blob: e0420955230e30c943fab0b2290ed0385271c311 [file] [log] [blame]
Austin Schuh8c794d52019-03-03 21:17:37 -08001/*
2 #
3 # File : dtmri_view3d.cpp
4 # ( C++ source file )
5 #
6 # Description : A viewer of Diffusion-Tensor MRI volumes (medical imaging).
7 # This file is a part of the CImg Library project.
8 # ( http://cimg.eu )
9 #
10 # Copyright : David Tschumperle
11 # ( http://tschumperle.users.greyc.fr/ )
12 #
13 # License : CeCILL v2.0
14 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
15 #
16 # This software is governed by the CeCILL license under French law and
17 # abiding by the rules of distribution of free software. You can use,
18 # modify and/ or redistribute the software under the terms of the CeCILL
19 # license as circulated by CEA, CNRS and INRIA at the following URL
20 # "http://www.cecill.info".
21 #
22 # As a counterpart to the access to the source code and rights to copy,
23 # modify and redistribute granted by the license, users are provided only
24 # with a limited warranty and the software's author, the holder of the
25 # economic rights, and the successive licensors have only limited
26 # liability.
27 #
28 # In this respect, the user's attention is drawn to the risks associated
29 # with loading, using, modifying and/or developing or reproducing the
30 # software by the user in light of its specific status of free software,
31 # that may mean that it is complicated to manipulate, and that also
32 # therefore means that it is reserved for developers and experienced
33 # professionals having in-depth computer knowledge. Users are therefore
34 # encouraged to load and test the software's suitability as regards their
35 # requirements in conditions enabling the security of their systems and/or
36 # data to be ensured and, more generally, to use and operate it in the
37 # same conditions as regards security.
38 #
39 # The fact that you are presently reading this means that you have had
40 # knowledge of the CeCILL license and that you accept its terms.
41 #
42*/
43
44#include "CImg.h"
45using namespace cimg_library;
46#undef min
47#undef max
48
49// Compute fractional anisotropy (FA) of a tensor
50//-------------------------------------------
51template<typename T> float get_FA(const T& val1, const T& val2, const T& val3) {
52 const float
53 l1 = val1>0?val1:0, l2 = val2>0?val2:0, l3 = val3>0?val3:0,
54 lm = (l1 + l2 + l3)/3,
55 tr2 = 2*(l1*l1 + l2*l2 + l3*l3),
56 ll1 = l1 - lm,
57 ll2 = l2 - lm,
58 ll3 = l3 - lm;
59 if (tr2>0) return (float)std::sqrt(3*(ll1*ll1 + ll2*ll2 + ll3*ll3)/tr2);
60 return 0;
61}
62
63// Insert an ellipsoid in a CImg 3D scene
64//----------------------------------------
65template<typename t, typename tp, typename tf, typename tc>
66void insert_ellipsoid(const CImg<t>& tensor, const float X, const float Y, const float Z, const float tfact,
67 const float vx, const float vy, const float vz,
68 CImgList<tp>& points, CImgList<tf>& faces, CImgList<tc>& colors,
69 const unsigned int res1=20, const unsigned int res2=20) {
70
71 // Compute eigen elements
72 float l1 = tensor[0], l2 = tensor[1], l3 = tensor[2], fa = get_FA(l1,l2,l3);
73 CImg<> vec = CImg<>::matrix(tensor[3],tensor[6],tensor[9],
74 tensor[4],tensor[7],tensor[10],
75 tensor[5],tensor[8],tensor[11]);
76 const int
77 r = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[3]),255.0f),
78 g = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[4]),255.0f),
79 b = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[5]),255.0f);
80
81 // Define mesh points
82 const unsigned int N0 = points.size();
83 for (unsigned int v = 1; v<res2; v++)
84 for (unsigned int u = 0; u<res1; u++) {
85 const float
86 alpha = (float)(u*2*cimg::PI/res1),
87 beta = (float)(-cimg::PI/2 + v*cimg::PI/res2),
88 x = (float)(tfact*l1*std::cos(beta)*std::cos(alpha)),
89 y = (float)(tfact*l2*std::cos(beta)*std::sin(alpha)),
90 z = (float)(tfact*l3*std::sin(beta));
91 points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(x,y,z)).mul(CImg<tp>::vector(vx,vy,vz)));
92 }
93 const unsigned int N1 = points.size();
94 points.insert((CImg<tp>::vector(X,Y,Z) - vec*CImg<tp>::vector(0,0,l3*tfact)));
95 points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(0,0,l3*tfact)));
