"; |
| 2235 | DIV_1_PARAMS; |
| 2236 | s.r = randlimb_norm (); |
| 2237 | param.function = speed_mpn_divrem_1_tune; |
| 2238 | one (&divrem_1_norm_threshold, ¶m); |
| 2239 | } |
| 2240 | { |
| 2241 | static struct param_t param; |
| 2242 | param.name = "DIVREM_1_UNNORM_THRESHOLD"; |
| 2243 | DIV_1_PARAMS; |
| 2244 | s.r = randlimb_half (); |
| 2245 | param.function = speed_mpn_divrem_1_tune; |
| 2246 | one (&divrem_1_unnorm_threshold, ¶m); |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | void |
| 2251 | tune_div_qr_1 (void) |
| 2252 | { |
| 2253 | if (!HAVE_NATIVE_mpn_div_qr_1n_pi1) |
| 2254 | { |
| 2255 | static struct param_t param; |
| 2256 | speed_function_t f[2] = |
| 2257 | { |
| 2258 | speed_mpn_div_qr_1n_pi1_1, |
| 2259 | speed_mpn_div_qr_1n_pi1_2, |
| 2260 | }; |
| 2261 | |
| 2262 | s.size = 10; |
| 2263 | s.r = randlimb_norm (); |
| 2264 | |
| 2265 | one_method (2, f, "mpn_div_qr_1n_pi1", "DIV_QR_1N_PI1_METHOD", ¶m); |
| 2266 | } |
| 2267 | |
| 2268 | { |
| 2269 | static struct param_t param; |
| 2270 | param.name = "DIV_QR_1_NORM_THRESHOLD"; |
| 2271 | DIV_1_PARAMS; |
| 2272 | param.min_size = 1; |
| 2273 | param.min_is_always = 0; |
| 2274 | s.r = randlimb_norm (); |
| 2275 | param.function = speed_mpn_div_qr_1_tune; |
| 2276 | one (&div_qr_1_norm_threshold, ¶m); |
| 2277 | } |
| 2278 | { |
| 2279 | static struct param_t param; |
| 2280 | param.name = "DIV_QR_1_UNNORM_THRESHOLD"; |
| 2281 | DIV_1_PARAMS; |
| 2282 | param.min_size = 1; |
| 2283 | param.min_is_always = 0; |
| 2284 | s.r = randlimb_half(); |
| 2285 | param.function = speed_mpn_div_qr_1_tune; |
| 2286 | one (&div_qr_1_unnorm_threshold, ¶m); |
| 2287 | } |
| 2288 | } |
| 2289 | |
| 2290 | |
| 2291 | void |
| 2292 | tune_mod_1 (void) |
| 2293 | { |
| 2294 | /* No support for tuning native assembler code, do that by hand and put |
| 2295 | the results in the .asm file, there's no need for such thresholds to |
| 2296 | appear in gmp-mparam.h. */ |
| 2297 | if (HAVE_NATIVE_mpn_mod_1) |
| 2298 | return; |
| 2299 | |
| 2300 | if (GMP_NAIL_BITS != 0) |
| 2301 | { |
| 2302 | print_define_remark ("MOD_1_NORM_THRESHOLD", MP_SIZE_T_MAX, |
| 2303 | "no preinv with nails"); |
| 2304 | print_define_remark ("MOD_1_UNNORM_THRESHOLD", MP_SIZE_T_MAX, |
| 2305 | "no preinv with nails"); |
| 2306 | return; |
| 2307 | } |
| 2308 | |
| 2309 | if (!HAVE_NATIVE_mpn_mod_1_1p) |
| 2310 | { |
| 2311 | static struct param_t param; |
| 2312 | speed_function_t f[2] = |
| 2313 | { |
| 2314 | speed_mpn_mod_1_1_1, |
| 2315 | speed_mpn_mod_1_1_2, |
| 2316 | }; |
| 2317 | |
| 2318 | s.size = 10; |
| 2319 | s.r = randlimb_half (); |
| 2320 | one_method (2, f, "mpn_mod_1_1", "MOD_1_1P_METHOD", ¶m); |
| 2321 | } |
| 2322 | |
| 2323 | if (UDIV_PREINV_ALWAYS) |
| 2324 | { |
| 2325 | print_define ("MOD_1_NORM_THRESHOLD", 0L); |
| 2326 | print_define ("MOD_1_UNNORM_THRESHOLD", 0L); |
| 2327 | } |
| 2328 | else |
| 2329 | { |
| 2330 | { |
| 2331 | static struct param_t param; |
| 2332 | param.name = "MOD_1_NORM_THRESHOLD"; |
| 2333 | DIV_1_PARAMS; |
| 2334 | s.r = randlimb_norm (); |
| 2335 | param.function = speed_mpn_mod_1_tune; |
| 2336 | one (&mod_1_norm_threshold, ¶m); |
| 2337 | } |
| 2338 | { |
| 2339 | static struct param_t param; |
| 2340 | param.name = "MOD_1_UNNORM_THRESHOLD"; |
| 2341 | DIV_1_PARAMS; |
| 2342 | s.r = randlimb_half (); |
| 2343 | param.function = speed_mpn_mod_1_tune; |
| 2344 | one (&mod_1_unnorm_threshold, ¶m); |
| 2345 | } |
