blob: 6722640d3225c2ca86098d7ccc6d8716bdc702cf [file] [log] [blame]
James Kuszmaul998d3032018-09-08 15:41:41 -07001#include "motors/core/kinetis.h"
2
3#include <inttypes.h>
4#include <stdio.h>
5
6#include <atomic>
7
8#include "motors/core/time.h"
9#include "motors/fet12/current_equalization.h"
10#include "motors/fet12/motor_controls.h"
11#include "motors/motor.h"
12#include "motors/peripheral/adc.h"
James Kuszmaul7c8aad62018-09-08 18:16:18 -070013#include "motors/peripheral/adc_dma.h"
James Kuszmaul998d3032018-09-08 15:41:41 -070014#include "motors/peripheral/can.h"
Brian Silverman4787a6e2018-10-06 16:00:54 -070015#include "motors/print/print.h"
James Kuszmaul998d3032018-09-08 15:41:41 -070016#include "motors/util.h"
James Kuszmaul998d3032018-09-08 15:41:41 -070017
18namespace frc971 {
19namespace motors {
20namespace {
21
22constexpr double Kv = 22000.0 * 2.0 * M_PI / 60.0 / 30.0 * 3.6;
23constexpr double kVcc = 31.5;
24constexpr double kIcc = 125.0;
25constexpr double kR = 0.0084;
26
27struct Fet12AdcReadings {
James Kuszmaul7c8aad62018-09-08 18:16:18 -070028 // Averages of the pairs of ADC DMA channels corresponding with each channel
29 // pair. Individual values in motor_currents correspond to current sensor
30 // values, rather than the actual currents themselves (and so they still need
31 // to be decoupled).
James Kuszmaul998d3032018-09-08 15:41:41 -070032 int16_t motor_currents[3];
33 int16_t throttle, fuse_voltage;
34};
35
36void AdcInitFet12() {
37 AdcInitCommon(AdcChannels::kB, AdcChannels::kA);
38
39 // M_CH0V ADC0_SE5b
40 PORTD_PCR1 = PORT_PCR_MUX(0);
41
42 // M_CH1V ADC0_SE7b
43 PORTD_PCR6 = PORT_PCR_MUX(0);
44
45 // M_CH2V ADC0_SE14
46 PORTC_PCR0 = PORT_PCR_MUX(0);
47
48 // M_CH0F ADC1_SE5a
49 PORTE_PCR1 = PORT_PCR_MUX(0);
50
51 // M_CH1F ADC1_SE6a
52 PORTE_PCR2 = PORT_PCR_MUX(0);
53
54 // M_CH2F ADC1_SE7a
55 PORTE_PCR3 = PORT_PCR_MUX(0);
56
57 // SENSE0 ADC0_SE23
58 // dedicated
59
60 // SENSE1 ADC0_SE13
61 PORTB_PCR3 = PORT_PCR_MUX(0);
62}
63
James Kuszmaul998d3032018-09-08 15:41:41 -070064::std::atomic<Motor *> global_motor{nullptr};
James Kuszmaul7c8aad62018-09-08 18:16:18 -070065::std::atomic<teensy::AdcDmaSampler *> global_adc_dma{nullptr};
66
James Kuszmaul998d3032018-09-08 15:41:41 -070067extern "C" {
68
James Kuszmaul998d3032018-09-08 15:41:41 -070069void *__stack_chk_guard = (void *)0x67111971;
70void __stack_chk_fail(void) {
71 while (true) {
72 GPIOC_PSOR = (1 << 5);
73 printf("Stack corruption detected\n");
74 delay(1000);
75 GPIOC_PCOR = (1 << 5);
76 delay(1000);
77 }
78}
79
James Kuszmaul998d3032018-09-08 15:41:41 -070080extern char *__brkval;
81extern uint32_t __bss_ram_start__[];
82extern uint32_t __heap_start__[];
83extern uint32_t __stack_end__[];
84
85struct DebugBuffer {
86 struct Sample {
87 ::std::array<int16_t, 3> currents;
88 ::std::array<int16_t, 3> commanded_currents;
89 ::std::array<uint16_t, 3> commands;
90 uint16_t position;
91 // Driver requested current.
92 float driver_request;
93 // Requested current.
94 int16_t total_command;
95
96 float est_omega;
97 float fuse_voltage;
98 int16_t fuse_current;
99
100 float fuse_badness;
101 uint32_t cycles_since_start;
102 };
103
104 // The amount of data in the buffer. This will never decrement. This will be
105 // transferred out the serial port after it fills up.
