Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | /* stbmv.f -- translated by f2c (version 20100827). |
| 2 | You must link the resulting object file with libf2c: |
| 3 | on Microsoft Windows system, link with libf2c.lib; |
| 4 | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| 5 | or, if you install libf2c.a in a standard place, with -lf2c -lm |
| 6 | -- in that order, at the end of the command line, as in |
| 7 | cc *.o -lf2c -lm |
| 8 | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| 9 | |
| 10 | http://www.netlib.org/f2c/libf2c.zip |
| 11 | */ |
| 12 | |
| 13 | #include "datatypes.h" |
| 14 | |
| 15 | /* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n, |
| 16 | integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen |
| 17 | uplo_len, ftnlen trans_len, ftnlen diag_len) |
| 18 | { |
| 19 | /* System generated locals */ |
| 20 | integer a_dim1, a_offset, i__1, i__2, i__3, i__4; |
| 21 | |
| 22 | /* Local variables */ |
| 23 | integer i__, j, l, ix, jx, kx, info; |
| 24 | real temp; |
| 25 | extern logical lsame_(char *, char *, ftnlen, ftnlen); |
| 26 | integer kplus1; |
| 27 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
| 28 | logical nounit; |
| 29 | |
| 30 | /* .. Scalar Arguments .. */ |
| 31 | /* .. */ |
| 32 | /* .. Array Arguments .. */ |
| 33 | /* .. */ |
| 34 | |
| 35 | /* Purpose */ |
| 36 | /* ======= */ |
| 37 | |
| 38 | /* STBMV performs one of the matrix-vector operations */ |
| 39 | |
| 40 | /* x := A*x, or x := A'*x, */ |
| 41 | |
| 42 | /* where x is an n element vector and A is an n by n unit, or non-unit, */ |
| 43 | /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ |
| 44 | |
| 45 | /* Arguments */ |
| 46 | /* ========== */ |
| 47 | |
| 48 | /* UPLO - CHARACTER*1. */ |
| 49 | /* On entry, UPLO specifies whether the matrix is an upper or */ |
| 50 | /* lower triangular matrix as follows: */ |
| 51 | |
| 52 | /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ |
| 53 | |
| 54 | /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ |
| 55 | |
| 56 | /* Unchanged on exit. */ |
| 57 | |
| 58 | /* TRANS - CHARACTER*1. */ |
| 59 | /* On entry, TRANS specifies the operation to be performed as */ |
| 60 | /* follows: */ |
| 61 | |
| 62 | /* TRANS = 'N' or 'n' x := A*x. */ |
| 63 | |
| 64 | /* TRANS = 'T' or 't' x := A'*x. */ |
| 65 | |
| 66 | /* TRANS = 'C' or 'c' x := A'*x. */ |
| 67 | |
| 68 | /* Unchanged on exit. */ |
| 69 | |
| 70 | /* DIAG - CHARACTER*1. */ |
| 71 | /* On entry, DIAG specifies whether or not A is unit */ |
| 72 | /* triangular as follows: */ |
| 73 | |
| 74 | /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ |
| 75 | |
| 76 | /* DIAG = 'N' or 'n' A is not assumed to be unit */ |
| 77 | /* triangular. */ |
| 78 | |
| 79 | /* Unchanged on exit. */ |
| 80 | |
| 81 | /* N - INTEGER. */ |
| 82 | /* On entry, N specifies the order of the matrix A. */ |
| 83 | /* N must be at least zero. */ |
| 84 | /* Unchanged on exit. */ |
| 85 | |
| 86 | /* K - INTEGER. */ |
| 87 | /* On entry with UPLO = 'U' or 'u', K specifies the number of */ |
| 88 | /* super-diagonals of the matrix A. */ |
| 89 | /* On entry with UPLO = 'L' or 'l', K specifies the number of */ |
| 90 | /* sub-diagonals of the matrix A. */ |
| 91 | /* K must satisfy 0 .le. K. */ |
| 92 | /* Unchanged on exit. */ |
| 93 | |
| 94 | /* A - REAL array of DIMENSION ( LDA, n ). */ |
| 95 | /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ |
| 96 | /* by n part of the array A must contain the upper triangular */ |
| 97 | /* band part of the matrix of coefficients, supplied column by */ |
| 98 | /* column, with the leading diagonal of the matrix in row */ |
| 99 | /* ( k + 1 ) of the array, the first super-diagonal starting at */ |
| 100 | /* position 2 in row k, and so on. The top left k by k triangle */ |
| 101 | /* of the array A is not referenced. */ |
| 102 | /* The following program segment will transfer an upper */ |
| 103 | /* triangular band matrix from conventional full matrix storage */ |
| 104 | /* to band storage: */ |
| 105 | |
| 106 | /* DO 20, J = 1, N */ |
| 107 | /* M = K + 1 - J */ |
| 108 | /* DO 10, I = MAX( 1, J - K ), J */ |
| 109 | /* A( M + I, J ) = matrix( I, J ) */ |
| 110 | /* 10 CONTINUE */ |
| 111 | /* 20 CONTINUE */ |
| 112 | |
| 113 | /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ |
| 114 | /* by n part of the array A must contain the lower triangular */ |
| 115 | /* band part of the matrix of coefficients, supplied column by */ |
| 116 | /* column, with the leading diagonal of the matrix in row 1 of */ |
| 117 | /* the array, the first sub-diagonal starting at position 1 in */ |
| 118 | /* row 2, and so on. The bottom right k by k triangle of the */ |
| 119 | /* array A is not referenced. */ |
| 120 | /* The following program segment will transfer a lower */ |
| 121 | /* triangular band matrix from conventional full matrix storage */ |
| 122 | /* to band storage: */ |
| 123 | |
| 124 | /* DO 20, J = 1, N */ |
| 125 | /* M = 1 - J */ |
| 126 | /* DO 10, I = J, MIN( N, J + K ) */ |
| 127 | /* A( M + I, J ) = matrix( I, J ) */ |
| 128 | /* 10 CONTINUE */ |
| 129 | /* 20 CONTINUE */ |
| 130 | |
| 131 | /* Note that when DIAG = 'U' or 'u' the elements of the array A */ |
| 132 | /* corresponding to the diagonal elements of the matrix are not */ |
| 133 | /* referenced, but are assumed to be unity. */ |
| 134 | /* Unchanged on exit. */ |
| 135 | |
| 136 | /* LDA - INTEGER. */ |
| 137 | /* On entry, LDA specifies the first dimension of A as declared */ |
| 138 | /* in the calling (sub) program. LDA must be at least */ |
| 139 | /* ( k + 1 ). */ |
| 140 | /* Unchanged on exit. */ |
| 141 | |
| 142 | /* X - REAL array of dimension at least */ |
| 143 | /* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
| 144 | /* Before entry, the incremented array X must contain the n */ |
| 145 | /* element vector x. On exit, X is overwritten with the */ |
| 146 | /* tranformed vector x. */ |
| 147 | |
| 148 | /* INCX - INTEGER. */ |
| 149 | /* On entry, INCX specifies the increment for the elements of */ |
| 150 | /* X. INCX must not be zero. */ |
| 151 | /* Unchanged on exit. */ |
| 152 | |
| 153 | /* Further Details */ |
| 154 | /* =============== */ |
| 155 | |
| 156 | /* Level 2 Blas routine. */ |
| 157 | |
| 158 | /* -- Written on 22-October-1986. */ |
| 159 | /* Jack Dongarra, Argonne National Lab. */ |
| 160 | /* Jeremy Du Croz, Nag Central Office. */ |
| 161 | /* Sven Hammarling, Nag Central Office. */ |
| 162 | /* Richard Hanson, Sandia National Labs. */ |
| 163 | |
| 164 | /* ===================================================================== */ |
| 165 | |
| 166 | /* .. Parameters .. */ |
| 167 | /* .. */ |
| 168 | /* .. Local Scalars .. */ |
| 169 | /* .. */ |
| 170 | /* .. External Functions .. */ |
| 171 | /* .. */ |
| 172 | /* .. External Subroutines .. */ |
| 173 | /* .. */ |