| 2346 | } |
| 2347 | { |
| 2348 | static struct param_t param; |
| 2349 | |
| 2350 | param.check_size = 256; |
| 2351 | |
| 2352 | s.r = randlimb_norm (); |
| 2353 | param.function = speed_mpn_mod_1_tune; |
| 2354 | |
| 2355 | param.name = "MOD_1N_TO_MOD_1_1_THRESHOLD"; |
| 2356 | param.min_size = 2; |
| 2357 | one (&mod_1n_to_mod_1_1_threshold, ¶m); |
| 2358 | } |
| 2359 | |
| 2360 | { |
| 2361 | static struct param_t param; |
| 2362 | |
| 2363 | param.check_size = 256; |
| 2364 | s.r = randlimb_half (); |
| 2365 | param.noprint = 1; |
| 2366 | |
| 2367 | param.function = speed_mpn_mod_1_1; |
| 2368 | param.function2 = speed_mpn_mod_1_2; |
| 2369 | param.min_is_always = 1; |
| 2370 | param.name = "MOD_1_1_TO_MOD_1_2_THRESHOLD"; |
| 2371 | param.min_size = 2; |
| 2372 | one (&mod_1_1_to_mod_1_2_threshold, ¶m); |
| 2373 | |
| 2374 | param.function = speed_mpn_mod_1_2; |
| 2375 | param.function2 = speed_mpn_mod_1_4; |
| 2376 | param.min_is_always = 1; |
| 2377 | param.name = "MOD_1_2_TO_MOD_1_4_THRESHOLD"; |
| 2378 | param.min_size = 1; |
| 2379 | one (&mod_1_2_to_mod_1_4_threshold, ¶m); |
| 2380 | |
| 2381 | if (mod_1_1_to_mod_1_2_threshold >= mod_1_2_to_mod_1_4_threshold) |
| 2382 | { |
| 2383 | /* Never use mod_1_2, measure mod_1_1 -> mod_1_4 */ |
| 2384 | mod_1_2_to_mod_1_4_threshold = 0; |
| 2385 | |
| 2386 | param.function = speed_mpn_mod_1_1; |
| 2387 | param.function2 = speed_mpn_mod_1_4; |
| 2388 | param.min_is_always = 1; |
| 2389 | param.name = "MOD_1_1_TO_MOD_1_4_THRESHOLD fake"; |
| 2390 | param.min_size = 2; |
| 2391 | one (&mod_1_1_to_mod_1_2_threshold, ¶m); |
| 2392 | } |
| 2393 | |
| 2394 | param.function = speed_mpn_mod_1_tune; |
| 2395 | param.function2 = NULL; |
| 2396 | param.name = "MOD_1U_TO_MOD_1_1_THRESHOLD"; |
| 2397 | param.min_size = 2; |
| 2398 | param.min_is_always = 0; |
| 2399 | one (&mod_1u_to_mod_1_1_threshold, ¶m); |
| 2400 | |
| 2401 | if (mod_1u_to_mod_1_1_threshold >= mod_1_1_to_mod_1_2_threshold) |
| 2402 | mod_1_1_to_mod_1_2_threshold = 0; |
| 2403 | if (mod_1u_to_mod_1_1_threshold >= mod_1_2_to_mod_1_4_threshold) |
| 2404 | mod_1_2_to_mod_1_4_threshold = 0; |
| 2405 | |
| 2406 | print_define_remark ("MOD_1U_TO_MOD_1_1_THRESHOLD", mod_1u_to_mod_1_1_threshold, NULL); |
| 2407 | print_define_remark ("MOD_1_1_TO_MOD_1_2_THRESHOLD", mod_1_1_to_mod_1_2_threshold, |
| 2408 | mod_1_1_to_mod_1_2_threshold == 0 ? "never mpn_mod_1_1p" : NULL); |
| 2409 | print_define_remark ("MOD_1_2_TO_MOD_1_4_THRESHOLD", mod_1_2_to_mod_1_4_threshold, |
| 2410 | mod_1_2_to_mod_1_4_threshold == 0 ? "never mpn_mod_1s_2p" : NULL); |
| 2411 | } |
| 2412 | |
| 2413 | { |
| 2414 | static struct param_t param; |
| 2415 | |
| 2416 | param.check_size = 256; |
| 2417 | |
| 2418 | param.name = "PREINV_MOD_1_TO_MOD_1_THRESHOLD"; |
| 2419 | s.r = randlimb_norm (); |
| 2420 | param.function = speed_mpn_preinv_mod_1; |
| 2421 | param.function2 = speed_mpn_mod_1_tune; |
| 2422 | param.min_size = 1; |
| 2423 | one (&preinv_mod_1_to_mod_1_threshold, ¶m); |
| 2424 | } |
| 2425 | } |
| 2426 | |
| 2427 | |
| 2428 | /* A non-zero DIVREM_1_UNNORM_THRESHOLD (or DIVREM_1_NORM_THRESHOLD) would |
| 2429 | imply that udiv_qrnnd_preinv is worth using, but it seems most |
| 2430 | straightforward to compare mpn_preinv_divrem_1 and mpn_divrem_1_div |
| 2431 | directly. */ |
| 2432 | |
| 2433 | void |
| 2434 | tune_preinv_divrem_1 (void) |
| 2435 | { |
| 2436 | static struct param_t param; |
| 2437 | speed_function_t divrem_1; |