106 ::std::atomic<size_t> size{0};
107 ::std::atomic<uint32_t> count{0};
108 // The data.
109 ::std::array<Sample, 512> samples;
110};
111
112DebugBuffer global_debug_buffer;
113
114void ftm0_isr(void) {
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700115 static uint32_t i = 0;
116 teensy::AdcDmaSampler *const adc_dma =
117 global_adc_dma.load(::std::memory_order_relaxed);
118
James Kuszmaul998d3032018-09-08 15:41:41 -0700119 Fet12AdcReadings adc_readings;
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700120 // TODO(Brian): Switch to the DMA interrupt instead of spinning.
121 while (!adc_dma->CheckDone()) {
James Kuszmaul998d3032018-09-08 15:41:41 -0700122 }
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700123
124 adc_readings.motor_currents[0] =
125 (adc_dma->adc_result(0, 0) + adc_dma->adc_result(0, 1)) / 2;
126 adc_readings.motor_currents[1] =
127 (adc_dma->adc_result(0, 2) + adc_dma->adc_result(1, 1)) / 2;
128 adc_readings.motor_currents[2] =
129 (adc_dma->adc_result(1, 0) + adc_dma->adc_result(1, 2)) / 2;
130 adc_readings.throttle = adc_dma->adc_result(0, 3);
James Kuszmaul998d3032018-09-08 15:41:41 -0700131 const ::std::array<float, 3> decoupled =
132 DecoupleCurrents(adc_readings.motor_currents);
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700133 adc_dma->Reset();
134 const uint32_t wrapped_encoder =
135 global_motor.load(::std::memory_order_relaxed)->wrapped_encoder();
James Kuszmaul998d3032018-09-08 15:41:41 -0700136 const BalancedReadings balanced =
137 BalanceSimpleReadings(decoupled);
138
James Kuszmaul521eb652018-10-17 19:09:33 -0700139#if 1
140
James Kuszmaul998d3032018-09-08 15:41:41 -0700141 static float fuse_badness = 0;
142
143 static uint32_t cycles_since_start = 0u;
144 ++cycles_since_start;
145#if 0
146 static int count = 0;
147 ++count;
148 static float currents[3] = {0.0f, 0.0f, 0.0f};
149 for (int ii = 0; ii < 3; ++ii) {
150 currents[ii] += static_cast<float>(adc_readings.motor_currents[ii]);
151 }
152
153 if (i == 0) {
154 printf(
155 "foo %d.0, %d.0, %d.0, %.3d %.3d %.3d, switching %d %d %d enc %d\n",
156 static_cast<int>(currents[0] / static_cast<float>(count)),
157 static_cast<int>(currents[1] / static_cast<float>(count)),
158 static_cast<int>(currents[2] / static_cast<float>(count)),
159 static_cast<int>(decoupled[0] * 1.0f),
160 static_cast<int>(decoupled[1] * 1.0f),
161 static_cast<int>(decoupled[2] * 1.0f),
162 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(0),
163 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(1),
164 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(2),
165 static_cast<int>(
166 global_motor.load(::std::memory_order_relaxed)->wrapped_encoder()));
167 count = 0;
168 currents[0] = 0.0f;
169 currents[1] = 0.0f;
170 currents[2] = 0.0f;
171 }
172#endif
173#if 1
174 constexpr float kAlpha = 0.995f;
175 constexpr float kFuseAlpha = 0.95f;
176
177 // 3400 - 760
James Kuszmaulb7707432018-10-07 14:48:11 -0700178 // Start the throttle filter at 1.0f--once it converges to near zero, we set
179 // throttle_zeroed to true and only then do we start listening to throttle
180 // commands.
181 static float filtered_throttle = 1.0f;
182 static bool throttle_zeroed = false;
James Kuszmaul998d3032018-09-08 15:41:41 -0700183 constexpr int kMaxThrottle = 3400;
184 constexpr int kMinThrottle = 760;
185 const float throttle = ::std::max(
186 0.0f,
187 ::std::min(1.0f,
188 static_cast<float>(static_cast<int>(adc_readings.throttle) -
189 kMinThrottle) /
190 static_cast<float>(kMaxThrottle - kMinThrottle)));
191
192 // y(n) = x(n) + a * (y(n-1) - x(n))
193 filtered_throttle = throttle + kAlpha * (filtered_throttle - throttle);
James Kuszmaulb7707432018-10-07 14:48:11 -0700194 if (::std::abs(filtered_throttle) < 1e-2f) {
195 // Once the filter gets near zero once, we start paying attention to it;
196 // once it gets near zero once, never ignore it again.