| 174 | /* .. Intrinsic Functions .. */ |
| 175 | /* .. */ |
| 176 | |
| 177 | /* Test the input parameters. */ |
| 178 | |
| 179 | /* Parameter adjustments */ |
| 180 | a_dim1 = *lda; |
| 181 | a_offset = 1 + a_dim1; |
| 182 | a -= a_offset; |
| 183 | --x; |
| 184 | |
| 185 | /* Function Body */ |
| 186 | info = 0; |
| 187 | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( |
| 188 | ftnlen)1, (ftnlen)1)) { |
| 189 | info = 1; |
| 190 | } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, |
| 191 | "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, ( |
| 192 | ftnlen)1)) { |
| 193 | info = 2; |
| 194 | } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, |
| 195 | "N", (ftnlen)1, (ftnlen)1)) { |
| 196 | info = 3; |
| 197 | } else if (*n < 0) { |
| 198 | info = 4; |
| 199 | } else if (*k < 0) { |
| 200 | info = 5; |
| 201 | } else if (*lda < *k + 1) { |
| 202 | info = 7; |
| 203 | } else if (*incx == 0) { |
| 204 | info = 9; |
| 205 | } |
| 206 | if (info != 0) { |
| 207 | xerbla_("STBMV ", &info, (ftnlen)6); |
| 208 | return 0; |
| 209 | } |
| 210 | |
| 211 | /* Quick return if possible. */ |
| 212 | |
| 213 | if (*n == 0) { |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1); |
| 218 | |
| 219 | /* Set up the start point in X if the increment is not unity. This */ |
| 220 | /* will be ( N - 1 )*INCX too small for descending loops. */ |
| 221 | |
| 222 | if (*incx <= 0) { |
| 223 | kx = 1 - (*n - 1) * *incx; |
| 224 | } else if (*incx != 1) { |
| 225 | kx = 1; |
| 226 | } |
| 227 | |
| 228 | /* Start the operations. In this version the elements of A are */ |
| 229 | /* accessed sequentially with one pass through A. */ |
| 230 | |
| 231 | if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) { |
| 232 | |
| 233 | /* Form x := A*x. */ |
| 234 | |
| 235 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 236 | kplus1 = *k + 1; |
| 237 | if (*incx == 1) { |
| 238 | i__1 = *n; |
| 239 | for (j = 1; j <= i__1; ++j) { |
| 240 | if (x[j] != 0.f) { |
| 241 | temp = x[j]; |
| 242 | l = kplus1 - j; |
| 243 | /* Computing MAX */ |
| 244 | i__2 = 1, i__3 = j - *k; |
| 245 | i__4 = j - 1; |
| 246 | for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { |
| 247 | x[i__] += temp * a[l + i__ + j * a_dim1]; |
| 248 | /* L10: */ |
| 249 | } |
| 250 | if (nounit) { |
| 251 | x[j] *= a[kplus1 + j * a_dim1]; |
| 252 | } |
| 253 | } |
| 254 | /* L20: */ |
| 255 | } |
| 256 | } else { |
| 257 | jx = kx; |
| 258 | i__1 = *n; |
| 259 | for (j = 1; j <= i__1; ++j) { |
| 260 | if (x[jx] != 0.f) { |
| 261 | temp = x[jx]; |
| 262 | ix = kx; |
| 263 | l = kplus1 - j; |
| 264 | /* Computing MAX */ |
| 265 | i__4 = 1, i__2 = j - *k; |
| 266 | i__3 = j - 1; |
| 267 | for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { |
| 268 | x[ix] += temp * a[l + i__ + j * a_dim1]; |
| 269 | ix += *incx; |
| 270 | /* L30: */ |
| 271 | } |
| 272 | if (nounit) { |
| 273 | x[jx] *= a[kplus1 + j * a_dim1]; |
| 274 | } |
| 275 | } |
| 276 | jx += *incx; |
| 277 | if (j > *k) { |
| 278 | kx += *incx; |
| 279 | } |
| 280 | /* L40: */ |
| 281 | } |
| 282 | } |
| 283 | } else { |
| 284 | if (*incx == 1) { |
| 285 | for (j = *n; j >= 1; --j) { |
| 286 | if (x[j] != 0.f) { |
| 287 | temp = x[j]; |
| 288 | l = 1 - j; |
| 289 | /* Computing MIN */ |
| 290 | i__1 = *n, i__3 = j + *k; |
| 291 | i__4 = j + 1; |
| 292 | for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { |
| 293 | x[i__] += temp * a[l + i__ + j * a_dim1]; |
| 294 | /* L50: */ |
| 295 | } |
| 296 | if (nounit) { |
| 297 | x[j] *= a[j * a_dim1 + 1]; |
| 298 | } |
| 299 | } |
| 300 | /* L60: */ |
| 301 | } |
| 302 | } else { |
| 303 | kx += (*n - 1) * *incx; |
| 304 | jx = kx; |
| 305 | for (j = *n; j >= 1; --j) { |
| 306 | if (x[jx] != 0.f) { |
| 307 | temp = x[jx]; |
| 308 | ix = kx; |
| 309 | l = 1 - j; |
| 310 | /* Computing MIN */ |
| 311 | i__4 = *n, i__1 = j + *k; |
| 312 | i__3 = j + 1; |
| 313 | for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { |
| 314 | x[ix] += temp * a[l + i__ + j * a_dim1]; |
| 315 | ix -= *incx; |
| 316 | /* L70: */ |
| 317 | } |
| 318 | if (nounit) { |
| 319 | x[jx] *= a[j * a_dim1 + 1]; |
| 320 | } |
| 321 | } |
| 322 | jx -= *incx; |
| 323 | if (*n - j >= *k) { |
| 324 | kx -= *incx; |
| 325 | } |
| 326 | /* L80: */ |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | } else { |
| 331 | |
| 332 | /* Form x := A'*x. */ |
| 333 | |
| 334 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 335 | kplus1 = *k + 1; |
| 336 | if (*incx == 1) { |
| 337 | for (j = *n; j >= 1; --j) { |
| 338 | temp = x[j]; |
| 339 | l = kplus1 - j; |
| 340 | if (nounit) { |
| 341 | temp *= a[kplus1 + j * a_dim1]; |
| 342 | } |
| 343 | /* Computing MAX */ |
| 344 | i__4 = 1, i__1 = j - *k; |
| 345 | i__3 = max(i__4,i__1); |
| 346 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 347 | temp += a[l + i__ + j * a_dim1] * x[i__]; |
| 348 | /* L90: */ |
| 349 | } |
| 350 | x[j] = temp; |
| 351 | /* L100: */ |
| 352 | } |
| 353 | } else { |
| 354 | kx += (*n - 1) * *incx; |
| 355 | jx = kx; |
| 356 | for (j = *n; j >= 1; --j) { |
| 357 | temp = x[jx]; |
| 358 | kx -= *incx; |
| 359 | ix = kx; |
| 360 | l = kplus1 - j; |
| 361 | if (nounit) { |
| 362 | temp *= a[kplus1 + j * a_dim1]; |
| 363 | } |
| 364 | /* Computing MAX */ |
| 365 | i__4 = 1, i__1 = j - *k; |
| 366 | i__3 = max(i__4,i__1); |
| 367 | for (i__ = j - 1; i__ >= i__3; --i__) { |
| 368 | temp += a[l + i__ + j * a_dim1] * x[ix]; |
| 369 | ix -= *incx; |
| 370 | /* L110: */ |
| 371 | } |
| 372 | x[jx] = temp; |
| 373 | jx -= *incx; |
| 374 | /* L120: */ |
| 375 | } |
| 376 | } |
| 377 | } else { |
| 378 | if (*incx == 1) { |
| 379 | i__3 = *n; |
| 380 | for (j = 1; j <= i__3; ++j) { |
| 381 | temp = x[j]; |
| 382 | l = 1 - j; |
| 383 | if (nounit) { |
| 384 | temp *= a[j * a_dim1 + 1]; |
| 385 | } |
| 386 | /* Computing MIN */ |
| 387 | i__1 = *n, i__2 = j + *k; |
| 388 | i__4 = min(i__1,i__2); |
| 389 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 390 | temp += a[l + i__ + j * a_dim1] * x[i__]; |
| 391 | /* L130: */ |
| 392 | } |
| 393 | x[j] = temp; |
| 394 | /* L140: */ |
| 395 | } |
| 396 | } else { |
| 397 | jx = kx; |
| 398 | i__3 = *n; |
| 399 | for (j = 1; j <= i__3; ++j) { |
| 400 | temp = x[jx]; |
| 401 | kx += *incx; |
| 402 | ix = kx; |
| 403 | l = 1 - j; |
| 404 | if (nounit) { |
| 405 | temp *= a[j * a_dim1 + 1]; |
| 406 | } |
| 407 | /* Computing MIN */ |
| 408 | i__1 = *n, i__2 = j + *k; |
| 409 | i__4 = min(i__1,i__2); |
| 410 | for (i__ = j + 1; i__ <= i__4; ++i__) { |
| 411 | temp += a[l + i__ + j * a_dim1] * x[ix]; |
| 412 | ix += *incx; |
| 413 | /* L150: */ |
| 414 | } |
| 415 | x[jx] = temp; |
| 416 | jx += *incx; |
| 417 | /* L160: */ |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | return 0; |
| 424 | |
| 425 | /* End of STBMV . */ |
| 426 | |
| 427 | } /* stbmv_ */ |
| 428 | |