| 2438 | const char *divrem_1_name; |
| 2439 | double t1, t2; |
| 2440 | |
| 2441 | if (GMP_NAIL_BITS != 0) |
| 2442 | { |
| 2443 | print_define_remark ("USE_PREINV_DIVREM_1", 0, "no preinv with nails"); |
| 2444 | return; |
| 2445 | } |
| 2446 | |
| 2447 | /* Any native version of mpn_preinv_divrem_1 is assumed to exist because |
| 2448 | it's faster than mpn_divrem_1. */ |
| 2449 | if (HAVE_NATIVE_mpn_preinv_divrem_1) |
| 2450 | { |
| 2451 | print_define_remark ("USE_PREINV_DIVREM_1", 1, "native"); |
| 2452 | return; |
| 2453 | } |
| 2454 | |
| 2455 | /* If udiv_qrnnd_preinv is the only division method then of course |
| 2456 | mpn_preinv_divrem_1 should be used. */ |
| 2457 | if (UDIV_PREINV_ALWAYS) |
| 2458 | { |
| 2459 | print_define_remark ("USE_PREINV_DIVREM_1", 1, "preinv always"); |
| 2460 | return; |
| 2461 | } |
| 2462 | |
| 2463 | /* If we've got an assembler version of mpn_divrem_1, then compare against |
| 2464 | that, not the mpn_divrem_1_div generic C. */ |
| 2465 | if (HAVE_NATIVE_mpn_divrem_1) |
| 2466 | { |
| 2467 | divrem_1 = speed_mpn_divrem_1; |
| 2468 | divrem_1_name = "mpn_divrem_1"; |
| 2469 | } |
| 2470 | else |
| 2471 | { |
| 2472 | divrem_1 = speed_mpn_divrem_1_div; |
| 2473 | divrem_1_name = "mpn_divrem_1_div"; |
| 2474 | } |
| 2475 | |
| 2476 | param.data_high = DATA_HIGH_LT_R; /* allow skip one division */ |
| 2477 | s.size = 200; /* generous but not too big */ |
| 2478 | /* Divisor, nonzero. Unnormalized so as to exercise the shift!=0 case, |
| 2479 | since in general that's probably most common, though in fact for a |
| 2480 | 64-bit limb mp_bases[10].big_base is normalized. */ |
| 2481 | s.r = urandom() & (GMP_NUMB_MASK >> 4); |
| 2482 | if (s.r == 0) s.r = 123; |
| 2483 | |
| 2484 | t1 = tuneup_measure (speed_mpn_preinv_divrem_1, ¶m, &s); |
| 2485 | t2 = tuneup_measure (divrem_1, ¶m, &s); |
| 2486 | if (t1 == -1.0 || t2 == -1.0) |
| 2487 | { |
| 2488 | printf ("Oops, can't measure mpn_preinv_divrem_1 and %s at %ld\n", |
| 2489 | divrem_1_name, (long) s.size); |
| 2490 | abort (); |
| 2491 | } |
| 2492 | if (option_trace >= 1) |
| 2493 | printf ("size=%ld, mpn_preinv_divrem_1 %.9f, %s %.9f\n", |
| 2494 | (long) s.size, t1, divrem_1_name, t2); |
| 2495 | |
| 2496 | print_define_remark ("USE_PREINV_DIVREM_1", (mp_size_t) (t1 < t2), NULL); |
| 2497 | } |
| 2498 | |
| 2499 | |
| 2500 | |
| 2501 | void |
| 2502 | tune_divrem_2 (void) |
| 2503 | { |
| 2504 | static struct param_t param; |
| 2505 | |
| 2506 | /* No support for tuning native assembler code, do that by hand and put |
| 2507 | the results in the .asm file, and there's no need for such thresholds |
| 2508 | to appear in gmp-mparam.h. */ |
| 2509 | if (HAVE_NATIVE_mpn_divrem_2) |
| 2510 | return; |
| 2511 | |
| 2512 | if (GMP_NAIL_BITS != 0) |
| 2513 | { |
| 2514 | print_define_remark ("DIVREM_2_THRESHOLD", MP_SIZE_T_MAX, |
| 2515 | "no preinv with nails"); |
| 2516 | return; |
| 2517 | } |
| 2518 | |
| 2519 | if (UDIV_PREINV_ALWAYS) |
| 2520 | { |
| 2521 | print_define_remark ("DIVREM_2_THRESHOLD", 0L, "preinv always"); |
| 2522 | return; |
| 2523 | } |
| 2524 | |
| 2525 | /* Tune for the integer part of mpn_divrem_2. This will very possibly be |
| 2526 | a bit out for the fractional part, but that's too bad, the integer part |
| 2527 | is more important. |
| 2528 | |
| 2529 | min_size must be >=2 since nsize>=2 is required, but is set to 4 to save |
| 2530 | code space if plain division is better only at size==2 or size==3. */ |