197 throttle_zeroed = true;
198 }
James Kuszmaul998d3032018-09-08 15:41:41 -0700199
200 const float fuse_voltage = static_cast<float>(adc_readings.fuse_voltage);
201 static float filtered_fuse_voltage = 0.0f;
202
203 filtered_fuse_voltage =
204 fuse_voltage + kFuseAlpha * (filtered_fuse_voltage - fuse_voltage);
205
206 const float velocity =
207 global_motor.load(::std::memory_order_relaxed)->estimated_velocity();
208 const float bemf = velocity / (static_cast<float>(Kv) / 1.5f);
209 const float abs_bemf = ::std::abs(bemf);
210 constexpr float kPeakCurrent = 300.0f;
211 constexpr float kLimitedCurrent = 75.0f;
212 const float max_bat_cur =
213 fuse_badness > (kLimitedCurrent * kLimitedCurrent * 0.95f)
214 ? kLimitedCurrent
215 : static_cast<float>(kIcc);
216 const float throttle_limit = ::std::min(
217 kPeakCurrent,
218 (-abs_bemf + ::std::sqrt(static_cast<float>(
219 bemf * bemf +
220 4.0f * static_cast<float>(kR) * 1.5f *
221 static_cast<float>(kVcc) * max_bat_cur))) /
222 (2.0f * 1.5f * static_cast<float>(kR)));
223
James Kuszmaul521eb652018-10-17 19:09:33 -0700224 constexpr float kNegativeCurrent = 100.0f;
James Kuszmaula1d94c82018-10-10 20:00:09 -0700225 float goal_current =
226 -::std::min(
227 ::std::max(filtered_throttle * (kPeakCurrent + kNegativeCurrent) -
228 kNegativeCurrent,
229 -throttle_limit),
230 throttle_limit);
James Kuszmaul998d3032018-09-08 15:41:41 -0700231
James Kuszmaulb7707432018-10-07 14:48:11 -0700232 if (!throttle_zeroed) {
233 goal_current = 0.0f;
234 }
James Kuszmaula1d94c82018-10-10 20:00:09 -0700235 // Note: current reduction is 12/70 belt, 15 / 54 on chain, and 10 inch
236 // diameter wheels, so cutoff of 500 electrical rad/sec * 1 mechanical rad / 2
237 // erad * 12 / 70 * 15 / 54 * 0.127 m = 1.5m/s = 3.4 mph
James Kuszmaul998d3032018-09-08 15:41:41 -0700238 if (velocity > -500) {
239 if (goal_current > 0.0f) {
240 goal_current = 0.0f;
241 }
242 }
James Kuszmaul521eb652018-10-17 19:09:33 -0700243
James Kuszmaul998d3032018-09-08 15:41:41 -0700244 //float goal_current =
245 //-::std::min(filtered_throttle * kPeakCurrent, throttle_limit);
James Kuszmaul521eb652018-10-17 19:09:33 -0700246 const float overall_measured_current =
247 global_motor.load(::std::memory_order_relaxed)
248 ->overall_measured_current();
James Kuszmaul998d3032018-09-08 15:41:41 -0700249 const float fuse_current =
James Kuszmaul521eb652018-10-17 19:09:33 -0700250 overall_measured_current *
251 (bemf + overall_measured_current * static_cast<float>(kR) * 1.5f) /
James Kuszmaul998d3032018-09-08 15:41:41 -0700252 static_cast<float>(kVcc);
253 const int16_t fuse_current_10 = static_cast<int16_t>(10.0f * fuse_current);
254 fuse_badness += 0.00002f * (fuse_current * fuse_current - fuse_badness);
255
256 global_motor.load(::std::memory_order_relaxed)
257 ->SetGoalCurrent(goal_current);
258 global_motor.load(::std::memory_order_relaxed)
Austin Schuh54c8c842019-04-07 13:54:23 -0700259 ->CurrentInterrupt(balanced, wrapped_encoder);
James Kuszmaul998d3032018-09-08 15:41:41 -0700260
261 global_debug_buffer.count.fetch_add(1);
262
James Kuszmaul521eb652018-10-17 19:09:33 -0700263 const bool trigger = false && i > 10000;
James Kuszmaul998d3032018-09-08 15:41:41 -0700264 // global_debug_buffer.count.load(::std::memory_order_relaxed) >= 0;
265 size_t buffer_size =
266 global_debug_buffer.size.load(::std::memory_order_relaxed);
267 if ((buffer_size > 0 || trigger) &&
268 buffer_size != global_debug_buffer.samples.size()) {
269 global_debug_buffer.samples[buffer_size].currents[0] =
270 static_cast<int16_t>(balanced.readings[0] * 10.0f);
271 global_debug_buffer.samples[buffer_size].currents[1] =
272 static_cast<int16_t>(balanced.readings[1] * 10.0f);