96 points[points.size() - 2](0)*=vx; points[points.size() - 2](1)*=vy; points[points.size() - 2](2)*=vz;
97 points[points.size() - 1](0)*=vx; points[points.size() - 1](1)*=vy; points[points.size() - 1](2)*=vz;
98
99 // Define mesh triangles
100 for (unsigned int vv = 0; vv<res2 - 2; ++vv)
101 for (unsigned int uu = 0; uu<res1; ++uu) {
102 const int nv = (vv + 1)%(res2 - 1), nu = (uu + 1)%res1;
103 faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + uu,N0 + res1*vv + uu));
104 faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + nu,N0 + res1*nv + uu));
105 colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
106 colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
107 }
108 for (unsigned int uu = 0; uu<res1; ++uu) {
109 const int nu = (uu + 1)%res1;
110 faces.insert(CImg<tf>::vector(N0 + nu,N0 + uu,N1));
111 faces.insert(CImg<tf>::vector(N0 + res1*(res2 - 2) + nu, N1 + 1,N0 + res1*(res2 - 2) + uu));
112 colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
113 colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
114 }
115}
116
117// Insert a fiber in a CImg 3D scene
118//-----------------------------------
119template<typename T,typename te,typename tp, typename tf, typename tc>
120void insert_fiber(const CImg<T>& fiber, const CImg<te>& eigen, const CImg<tc>& palette,
121 const int xm, const int ym, const int zm,
122 const float vx, const float vy, const float vz,
123 CImgList<tp>& points, CImgList<tf>& primitives, CImgList<tc>& colors) {
124 const int N0 = points.size();
125 float x0 = fiber(0,0), y0 = fiber(0,1), z0 = fiber(0,2), fa0 = eigen.linear_atXYZ(x0,y0,z0,12);
126 points.insert(CImg<>::vector(vx*(x0 -xm),vy*(y0 - ym),vz*(z0 - zm)));
127 for (int l = 1; l<fiber.width(); ++l) {
128 float x1 = fiber(l,0), y1 = fiber(l,1), z1 = fiber(l,2), fa1 = eigen.linear_atXYZ(x1,y1,z1,12);
129 points.insert(CImg<tp>::vector(vx*(x1 - xm),vy*(y1 - ym),vz*(z1 - zm)));
130 primitives.insert(CImg<tf>::vector(N0 + l - 1,N0 + l));
131 const unsigned char
132 icol = (unsigned char)(fa0*255),
133 r = palette(icol,0),
134 g = palette(icol,1),
135 b = palette(icol,2);
136 colors.insert(CImg<unsigned char>::vector(r,g,b));
137 x0 = x1; y0 = y1; z0 = z1; fa0 = fa1;
138 }
139}
140
141// Compute fiber tracking using 4th-order Runge Kutta integration
142//-----------------------------------------------------------------
143template<typename T>
144CImg<> get_fibertrack(CImg<T>& eigen,
145 const int X0, const int Y0, const int Z0, const float lmax=100,
146 const float dl=0.1f, const float FAmin=0.7f, const float cmin=0.5f) {
147#define align_eigen(i,j,k) \
148 { T &u = eigen(i,j,k,3), &v = eigen(i,j,k,4), &w = eigen(i,j,k,5); \
149 if (u*cu + v*cv + w*cw<0) { u=-u; v=-v; w=-w; }}
150
151 CImgList<> resf;
152
153 // Forward tracking
154 float normU = 0, normpU = 0, l = 0, X = (float)X0, Y = (float)Y0, Z = (float)Z0;
155 T
156 pu = eigen(X0,Y0,Z0,3),
157 pv = eigen(X0,Y0,Z0,4),
158 pw = eigen(X0,Y0,Z0,5);
159 normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
160 bool stopflag = false;
161
162 while (!stopflag) {
163 if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
164 eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
165 else {
166 resf.insert(CImg<>::vector(X,Y,Z));
167
168 const int
169 cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
170 cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
171 cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
172 const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);
173
174 align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
175 align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
176 align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
177 align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
178 align_eigen(px,cy,cz); align_eigen(nx,cy,cz);
179 align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
180 align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
181 align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
182 align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);
183
184 const T
185 u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
186 v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
187 w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
188 u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