| 2531 | param.name = "DIVREM_2_THRESHOLD"; |
| 2532 | param.check_size = 256; |
| 2533 | param.min_size = 4; |
| 2534 | param.min_is_always = 1; |
| 2535 | param.size_extra = 2; /* does qsize==nsize-2 divisions */ |
| 2536 | param.stop_factor = 2.0; |
| 2537 | |
| 2538 | s.r = randlimb_norm (); |
| 2539 | param.function = speed_mpn_divrem_2; |
| 2540 | one (&divrem_2_threshold, ¶m); |
| 2541 | } |
| 2542 | |
| 2543 | void |
| 2544 | tune_div_qr_2 (void) |
| 2545 | { |
| 2546 | static struct param_t param; |
| 2547 | param.name = "DIV_QR_2_PI2_THRESHOLD"; |
| 2548 | param.function = speed_mpn_div_qr_2n; |
| 2549 | param.check_size = 500; |
| 2550 | param.min_size = 4; |
| 2551 | one (&div_qr_2_pi2_threshold, ¶m); |
| 2552 | } |
| 2553 | |
| 2554 | /* mpn_divexact_1 is vaguely expected to be used on smallish divisors, so |
| 2555 | tune for that. Its speed can differ on odd or even divisor, so take an |
| 2556 | average threshold for the two. |
| 2557 | |
| 2558 | mpn_divrem_1 can vary with high<divisor or not, whereas mpn_divexact_1 |
| 2559 | might not vary that way, but don't test this since high<divisor isn't |
| 2560 | expected to occur often with small divisors. */ |
| 2561 | |
| 2562 | void |
| 2563 | tune_divexact_1 (void) |
| 2564 | { |
| 2565 | static struct param_t param; |
| 2566 | mp_size_t thresh[2], average; |
| 2567 | int low, i; |
| 2568 | |
| 2569 | /* Any native mpn_divexact_1 is assumed to incorporate all the speed of a |
| 2570 | full mpn_divrem_1. */ |
| 2571 | if (HAVE_NATIVE_mpn_divexact_1) |
| 2572 | { |
| 2573 | print_define_remark ("DIVEXACT_1_THRESHOLD", 0, "always (native)"); |
| 2574 | return; |
| 2575 | } |
| 2576 | |
| 2577 | ASSERT_ALWAYS (tuned_speed_mpn_divrem_1 != NULL); |
| 2578 | |
| 2579 | param.name = "DIVEXACT_1_THRESHOLD"; |
| 2580 | param.data_high = DATA_HIGH_GE_R; |
| 2581 | param.check_size = 256; |
| 2582 | param.min_size = 2; |
| 2583 | param.stop_factor = 1.5; |
| 2584 | param.function = tuned_speed_mpn_divrem_1; |
| 2585 | param.function2 = speed_mpn_divexact_1; |
| 2586 | param.noprint = 1; |
| 2587 | |
| 2588 | print_define_start (param.name); |
| 2589 | |
| 2590 | for (low = 0; low <= 1; low++) |
| 2591 | { |
| 2592 | s.r = randlimb_half(); |
| 2593 | if (low == 0) |
| 2594 | s.r |= 1; |
| 2595 | else |
| 2596 | s.r &= ~CNST_LIMB(7); |
| 2597 | |
| 2598 | one (&thresh[low], ¶m); |
| 2599 | if (option_trace) |
| 2600 | printf ("low=%d thresh %ld\n", low, (long) thresh[low]); |
| 2601 | |
| 2602 | if (thresh[low] == MP_SIZE_T_MAX) |
| 2603 | { |
| 2604 | average = MP_SIZE_T_MAX; |
| 2605 | goto divexact_1_done; |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | if (option_trace) |
| 2610 | { |
| 2611 | printf ("average of:"); |
| 2612 | for (i = 0; i < numberof(thresh); i++) |
| 2613 | printf (" %ld", (long) thresh[i]); |
| 2614 | printf ("\n"); |
| 2615 | } |
| 2616 | |
| 2617 | average = 0; |
| 2618 | for (i = 0; i < numberof(thresh); i++) |
| 2619 | average += thresh[i]; |
| 2620 | average /= numberof(thresh); |
| 2621 | |
| 2622 | /* If divexact turns out to be better as early as 3 limbs, then use it |
| 2623 | always, so as to reduce code size and conditional jumps. */ |
| 2624 | if (average <= 3) |
| 2625 | average = 0; |
| 2626 | |
| 2627 | divexact_1_done: |
| 2628 | print_define_end (param.name, average); |
| 2629 | } |
| 2630 | |
| 2631 | |
| 2632 | /* The generic mpn_modexact_1_odd skips a divide step if high<divisor, the |