273 global_debug_buffer.samples[buffer_size].currents[2] =
274 static_cast<int16_t>(balanced.readings[2] * 10.0f);
275 global_debug_buffer.samples[buffer_size].position =
276 global_motor.load(::std::memory_order_relaxed)->wrapped_encoder();
277 global_debug_buffer.samples[buffer_size].est_omega =
278 global_motor.load(::std::memory_order_relaxed)->estimated_velocity();
279 global_debug_buffer.samples[buffer_size].commands[0] =
280 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(0);
281 global_debug_buffer.samples[buffer_size].commands[1] =
282 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(1);
283 global_debug_buffer.samples[buffer_size].commands[2] =
284 global_motor.load(::std::memory_order_relaxed)->get_switching_points_cycles(2);
285 global_debug_buffer.samples[buffer_size].commanded_currents[0] =
286 global_motor.load(::std::memory_order_relaxed)->i_goal(0);
287 global_debug_buffer.samples[buffer_size].commanded_currents[1] =
288 global_motor.load(::std::memory_order_relaxed)->i_goal(1);
289 global_debug_buffer.samples[buffer_size].commanded_currents[2] =
290 global_motor.load(::std::memory_order_relaxed)->i_goal(2);
291 global_debug_buffer.samples[buffer_size].total_command =
292 global_motor.load(::std::memory_order_relaxed)->goal_current();
293 global_debug_buffer.samples[buffer_size].fuse_voltage =
294 filtered_fuse_voltage;
295 global_debug_buffer.samples[buffer_size].fuse_current = fuse_current_10;
296 global_debug_buffer.samples[buffer_size].driver_request =
297 ::std::max(filtered_throttle * (kPeakCurrent + kNegativeCurrent) -
298 kNegativeCurrent,
299 0.0f);
300 global_debug_buffer.samples[buffer_size].fuse_badness = fuse_badness;
301 global_debug_buffer.samples[buffer_size].cycles_since_start = cycles_since_start;
302
303 global_debug_buffer.size.fetch_add(1);
304 }
305
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700306 ++i;
James Kuszmaul998d3032018-09-08 15:41:41 -0700307 if (buffer_size == global_debug_buffer.samples.size()) {
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700308 i = 0;
James Kuszmaul998d3032018-09-08 15:41:41 -0700309 GPIOC_PCOR = (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
310 GPIOD_PCOR = (1 << 4) | (1 << 5);
311
312 PERIPHERAL_BITBAND(GPIOC_PDDR, 1) = 1;
313 PERIPHERAL_BITBAND(GPIOC_PDDR, 2) = 1;
314 PERIPHERAL_BITBAND(GPIOC_PDDR, 3) = 1;
315 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
316 PERIPHERAL_BITBAND(GPIOD_PDDR, 4) = 1;
317 PERIPHERAL_BITBAND(GPIOD_PDDR, 5) = 1;
318
319 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(1);
320 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(1);
321 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
322 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
323 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
324 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
325 }
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700326#else
327#endif
328#else
James Kuszmaul521eb652018-10-17 19:09:33 -0700329 // Useful code when calculating resistance/inductance of motor
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700330 FTM0->SC &= ~FTM_SC_TOF;
331 FTM0->C0V = 0;
332 FTM0->C1V = 0;
333 FTM0->C2V = 0;
334 FTM0->C3V = 0;
335 FTM0->C4V = 0;
James Kuszmaul521eb652018-10-17 19:09:33 -0700336 FTM0->C5V = 10;
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700337 FTM0->PWMLOAD = FTM_PWMLOAD_LDOK;
James Kuszmaul521eb652018-10-17 19:09:33 -0700338 (void)wrapped_encoder;
339 (void)real_throttle;
340 size_t buffer_size =
341 global_debug_buffer.size.load(::std::memory_order_relaxed);
342 bool trigger = true || i > 20000;
343 if ((trigger || buffer_size > 0) &&