189 v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
190 w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
191 u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
192 v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
193 w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
194 u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
195 v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
196 w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
197 T
198 u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
199 v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
200 w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
201 if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
202 normU = (float)std::sqrt(u*u + v*v + w*w);
203 const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
204 if (scal<cmin) stopflag=true;
205
206 X+=(pu=u); Y+=(pv=v); Z+=(pw=w);
207 normpU = normU;
208 l+=dl;
209 }
210 }
211
212 // Backward tracking
213 l = dl; X = (float)X0; Y = (float)Y0; Z = (float)Z0;
214 pu = eigen(X0,Y0,Z0,3);
215 pv = eigen(X0,Y0,Z0,4);
216 pw = eigen(X0,Y0,Z0,5);
217 normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
218 stopflag = false;
219
220 while (!stopflag) {
221 if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
222 eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
223 else {
224
225 const int
226 cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
227 cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
228 cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
229 const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);
230
231 align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
232 align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
233 align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
234 align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
235 align_eigen(px,cy,cz); align_eigen(nx,cy,cz);
236 align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
237 align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
238 align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
239 align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);
240
241 const T
242 u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
243 v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
244 w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
245 u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
246 v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
247 w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
248 u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
249 v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
250 w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
251 u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
252 v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
253 w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
254 T
255 u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
256 v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
257 w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
258 if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
259 normU = (float)std::sqrt(u*u + v*v + w*w);
260 const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
261 if (scal<cmin) stopflag=true;
262
263 X-=(pu=u); Y-=(pv=v); Z-=(pw=w);
264 normpU=normU;
265 l+=dl;
266
267 resf.insert(CImg<>::vector(X,Y,Z),0);
268 }
269 }
270
271 return resf>'x';
272}
273
274// Main procedure
275//----------------
276int main(int argc,char **argv) {
277
278 // Read and init data
279 //--------------------
280 cimg_usage("A viewer of Diffusion-Tensor MRI volumes.");
281 const char *file_i = cimg_option("-i",(char*)0,"Input : Filename of tensor field (volume wxhxdx6)");
282 const char* vsize = cimg_option("-vsize","1x1x1","Input : Voxel aspect");
283 const bool normalize = cimg_option("-normalize",true,"Input : Enable tensor normalization");
284 const char *file_f = cimg_option("-f",(char*)0,"Input : Input fibers\n");
285 const float dl = cimg_option("-dl",0.5f,"Fiber computation : Integration step");
286 const float famin = cimg_option("-famin",0.3f,"Fiber computation : Fractional Anisotropy threshold");