| 2633 | same as mpn_mod_1, but this might not be true of an assembler |
| 2634 | implementation. The threshold used is an average based on data where a |
| 2635 | divide can be skipped and where it can't. |
| 2636 | |
| 2637 | If modexact turns out to be better as early as 3 limbs, then use it |
| 2638 | always, so as to reduce code size and conditional jumps. */ |
| 2639 | |
| 2640 | void |
| 2641 | tune_modexact_1_odd (void) |
| 2642 | { |
| 2643 | static struct param_t param; |
| 2644 | mp_size_t thresh_lt, thresh_ge, average; |
| 2645 | |
| 2646 | #if 0 |
| 2647 | /* Any native mpn_modexact_1_odd is assumed to incorporate all the speed |
| 2648 | of a full mpn_mod_1. */ |
| 2649 | if (HAVE_NATIVE_mpn_modexact_1_odd) |
| 2650 | { |
| 2651 | print_define_remark ("BMOD_1_TO_MOD_1_THRESHOLD", MP_SIZE_T_MAX, "always bmod_1"); |
| 2652 | return; |
| 2653 | } |
| 2654 | #endif |
| 2655 | |
| 2656 | param.name = "BMOD_1_TO_MOD_1_THRESHOLD"; |
| 2657 | param.check_size = 256; |
| 2658 | param.min_size = 2; |
| 2659 | param.stop_factor = 1.5; |
| 2660 | param.function = speed_mpn_modexact_1c_odd; |
| 2661 | param.function2 = speed_mpn_mod_1_tune; |
| 2662 | param.noprint = 1; |
| 2663 | s.r = randlimb_half () | 1; |
| 2664 | |
| 2665 | print_define_start (param.name); |
| 2666 | |
| 2667 | param.data_high = DATA_HIGH_LT_R; |
| 2668 | one (&thresh_lt, ¶m); |
| 2669 | if (option_trace) |
| 2670 | printf ("lt thresh %ld\n", (long) thresh_lt); |
| 2671 | |
| 2672 | average = thresh_lt; |
| 2673 | if (thresh_lt != MP_SIZE_T_MAX) |
| 2674 | { |
| 2675 | param.data_high = DATA_HIGH_GE_R; |
| 2676 | one (&thresh_ge, ¶m); |
| 2677 | if (option_trace) |
| 2678 | printf ("ge thresh %ld\n", (long) thresh_ge); |
| 2679 | |
| 2680 | if (thresh_ge != MP_SIZE_T_MAX) |
| 2681 | { |
| 2682 | average = (thresh_ge + thresh_lt) / 2; |
| 2683 | if (thresh_ge <= 3) |
| 2684 | average = 0; |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | print_define_end (param.name, average); |
| 2689 | } |
| 2690 | |
| 2691 | |
| 2692 | void |
| 2693 | tune_jacobi_base (void) |
| 2694 | { |
| 2695 | static struct param_t param; |
| 2696 | speed_function_t f[4] = |
| 2697 | { |
| 2698 | speed_mpn_jacobi_base_1, |
| 2699 | speed_mpn_jacobi_base_2, |
| 2700 | speed_mpn_jacobi_base_3, |
| 2701 | speed_mpn_jacobi_base_4, |
| 2702 | }; |
| 2703 | |
| 2704 | s.size = GMP_LIMB_BITS * 3 / 4; |
| 2705 | |
| 2706 | one_method (4, f, "mpn_jacobi_base", "JACOBI_BASE_METHOD", ¶m); |
| 2707 | } |
| 2708 | |
| 2709 | |
| 2710 | void |
| 2711 | tune_get_str (void) |
| 2712 | { |
| 2713 | /* Tune for decimal, it being most common. Some rough testing suggests |
| 2714 | other bases are different, but not by very much. */ |
| 2715 | s.r = 10; |
| 2716 | { |
| 2717 | static struct param_t param; |
| 2718 | GET_STR_PRECOMPUTE_THRESHOLD = 0; |
| 2719 | param.name = "GET_STR_DC_THRESHOLD"; |
| 2720 | param.function = speed_mpn_get_str; |
| 2721 | param.min_size = 4; |
| 2722 | param.max_size = GET_STR_THRESHOLD_LIMIT; |
| 2723 | one (&get_str_dc_threshold, ¶m); |
| 2724 | } |
| 2725 | { |
| 2726 | static struct param_t param; |
| 2727 | param.name = "GET_STR_PRECOMPUTE_THRESHOLD"; |
| 2728 | param.function = speed_mpn_get_str; |
| 2729 | param.min_size = GET_STR_DC_THRESHOLD; |
| 2730 | param.max_size = GET_STR_THRESHOLD_LIMIT; |
| 2731 | one (&get_str_precompute_threshold, ¶m); |
| 2732 | } |
| 2733 | } |
| 2734 | |
| 2735 | |
| 2736 | double |