344 buffer_size != global_debug_buffer.samples.size()) {
345 global_debug_buffer.samples[buffer_size].currents[0] =
346 static_cast<int16_t>(balanced.readings[0] * 10.0f);
347 global_debug_buffer.samples[buffer_size].currents[1] =
348 static_cast<int16_t>(balanced.readings[1] * 10.0f);
349 global_debug_buffer.samples[buffer_size].currents[2] =
350 static_cast<int16_t>(balanced.readings[2] * 10.0f);
351 global_debug_buffer.samples[buffer_size].commands[0] = FTM0->C1V;
352 global_debug_buffer.samples[buffer_size].commands[1] = FTM0->C3V;
353 global_debug_buffer.samples[buffer_size].commands[2] = FTM0->C5V;
354 global_debug_buffer.samples[buffer_size].position =
355 global_motor.load(::std::memory_order_relaxed)->wrapped_encoder();
356 global_debug_buffer.size.fetch_add(1);
357 }
358 if (buffer_size == global_debug_buffer.samples.size()) {
359 GPIOC_PCOR = (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4);
360 GPIOD_PCOR = (1 << 4) | (1 << 5);
361
362 PERIPHERAL_BITBAND(GPIOC_PDDR, 1) = 1;
363 PERIPHERAL_BITBAND(GPIOC_PDDR, 2) = 1;
364 PERIPHERAL_BITBAND(GPIOC_PDDR, 3) = 1;
365 PERIPHERAL_BITBAND(GPIOC_PDDR, 4) = 1;
366 PERIPHERAL_BITBAND(GPIOD_PDDR, 4) = 1;
367 PERIPHERAL_BITBAND(GPIOD_PDDR, 5) = 1;
368
369 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(1);
370 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(1);
371 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
372 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
373 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(1);
374 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
375 i = 0;
376 }
377 ++i;
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700378#endif
James Kuszmaul998d3032018-09-08 15:41:41 -0700379
James Kuszmaul998d3032018-09-08 15:41:41 -0700380}
381
382} // extern "C"
383
384void ConfigurePwmFtm(BigFTM *pwm_ftm) {
385 // Put them all into combine active-high mode, and all the low ones staying on
386 // all the time by default.
387 pwm_ftm->C0SC = FTM_CSC_ELSA;
388 pwm_ftm->C0V = 0;
389 pwm_ftm->C1SC = FTM_CSC_ELSA;
390 pwm_ftm->C1V = 0;
391 pwm_ftm->C2SC = FTM_CSC_ELSA;
392 pwm_ftm->C2V = 0;
393 pwm_ftm->C3SC = FTM_CSC_ELSA;
394 pwm_ftm->C3V = 0;
395 pwm_ftm->C4SC = FTM_CSC_ELSA;
396 pwm_ftm->C4V = 0;
397 pwm_ftm->C5SC = FTM_CSC_ELSA;
398 pwm_ftm->C5V = 0;
399 pwm_ftm->C6SC = FTM_CSC_ELSA;
400 pwm_ftm->C6V = 0;
401 pwm_ftm->C7SC = FTM_CSC_ELSA;
402 pwm_ftm->C7V = 0;
403
404 pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
405 FTM_COMBINE_DTEN3 /* Enable deadtime */ |
406 FTM_COMBINE_COMP3 /* Make them complementary */ |
407 FTM_COMBINE_COMBINE3 /* Combine the channels */ |
408 FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
409 FTM_COMBINE_DTEN2 /* Enable deadtime */ |
410 FTM_COMBINE_COMP2 /* Make them complementary */ |
411 FTM_COMBINE_COMBINE2 /* Combine the channels */ |
412 FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
413 FTM_COMBINE_DTEN1 /* Enable deadtime */ |
414 FTM_COMBINE_COMP1 /* Make them complementary */ |
415 FTM_COMBINE_COMBINE1 /* Combine the channels */ |
416 FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */ |
417 FTM_COMBINE_DTEN0 /* Enable deadtime */ |
418 FTM_COMBINE_COMP0 /* Make them complementary */ |
419 FTM_COMBINE_COMBINE0 /* Combine the channels */;
420 // Safe state for all channels is low.
421 pwm_ftm->POL = 0;
422
423 // Set the deadtime.
424 pwm_ftm->DEADTIME =
425 FTM_DEADTIME_DTPS(0) /* Prescaler of 1 */ | FTM_DEADTIME_DTVAL(9);
426
427 pwm_ftm->CONF =
428 FTM_CONF_BDMMOD(1) /* Set everything to POLn during debug halt */;
429}
430
431// Zeros the encoder. This involves blocking for an arbitrary length of time
432// with interrupts disabled.