287 const float cmin = cimg_option("-cmin",0.2f,"Fiber computation : Curvature threshold");
288 const float lmin = cimg_option("-lmin",10.0f,"Fiber computation : Minimum length\n");
289 const float lmax = cimg_option("-lmax",1000.0f,"Fiber computation : Maximum length\n");
290 const float tfact = cimg_option("-tfact",1.2f,"Display : Tensor size factor");
291 const char *bgcolor = cimg_option("-bg","0,0,0","Display : Background color");
292 unsigned int bgr = 0, bgg = 0, bgb = 0;
293 std::sscanf(bgcolor,"%u%*c%u%*c%u",&bgr,&bgg,&bgb);
294
295 CImg<> tensors;
296 if (file_i) {
297 std::fprintf(stderr,"\n- Loading tensors '%s'",cimg::basename(file_i));
298 tensors.load(file_i);
299 } else {
300 // Create a synthetic tensor field here
301 std::fprintf(stderr,"\n- No input files : Creating a synthetic tensor field");
302 tensors.assign(32,32,32,6);
303 cimg_forXYZ(tensors,x,y,z) {
304 const float
305 u = x - tensors.width()/2.0f,
306 v = y - tensors.height()/2.0f,
307 w = z - tensors.depth()/2.0f,
308 norm = (float)std::sqrt(1e-5f + u*u + v*v + w*w),
309 nu = u/norm, nv = v/norm, nw = w/norm;
310 const CImg<>
311 dir1 = CImg<>::vector(nu,nv,nw),
312 dir2 = CImg<>::vector(-nv,nu,nw),
313 dir3 = CImg<>::vector(nw*(nv - nu),-nw*(nu + nv),nu*nu + nv*nv);
314 tensors.set_tensor_at(2.0*dir1*dir1.get_transpose() +
315 1.0*dir2*dir2.get_transpose() +
316 0.7*dir3*dir3.get_transpose(),
317 x,y,z);
318 }
319 }
320 float voxw = 1, voxh = 1, voxd = 1;
321 std::sscanf(vsize,"%f%*c%f%*c%f",&voxw,&voxh,&voxd);
322
323 std::fprintf(stderr," : %ux%ux%u image, voxsize=%gx%gx%g.",
324 tensors.width(),tensors.height(),tensors.depth(),
325 voxw,voxh,voxd);
326
327 CImgList<> fibers;
328 if (file_f) {
329 std::fprintf(stderr,"\n- Loading fibers '%s'.",cimg::basename(file_f));
330 fibers.load(file_f);
331 }
332
333 const CImg<unsigned char> fiber_palette =
334 CImg<>(2,1,1,3).fill(200,255,0,255,0,200).RGBtoHSV().resize(256,1,1,3,3).HSVtoRGB();
335
336 // Compute eigen elements
337 //------------------------
338 std::fprintf(stderr,"\n- Compute eigen elements.");
339 CImg<unsigned char> coloredFA(tensors.width(),tensors.height(),tensors.depth(),3);
340 CImg<> eigen(tensors.width(),tensors.height(),tensors.depth(),13);
341 CImg<> val,vec;
342 float eigmax = 0;
343 cimg_forXYZ(tensors,x,y,z) {
344 tensors.get_tensor_at(x,y,z).symmetric_eigen(val,vec);
345 eigen(x,y,z,0) = val[0]; eigen(x,y,z,1) = val[1]; eigen(x,y,z,2) = val[2];
346 if (val[0]<0) val[0] = 0;
347 if (val[1]<0) val[1] = 0;
348 if (val[2]<0) val[2] = 0;
349 if (val[0]>eigmax) eigmax = val[0];
350 eigen(x,y,z,3) = vec(0,0); eigen(x,y,z,4) = vec(0,1); eigen(x,y,z,5) = vec(0,2);
351 eigen(x,y,z,6) = vec(1,0); eigen(x,y,z,7) = vec(1,1); eigen(x,y,z,8) = vec(1,2);
352 eigen(x,y,z,9) = vec(2,0); eigen(x,y,z,10) = vec(2,1); eigen(x,y,z,11) = vec(2,2);
353 const float fa = get_FA(val[0],val[1],val[2]);
354 eigen(x,y,z,12) = fa;
355 const int
356 r = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,0))),
357 g = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,1))),
358 b = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,2)));
359 coloredFA(x,y,z,0) = (unsigned char)r;
360 coloredFA(x,y,z,1) = (unsigned char)g;
361 coloredFA(x,y,z,2) = (unsigned char)b;
362 }
363 tensors.assign();
364 std::fprintf(stderr,"\n- Maximum diffusivity = %g, Maximum FA = %g",eigmax,eigen.get_shared_channel(12).max());
365 if (normalize) {
366 std::fprintf(stderr,"\n- Normalize tensors.");
367 eigen.get_shared_channels(0,2)/=eigmax;
368 }
369
370 // Init display and begin user interaction
371 //-----------------------------------------
372 std::fprintf(stderr,"\n- Open user window.");
373 CImgDisplay disp(256,256,"DTMRI Viewer",0);
374 CImgDisplay disp3d(800,600,"3D Local View",0,false,true);
375 unsigned int XYZ[3];
376 XYZ[0] = eigen.width()/2; XYZ[1] = eigen.height()/2; XYZ[2] = eigen.depth()/2;
377
378 while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
379 const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
380 if (!disp.is_closed()) switch (disp.key()) {
381
382 // Open 3D visualization window
383 //-----------------------------
384 case cimg::keyA :
385 case 0 : {
386 const unsigned char white[] = { 255 };
387 disp3d.display(CImg<unsigned char>(disp3d.width(),disp3d.height(),1,1,0).