| 2737 | speed_mpn_pre_set_str (struct speed_params *s) |
| 2738 | { |
| 2739 | unsigned char *str; |
| 2740 | mp_ptr wp; |
| 2741 | mp_size_t wn; |
| 2742 | unsigned i; |
| 2743 | int base; |
| 2744 | double t; |
| 2745 | mp_ptr powtab_mem, tp; |
| 2746 | powers_t powtab[GMP_LIMB_BITS]; |
| 2747 | mp_size_t un; |
| 2748 | int chars_per_limb; |
| 2749 | TMP_DECL; |
| 2750 | |
| 2751 | SPEED_RESTRICT_COND (s->size >= 1); |
| 2752 | |
| 2753 | base = s->r == 0 ? 10 : s->r; |
| 2754 | SPEED_RESTRICT_COND (base >= 2 && base <= 256); |
| 2755 | |
| 2756 | TMP_MARK; |
| 2757 | |
| 2758 | str = (unsigned char *) TMP_ALLOC (s->size); |
| 2759 | for (i = 0; i < s->size; i++) |
| 2760 | str[i] = s->xp[i] % base; |
| 2761 | |
| 2762 | LIMBS_PER_DIGIT_IN_BASE (wn, s->size, base); |
| 2763 | SPEED_TMP_ALLOC_LIMBS (wp, wn, s->align_wp); |
| 2764 | |
| 2765 | /* use this during development to check wn is big enough */ |
| 2766 | /* |
| 2767 | ASSERT_ALWAYS (mpn_set_str (wp, str, s->size, base) <= wn); |
| 2768 | */ |
| 2769 | |
| 2770 | speed_operand_src (s, (mp_ptr) str, s->size/GMP_LIMB_BYTES); |
| 2771 | speed_operand_dst (s, wp, wn); |
| 2772 | speed_cache_fill (s); |
| 2773 | |
| 2774 | chars_per_limb = mp_bases[base].chars_per_limb; |
| 2775 | un = s->size / chars_per_limb + 1; |
| 2776 | powtab_mem = TMP_BALLOC_LIMBS (mpn_str_powtab_alloc (un)); |
| 2777 | size_t n_pows = mpn_compute_powtab (powtab, powtab_mem, un, base); |
| 2778 | powers_t *pt = powtab + n_pows; |
| 2779 | tp = TMP_BALLOC_LIMBS (mpn_dc_set_str_itch (un)); |
| 2780 | |
| 2781 | speed_starttime (); |
| 2782 | i = s->reps; |
| 2783 | do |
| 2784 | { |
| 2785 | mpn_pre_set_str (wp, str, s->size, pt, tp); |
| 2786 | } |
| 2787 | while (--i != 0); |
| 2788 | t = speed_endtime (); |
| 2789 | |
| 2790 | TMP_FREE; |
| 2791 | return t; |
| 2792 | } |
| 2793 | |
| 2794 | void |
| 2795 | tune_set_str (void) |
| 2796 | { |
| 2797 | s.r = 10; /* decimal */ |
| 2798 | { |
| 2799 | static struct param_t param; |
| 2800 | SET_STR_PRECOMPUTE_THRESHOLD = 0; |
| 2801 | param.step_factor = 0.01; |
| 2802 | param.name = "SET_STR_DC_THRESHOLD"; |
| 2803 | param.function = speed_mpn_pre_set_str; |
| 2804 | param.min_size = 100; |
| 2805 | param.max_size = 50000; |
| 2806 | one (&set_str_dc_threshold, ¶m); |
| 2807 | } |
| 2808 | { |
| 2809 | static struct param_t param; |
| 2810 | param.step_factor = 0.02; |
| 2811 | param.name = "SET_STR_PRECOMPUTE_THRESHOLD"; |
| 2812 | param.function = speed_mpn_set_str; |
| 2813 | param.min_size = SET_STR_DC_THRESHOLD; |
| 2814 | param.max_size = 100000; |
| 2815 | one (&set_str_precompute_threshold, ¶m); |
| 2816 | } |
| 2817 | } |
| 2818 | |
| 2819 | |
| 2820 | void |
| 2821 | tune_fft_mul (void) |
| 2822 | { |
| 2823 | static struct fft_param_t param; |
| 2824 | |
| 2825 | if (option_fft_max_size == 0) |
| 2826 | return; |
| 2827 | |
| 2828 | param.table_name = "MUL_FFT_TABLE3"; |
| 2829 | param.threshold_name = "MUL_FFT_THRESHOLD"; |
| 2830 | param.p_threshold = &mul_fft_threshold; |
| 2831 | param.modf_threshold_name = "MUL_FFT_MODF_THRESHOLD"; |
| 2832 | param.p_modf_threshold = &mul_fft_modf_threshold; |
| 2833 | param.first_size = MUL_TOOM33_THRESHOLD / 2; |
| 2834 | param.max_size = option_fft_max_size; |
| 2835 | param.function = speed_mpn_fft_mul; |
| 2836 | param.mul_modf_function = speed_mpn_mul_fft; |
| 2837 | param.mul_function = speed_mpn_mul_n; |
| 2838 | param.sqr = 0; |
| 2839 | fft (¶m); |
| 2840 | } |