433void ZeroMotor() {
434#if 0
435 while (true) {
436 if (PERIPHERAL_BITBAND(GPIOB_PDIR, 11)) {
437 encoder_ftm_->CNT = 0;
438 break;
439 }
440 }
441#else
442 uint32_t scratch;
443 __disable_irq();
444 // Stuff all of this in an inline assembly statement so we can make sure the
445 // compiler doesn't decide sticking constant loads etc in the middle of
446 // the loop is a good idea, because that increases the latency of recognizing
447 // the index pulse edge which makes velocity affect the zeroing accuracy.
448 __asm__ __volatile__(
449 // A label to restart the loop.
450 "0:\n"
451 // Load the current PDIR value for the pin we care about.
452 "ldr %[scratch], [%[pdir_word]]\n"
453 // Terminate the loop if it's non-0.
454 "cbnz %[scratch], 1f\n"
455 // Go back around again.
456 "b 0b\n"
457 // A label to finish the loop.
458 "1:\n"
459 // Reset the count once we're down here. It doesn't actually matter what
460 // value we store because writing anything resets it to CNTIN (ie 0).
461 "str %[scratch], [%[cnt]]\n"
462 : [scratch] "=&l"(scratch)
463 : [pdir_word] "l"(&PERIPHERAL_BITBAND(GPIOB_PDIR, 11)),
464 [cnt] "l"(&FTM1->CNT));
465 __enable_irq();
466#endif
467}
468
469} // namespace
470
471extern "C" int main(void) {
472 // for background about this startup delay, please see these conversations
473 // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
474 // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
475 delay(400);
476
477 // Set all interrupts to the second-lowest priority to start with.
478 for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
479
480 // Now set priorities for all the ones we care about. They only have meaning
481 // relative to each other, which means centralizing them here makes it a lot
482 // more manageable.
483 NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
484 NVIC_SET_SANE_PRIORITY(IRQ_UART0_STATUS, 0xE);
485
486 // Set the LED's pin to output mode.
487 PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
488 PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
489
490#if 0
491 PERIPHERAL_BITBAND(GPIOA_PDDR, 15) = 1;
492 PORTA_PCR15 = PORT_PCR_DSE | PORT_PCR_MUX(1);
493#endif
494
495 // Set up the CAN pins.
496 PORTA_PCR12 = PORT_PCR_DSE | PORT_PCR_MUX(2);
497 PORTB_PCR19 = PORT_PCR_DSE | PORT_PCR_MUX(2);
498
499 DMA.CR = M_DMA_EMLM;
500
501 PORTB_PCR16 = PORT_PCR_DSE | PORT_PCR_MUX(3);
502 PORTB_PCR17 = PORT_PCR_DSE | PORT_PCR_MUX(3);
503 SIM_SCGC4 |= SIM_SCGC4_UART0;
Brian Silverman4787a6e2018-10-06 16:00:54 -0700504
505 PrintingParameters printing_parameters;
506 printing_parameters.stdout_uart_module = &UART0;
507 printing_parameters.stdout_uart_module_clock_frequency = F_CPU;
508 printing_parameters.stdout_uart_status_interrupt = IRQ_UART0_STATUS;
509 printing_parameters.dedicated_usb = true;
510 const ::std::unique_ptr<PrintingImplementation> printing =
511 CreatePrinting(printing_parameters);
512 printing->Initialize();
James Kuszmaul998d3032018-09-08 15:41:41 -0700513
514 AdcInitFet12();
515 MathInit();
516 delay(100);
517 can_init(0, 1);
518
519 MotorControlsImplementation controls;
520
521 delay(100);
522
523 // Index pin
524 PORTB_PCR11 = PORT_PCR_MUX(1);
525 // FTM1_QD_PH{A,B}
526 PORTB_PCR0 = PORT_PCR_MUX(6);
527 PORTB_PCR1 = PORT_PCR_MUX(6);
528
529 // FTM0_CH[0-5]
530 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
531 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
532 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
533 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
534 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
535 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(4);
536
537 Motor motor(FTM0, FTM1, &controls, {&FTM0->C0V, &FTM0->C2V, &FTM0->C4V});
538 motor.set_encoder_offset(810);
539 motor.set_deadtime_compensation(9);
540 ConfigurePwmFtm(FTM0);
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700541
Brian Silvermana1d84822018-09-15 17:18:49 -0700542 // TODO(Brian): Figure out how to avoid duplicating this code to slave one FTM
543 // to another.