388 draw_text(10,10,"Please wait...",white)).show();
389 int xm,ym,zm,xM,yM,zM;
390 if (!disp.key()) { xm = s[0]; ym = s[1]; zm = s[2]; xM = s[3]; yM = s[4]; zM = s[5]; }
391 else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
392 const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
393 CImgList<> points;
394 CImgList<unsigned int> primitives;
395 CImgList<unsigned char> colors;
396
397 // Add ellipsoids to the 3D scene
398 int X = img.width()/2, Y = img.height()/2, Z = img.depth()/2;
399 cimg_forXY(img,x,y)
400 insert_ellipsoid(img.get_vector_at(x,y,Z),(float)x,(float)y,(float)Z,
401 tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
402 cimg_forXZ(img,x,z)
403 insert_ellipsoid(img.get_vector_at(x,Y,z),(float)x,(float)Y,(float)z,
404 tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
405 cimg_forYZ(img,y,z)
406 insert_ellipsoid(img.get_vector_at(X,y,z),(float)X,(float)y,(float)z,
407 tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
408
409 // Add computed fibers to the 3D scene
410 const CImg<> veigen = eigen.get_crop(xm,ym,zm,xM,yM,zM);
411 cimglist_for(fibers,l) {
412 const CImg<>& fiber = fibers[l];
413 if (fiber.width()) insert_fiber(fiber,eigen,fiber_palette,
414 xm,ym,zm,voxw,voxh,voxd,
415 points,primitives,colors);
416 }
417
418 // Display 3D object
419 CImg<unsigned char> visu = CImg<unsigned char>(3,disp3d.width(),disp3d.height(),1,0).
420 fill((unsigned char)bgr,(unsigned char)bgg,(unsigned char)bgb).
421 permute_axes("yzcx");
422 bool stopflag = false;
423 while (!disp3d.is_closed() && !stopflag) {
424 const CImg<> pts = points>'x';
425 visu.display_object3d(disp3d,pts,primitives,colors,true,4,-1,false,800,0.05f,1.0f);
426 disp3d.close();
427 switch (disp3d.key()) {
428 case cimg::keyM : { // Create movie
429 std::fprintf(stderr,"\n- Movie mode.\n");
430 const unsigned int N = 256;
431 CImg<> cpts(pts);
432 const CImg<> x = pts.get_shared_row(0), y = pts.get_shared_row(1), z = pts.get_shared_row(2);
433 float
434 xm, xM = x.max_min(xm),
435 ym, yM = y.max_min(ym),
436 zm, zM = z.max_min(zm),
437 ratio = 2.0f*std::min(visu.width(),visu.height())/(3.0f*cimg::max(xM - xm,yM - ym,zM - zm)),
438 dx = 0.5f*(xM + xm), dy = 0.5f*(yM + ym), dz = 0.5f*(zM +zm);
439 cimg_forX(pts,l) {
440 cpts(l,0) = (pts(l,0) - dx)*ratio;
441 cpts(l,1) = (pts(l,1) - dy)*ratio;
442 cpts(l,2) = (pts(l,2) - dz)*ratio;
443 }
444
445 for (unsigned int i=0; i<N; i++) {
446 std::fprintf(stderr,"\r- Frame %u/%u.",i,N);
447 const float alpha = (float)(i*360/N);
448 const CImg<> rpts = CImg<>::rotation_matrix(0,1,0,alpha)*CImg<>::rotation_matrix(1,0,0,75)*cpts;
449 visu.fill(0).draw_object3d(visu.width()/2.0f,visu.height()/2.0f,-500.0f,rpts,primitives,colors,
450 4,false,800.0f,visu.width()/2.0f,visu.height()/2.0f,-800.0f,0.05f,1.0f).