| 2841 | |
| 2842 | |
| 2843 | void |
| 2844 | tune_fft_sqr (void) |
| 2845 | { |
| 2846 | static struct fft_param_t param; |
| 2847 | |
| 2848 | if (option_fft_max_size == 0) |
| 2849 | return; |
| 2850 | |
| 2851 | param.table_name = "SQR_FFT_TABLE3"; |
| 2852 | param.threshold_name = "SQR_FFT_THRESHOLD"; |
| 2853 | param.p_threshold = &sqr_fft_threshold; |
| 2854 | param.modf_threshold_name = "SQR_FFT_MODF_THRESHOLD"; |
| 2855 | param.p_modf_threshold = &sqr_fft_modf_threshold; |
| 2856 | param.first_size = SQR_TOOM3_THRESHOLD / 2; |
| 2857 | param.max_size = option_fft_max_size; |
| 2858 | param.function = speed_mpn_fft_sqr; |
| 2859 | param.mul_modf_function = speed_mpn_mul_fft_sqr; |
| 2860 | param.mul_function = speed_mpn_sqr; |
| 2861 | param.sqr = 1; |
| 2862 | fft (¶m); |
| 2863 | } |
| 2864 | |
| 2865 | void |
| 2866 | tune_fac_ui (void) |
| 2867 | { |
| 2868 | static struct param_t param; |
| 2869 | |
| 2870 | param.function = speed_mpz_fac_ui_tune; |
| 2871 | |
| 2872 | param.name = "FAC_DSC_THRESHOLD"; |
| 2873 | param.min_size = 70; |
| 2874 | param.max_size = FAC_DSC_THRESHOLD_LIMIT; |
| 2875 | one (&fac_dsc_threshold, ¶m); |
| 2876 | |
| 2877 | param.name = "FAC_ODD_THRESHOLD"; |
| 2878 | param.min_size = 22; |
| 2879 | param.stop_factor = 1.7; |
| 2880 | param.min_is_always = 1; |
| 2881 | one (&fac_odd_threshold, ¶m); |
| 2882 | } |
| 2883 | |
| 2884 | void |
| 2885 | all (void) |
| 2886 | { |
| 2887 | time_t start_time, end_time; |
| 2888 | TMP_DECL; |
| 2889 | |
| 2890 | TMP_MARK; |
| 2891 | SPEED_TMP_ALLOC_LIMBS (s.xp_block, SPEED_BLOCK_SIZE, 0); |
| 2892 | SPEED_TMP_ALLOC_LIMBS (s.yp_block, SPEED_BLOCK_SIZE, 0); |
| 2893 | |
| 2894 | mpn_random (s.xp_block, SPEED_BLOCK_SIZE); |
| 2895 | mpn_random (s.yp_block, SPEED_BLOCK_SIZE); |
| 2896 | |
| 2897 | fprintf (stderr, "Parameters for %s\n", GMP_MPARAM_H_SUGGEST); |
| 2898 | |
| 2899 | speed_time_init (); |
| 2900 | fprintf (stderr, "Using: %s\n", speed_time_string); |
| 2901 | |
| 2902 | fprintf (stderr, "speed_precision %d", speed_precision); |
| 2903 | if (speed_unittime == 1.0) |
| 2904 | fprintf (stderr, ", speed_unittime 1 cycle"); |
| 2905 | else |
| 2906 | fprintf (stderr, ", speed_unittime %.2e secs", speed_unittime); |
| 2907 | if (speed_cycletime == 1.0 || speed_cycletime == 0.0) |
| 2908 | fprintf (stderr, ", CPU freq unknown\n"); |
| 2909 | else |
| 2910 | fprintf (stderr, ", CPU freq %.2f MHz\n", 1e-6/speed_cycletime); |
| 2911 | |
| 2912 | fprintf (stderr, "DEFAULT_MAX_SIZE %d, fft_max_size %ld\n", |
| 2913 | DEFAULT_MAX_SIZE, (long) option_fft_max_size); |
| 2914 | fprintf (stderr, "\n"); |
| 2915 | |
| 2916 | time (&start_time); |
| 2917 | { |
| 2918 | struct tm *tp; |
| 2919 | tp = localtime (&start_time); |
| 2920 | printf ("/* Generated by tuneup.c, %d-%02d-%02d, ", |
| 2921 | tp->tm_year+1900, tp->tm_mon+1, tp->tm_mday); |
| 2922 | |
| 2923 | #ifdef __GNUC__ |
| 2924 | /* gcc sub-minor version doesn't seem to come through as a define */ |
| 2925 | printf ("gcc %d.%d */\n", __GNUC__, __GNUC_MINOR__); |
| 2926 | #define PRINTED_COMPILER |
| 2927 | #endif |
| 2928 | #if defined (__SUNPRO_C) |
| 2929 | printf ("Sun C %d.%d */\n", __SUNPRO_C / 0x100, __SUNPRO_C % 0x100); |
| 2930 | #define PRINTED_COMPILER |
| 2931 | #endif |
| 2932 | #if ! defined (__GNUC__) && defined (__sgi) && defined (_COMPILER_VERSION) |
| 2933 | /* gcc defines __sgi and _COMPILER_VERSION on irix 6, avoid that */ |
| 2934 | printf ("MIPSpro C %d.%d.%d */\n", |