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700544 FTM2->CONF = FTM_CONF_GTBEEN;
545 FTM2->MODE = FTM_MODE_WPDIS;
546 FTM2->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN;
547 FTM2->SC = FTM_SC_CLKS(0) /* Disable counting for now */;
548 FTM2->CNTIN = 0;
549 FTM2->CNT = 0;
550 // TODO(Brian): Don't duplicate this.
551 FTM2->MOD = BUS_CLOCK_FREQUENCY / SWITCHING_FREQUENCY;
552 FTM2->OUTINIT = 0;
553 // All of the channels are active high.
554 FTM2->POL = 0;
555 FTM2->SYNCONF = FTM_SYNCONF_HWWRBUF | FTM_SYNCONF_SWWRBUF |
556 FTM_SYNCONF_SWRSTCNT | FTM_SYNCONF_SYNCMODE;
557 // Don't want any intermediate loading points.
558 FTM2->PWMLOAD = 0;
559
560 // Need to set them to some kind of output mode so we can actually change
561 // them.
562 FTM2->C0SC = FTM_CSC_MSA;
563 FTM2->C1SC = FTM_CSC_MSA;
564
565 // This has to happen after messing with SYNCONF, and should happen after
566 // messing with various other things so the values can get flushed out of the
567 // buffers.
568 FTM2->SYNC =
569 FTM_SYNC_SWSYNC /* Flush everything out right now */ |
570 FTM_SYNC_CNTMAX /* Load new values at the end of the cycle */;
571 // Wait for the software synchronization to finish.
572 while (FTM2->SYNC & FTM_SYNC_SWSYNC) {
573 }
574 FTM2->SC = FTM_SC_CLKS(1) /* Use the system clock */ |
575 FTM_SC_PS(0) /* Don't prescale the clock */;
576 // TODO:
577 //FTM2->MODE &= ~FTM_MODE_WPDIS;
578
579 FTM2->EXTTRIG = FTM_EXTTRIG_CH0TRIG | FTM_EXTTRIG_CH1TRIG;
580
Brian Silvermana1d84822018-09-15 17:18:49 -0700581 // TODO(Brian): Don't duplicate the timer's MOD value.
582 teensy::AdcDmaSampler adc_dma{BUS_CLOCK_FREQUENCY / SWITCHING_FREQUENCY};
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700583 // ADC0_Dx0 is 1-0
584 // ADC0_Dx2 is 1-2
585 // ADC0_Dx3 is 2-0
586 // ADC1_Dx0 is 2-0
587 // ADC1_Dx3 is 1-0
588 // Sample 0: 1-2,2-0
589 // Sample 1: 1-2,1-0
590 // Sample 2: 1-0,2-0
591 // Sample 3: 23(SENSE0),18(VIN)
592 adc_dma.set_adc0_samples({V_ADC_ADCH(2) | M_ADC_DIFF,
593 V_ADC_ADCH(2) | M_ADC_DIFF,
594 V_ADC_ADCH(0) | M_ADC_DIFF, V_ADC_ADCH(23)});
595 adc_dma.set_adc1_samples({V_ADC_ADCH(0) | M_ADC_DIFF,
596 V_ADC_ADCH(3) | M_ADC_DIFF,
597 V_ADC_ADCH(0) | M_ADC_DIFF, V_ADC_ADCH(18)});
598 adc_dma.set_ftm_delays({&FTM2->C0V, &FTM2->C1V});
599 adc_dma.set_pdb_input(PDB_IN_FTM2);
600
601 adc_dma.Initialize();
602 FTM0->CONF = FTM_CONF_GTBEEN;
James Kuszmaul998d3032018-09-08 15:41:41 -0700603 motor.Init();
604 global_motor.store(&motor, ::std::memory_order_relaxed);
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700605 global_adc_dma.store(&adc_dma, ::std::memory_order_relaxed);
606
James Kuszmaul998d3032018-09-08 15:41:41 -0700607 // Output triggers to things like the PDBs on initialization.
608 FTM0_EXTTRIG = FTM_EXTTRIG_INITTRIGEN;
609 // Don't let any memory accesses sneak past here, because we actually
610 // need everything to be starting up.
611 __asm__("" :: : "memory");
612
613 // Give everything a chance to get going.
614 delay(100);
615
616 printf("Ram start: %p\n", __bss_ram_start__);
617 printf("Heap start: %p\n", __heap_start__);
618 printf("Heap end: %p\n", __brkval);
619 printf("Stack start: %p\n", __stack_end__);
620
621 printf("Going silent to zero motors...\n");
622 // Give the print a chance to make it out.