451 display(disp3d);
452 visu.save("frame.png",i);
453 }
454 visu.fill(0);
455 } break;
456 default: stopflag = true;
457 }
458 }
459 if (disp3d.is_fullscreen()) disp3d.toggle_fullscreen().resize(800,600).close();
460 } break;
461
462 // Compute region statistics
463 //---------------------------
464 case cimg::keyR : {
465 std::fprintf(stderr,"\n- Statistics computation. Select region."); std::fflush(stderr);
466 const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
467 int xm, ym, zm, xM, yM, zM;
468 if (!disp.key()) { xm = s[0]; ym = s[1]; zm = s[2]; xM = s[3]; yM = s[4]; zM = s[5]; }
469 else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
470 const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
471 std::fprintf(stderr,"\n- Mean diffusivity = %g, Mean FA = %g\n",
472 eigen.get_shared_channel(0).mean(),
473 eigen.get_shared_channel(12).mean());
474 } break;
475
476 // Track fiber bundle (single region)
477 //----------------------------------
478 case cimg::keyF : {
479 std::fprintf(stderr,"\n- Tracking mode (single region). Select starting region.\n"); std::fflush(stderr);
480 const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
481 const unsigned int N = fibers.size();
482 for (int z=s[2]; z<=s[5]; z++)
483 for (int y=s[1]; y<=s[4]; y++)
484 for (int x=s[0]; x<=s[3]; x++) {
485 const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
486 if (fiber.width()>lmin) {
487 std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
488 fibers.insert(fiber);
489 }
490 }
491 std::fprintf(stderr,"\n- %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
492 } break;
493
494 // Track fiber bundle (double regions)
495 //------------------------------------
496 case cimg::keyG : {
497 std::fprintf(stderr,"\n- Tracking mode (double region). Select starting region."); std::fflush(stderr);
498 const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
499 std::fprintf(stderr," Select ending region."); std::fflush(stderr);
500 const CImg<int> ns = coloredFA.get_select(disp,2,XYZ);
501 const unsigned int N = fibers.size();
502
503 // Track from start to end
504 for (int z = s[2]; z<=s[5]; ++z)
505 for (int y = s[1]; y<=s[4]; ++y)
506 for (int x = s[0]; x<=s[3]; ++x) {
507 const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
508 if (fiber.width()>lmin) {
509 bool valid_fiber = false;
510 cimg_forX(fiber,k) {
511 const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
512 if (fx>=ns[0] && fx<=ns[3] &&
513 fy>=ns[1] && fy<=ns[4] &&
514 fz>=ns[2] && fz<=ns[5]) valid_fiber = true;
515 }
516 if (valid_fiber) fibers.insert(fiber);
517 }
518 }
519
520 // Track from end to start
521 for (int z = ns[2]; z<=ns[5]; ++z)
522 for (int y = ns[1]; y<=ns[4]; ++y)
523 for (int x = ns[0]; x<=ns[3]; ++x) {
524 const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
525 if (fiber.width()>lmin) {
526 bool valid_fiber = false;
527 cimg_forX(fiber,k) {
528 const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
529 if (fx>=s[0] && fx<=s[3] &&
530 fy>=s[1] && fy<=s[4] &&
531 fz>=s[2] && fz<=s[5]) valid_fiber = true;
532 }
533 if (valid_fiber) {
534 std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
535 fibers.insert(fiber);
536 }
537 }
538 }
539
540 std::fprintf(stderr," %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
541 } break;
542
543 // Clear fiber bundle
544 //-------------------
545 case cimg::keyC : {
546 std::fprintf(stderr,"\n- Fibers removed.");
547 fibers.assign();
548 } break;
549
550 // Save fibers
551 //-------------
552 case cimg::keyS : {
553 fibers.save("fibers.cimg");
554 std::fprintf(stderr,"\n- Fibers saved.");
555 } break;
556
557 }
558 }
559
560 std::fprintf(stderr,"\n- Exit.\n\n\n");
561 return 0;
562}