| 2935 | _COMPILER_VERSION / 100, |
| 2936 | _COMPILER_VERSION / 10 % 10, |
| 2937 | _COMPILER_VERSION % 10); |
| 2938 | #define PRINTED_COMPILER |
| 2939 | #endif |
| 2940 | #if defined (__DECC) && defined (__DECC_VER) |
| 2941 | printf ("DEC C %d */\n", __DECC_VER); |
| 2942 | #define PRINTED_COMPILER |
| 2943 | #endif |
| 2944 | #if ! defined (PRINTED_COMPILER) |
| 2945 | printf ("system compiler */\n"); |
| 2946 | #endif |
| 2947 | } |
| 2948 | printf ("\n"); |
| 2949 | |
| 2950 | tune_divrem_1 (); |
| 2951 | tune_mod_1 (); |
| 2952 | tune_preinv_divrem_1 (); |
| 2953 | tune_div_qr_1 (); |
| 2954 | #if 0 |
| 2955 | tune_divrem_2 (); |
| 2956 | #endif |
| 2957 | tune_div_qr_2 (); |
| 2958 | tune_divexact_1 (); |
| 2959 | tune_modexact_1_odd (); |
| 2960 | printf("\n"); |
| 2961 | |
| 2962 | relspeed_div_1_vs_mul_1 (); |
| 2963 | printf("\n"); |
| 2964 | |
| 2965 | tune_mul_n (); |
| 2966 | printf("\n"); |
| 2967 | |
| 2968 | tune_mul (); |
| 2969 | printf("\n"); |
| 2970 | |
| 2971 | tune_sqr (); |
| 2972 | printf("\n"); |
| 2973 | |
| 2974 | tune_mulmid (); |
| 2975 | printf("\n"); |
| 2976 | |
| 2977 | tune_mulmod_bnm1 (); |
| 2978 | tune_sqrmod_bnm1 (); |
| 2979 | printf("\n"); |
| 2980 | |
| 2981 | tune_fft_mul (); |
| 2982 | printf("\n"); |
| 2983 | |
| 2984 | tune_fft_sqr (); |
| 2985 | printf ("\n"); |
| 2986 | |
| 2987 | tune_mullo (); |
| 2988 | tune_sqrlo (); |
| 2989 | printf("\n"); |
| 2990 | |
| 2991 | tune_dc_div (); |
| 2992 | tune_dc_bdiv (); |
| 2993 | |
| 2994 | printf("\n"); |
| 2995 | tune_invertappr (); |
| 2996 | tune_invert (); |
| 2997 | printf("\n"); |
| 2998 | |
| 2999 | tune_binvert (); |
| 3000 | tune_redc (); |
| 3001 | printf("\n"); |
| 3002 | |
| 3003 | tune_mu_div (); |
| 3004 | tune_mu_bdiv (); |
| 3005 | printf("\n"); |
| 3006 | |
| 3007 | tune_powm_sec (); |
| 3008 | printf("\n"); |
| 3009 | |
| 3010 | tune_get_str (); |
| 3011 | tune_set_str (); |
| 3012 | printf("\n"); |
| 3013 | |
| 3014 | tune_fac_ui (); |
| 3015 | printf("\n"); |
| 3016 | |
| 3017 | tune_matrix22_mul (); |
| 3018 | tune_hgcd2 (); |
| 3019 | tune_hgcd (); |
| 3020 | tune_hgcd_appr (); |
| 3021 | tune_hgcd_reduce(); |
| 3022 | tune_gcd_dc (); |
| 3023 | tune_gcdext_dc (); |
| 3024 | tune_jacobi_base (); |
| 3025 | printf("\n"); |
| 3026 | |
| 3027 | time (&end_time); |
| 3028 | printf ("/* Tuneup completed successfully, took %ld seconds */\n", |
| 3029 | (long) (end_time - start_time)); |
| 3030 | |
| 3031 | TMP_FREE; |
| 3032 | } |
| 3033 | |
| 3034 | |
| 3035 | int |
| 3036 | main (int argc, char *argv[]) |
| 3037 | { |
| 3038 | int opt; |
| 3039 | |
| 3040 | /* Unbuffered so if output is redirected to a file it isn't lost if the |
| 3041 | program is killed part way through. */ |
| 3042 | setbuf (stdout, NULL); |
| 3043 | setbuf (stderr, NULL); |
| 3044 | |
| 3045 | while ((opt = getopt(argc, argv, "f:o:p:t")) != EOF) |
| 3046 | { |
| 3047 | switch (opt) { |
| 3048 | case 'f': |
| 3049 | if (optarg[0] == 't') |
| 3050 | option_fft_trace = 2; |
| 3051 | else |
| 3052 | option_fft_max_size = atol (optarg); |
| 3053 | break; |
| 3054 | case 'o': |
| 3055 | speed_option_set (optarg); |
| 3056 | break; |
| 3057 | case 'p': |
| 3058 | speed_precision = atoi (optarg); |
| 3059 | break; |
| 3060 | case 't': |
| 3061 | option_trace++; |
| 3062 | break; |
| 3063 | case '?': |
| 3064 | exit(1); |
| 3065 | } |
| 3066 | } |
| 3067 | |
| 3068 | all (); |
| 3069 | exit (0); |
| 3070 | } |