623 delay(100);
624 ZeroMotor();
625
626 motor.set_encoder_multiplier(-1);
627 motor.set_encoder_calibration_offset(
James Kuszmaul521eb652018-10-17 19:09:33 -0700628 364 /*from running constant phases*/ - 26 /*average offset from lstsq*/ -
629 14 /* compensation for going backwards */);
James Kuszmaul998d3032018-09-08 15:41:41 -0700630
631 printf("Zeroed motor!\n");
632 // Give stuff a chance to recover from interrupts-disabled.
633 delay(100);
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700634 adc_dma.Reset();
James Kuszmaul998d3032018-09-08 15:41:41 -0700635 motor.Start();
James Kuszmaul7c8aad62018-09-08 18:16:18 -0700636 // Now poke the GTB to actually start both timers.
637 FTM0->CONF = FTM_CONF_GTBEEN | FTM_CONF_GTBEOUT;
638
James Kuszmaul998d3032018-09-08 15:41:41 -0700639 NVIC_ENABLE_IRQ(IRQ_FTM0);
640 GPIOC_PSOR = 1 << 5;
641
James Kuszmaul521eb652018-10-17 19:09:33 -0700642 constexpr bool dump_full_sample = true;
643 constexpr bool dump_resist_calib = false;
James Kuszmaul998d3032018-09-08 15:41:41 -0700644 while (true) {
James Kuszmaul521eb652018-10-17 19:09:33 -0700645 if (dump_resist_calib || dump_full_sample) {
James Kuszmaul998d3032018-09-08 15:41:41 -0700646 PORTC_PCR1 = PORT_PCR_DSE | PORT_PCR_MUX(4);
647 PORTC_PCR2 = PORT_PCR_DSE | PORT_PCR_MUX(4);
648 PORTC_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(4);
649 PORTC_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
650 PORTD_PCR4 = PORT_PCR_DSE | PORT_PCR_MUX(4);
651 PORTD_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(4);
652 motor.Reset();
653 }
654 global_debug_buffer.size.store(0);
655 global_debug_buffer.count.store(0);
656 while (global_debug_buffer.size.load(::std::memory_order_relaxed) <
657 global_debug_buffer.samples.size()) {
658 }
James Kuszmaul521eb652018-10-17 19:09:33 -0700659 if (dump_resist_calib) {
660 // Useful prints for when calibrating resistance/inductance of motor
661 for (size_t i = 0; i < global_debug_buffer.samples.size(); ++i) {
662 const auto &sample = global_debug_buffer.samples[i];
663 printf("%u, %d, %d, %d, %u, %u, %u, %u\n", i,
664 sample.currents[0], sample.currents[1], sample.currents[2],
665 sample.commands[0], sample.commands[1], sample.commands[2],
666 sample.position);
667 }
668 } else if (dump_full_sample) {
James Kuszmaul998d3032018-09-08 15:41:41 -0700669 printf("Dumping data\n");
670 for (size_t i = 0; i < global_debug_buffer.samples.size(); ++i) {
671 const auto &sample = global_debug_buffer.samples[i];
672
673 printf("%u, %d, %d, %d, %u, %u, %u, %u, %d, %d, %d, %d\n", i,
674 sample.currents[0], sample.currents[1], sample.currents[2],
675 sample.commands[0], sample.commands[1], sample.commands[2],
676 sample.position, static_cast<int>(sample.est_omega),
677 sample.commanded_currents[0], sample.commanded_currents[1],
678 sample.commanded_currents[2]);
679 }
680 printf("Done dumping data\n");
681 } else {
682 //const auto &sample = global_debug_buffer.samples.back();
683 const DebugBuffer::Sample sample = global_debug_buffer.samples[0];
684#if 1
685 printf("%" PRIu32
686 ", %d, %d, %d, %u, %u, %u, %u, %d, %d, %d, %d, %d, %d, %d\n",
687 sample.cycles_since_start, sample.currents[0], sample.currents[1],
688 sample.currents[2], sample.commands[0], sample.commands[1],
689 sample.commands[2], sample.position,
690 static_cast<int>(sample.est_omega), sample.commanded_currents[0],
691 sample.commanded_currents[1], sample.commanded_currents[2],
692 sample.total_command, static_cast<int>(sample.driver_request),
693 static_cast<int>(sample.fuse_badness));
694#else
695 printf("%d, %d\n", static_cast<int>(sample.fuse_voltage),
696 sample.fuse_current);
697#endif
698 }
699 }
700
701 return 0;
702}
703
704} // namespace motors
705} // namespace frc971