Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "main.h" |
| 11 | #include <unsupported/Eigen/MatrixFunctions> |
| 12 | |
| 13 | // Variant of VERIFY_IS_APPROX which uses absolute error instead of |
| 14 | // relative error. |
| 15 | #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) |
| 16 | |
| 17 | template<typename Type1, typename Type2> |
| 18 | inline bool test_isApprox_abs(const Type1& a, const Type2& b) |
| 19 | { |
| 20 | return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); |
| 21 | } |
| 22 | |
| 23 | |
| 24 | // Returns a matrix with eigenvalues clustered around 0, 1 and 2. |
| 25 | template<typename MatrixType> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 26 | MatrixType randomMatrixWithRealEivals(const Index size) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 27 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 28 | typedef typename MatrixType::Scalar Scalar; |
| 29 | typedef typename MatrixType::RealScalar RealScalar; |
| 30 | MatrixType diag = MatrixType::Zero(size, size); |
| 31 | for (Index i = 0; i < size; ++i) { |
| 32 | diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) |
| 33 | + internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| 34 | } |
| 35 | MatrixType A = MatrixType::Random(size, size); |
| 36 | HouseholderQR<MatrixType> QRofA(A); |
| 37 | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| 38 | } |
| 39 | |
| 40 | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| 41 | struct randomMatrixWithImagEivals |
| 42 | { |
| 43 | // Returns a matrix with eigenvalues clustered around 0 and +/- i. |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 44 | static MatrixType run(const Index size); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 45 | }; |
| 46 | |
| 47 | // Partial specialization for real matrices |
| 48 | template<typename MatrixType> |
| 49 | struct randomMatrixWithImagEivals<MatrixType, 0> |
| 50 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 51 | static MatrixType run(const Index size) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 52 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 53 | typedef typename MatrixType::Scalar Scalar; |
| 54 | MatrixType diag = MatrixType::Zero(size, size); |
| 55 | Index i = 0; |
| 56 | while (i < size) { |
| 57 | Index randomInt = internal::random<Index>(-1, 1); |
| 58 | if (randomInt == 0 || i == size-1) { |
| 59 | diag(i, i) = internal::random<Scalar>() * Scalar(0.01); |
| 60 | ++i; |
| 61 | } else { |
| 62 | Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); |
| 63 | diag(i, i+1) = alpha; |
| 64 | diag(i+1, i) = -alpha; |
| 65 | i += 2; |
| 66 | } |
| 67 | } |
| 68 | MatrixType A = MatrixType::Random(size, size); |
| 69 | HouseholderQR<MatrixType> QRofA(A); |
| 70 | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | // Partial specialization for complex matrices |
| 75 | template<typename MatrixType> |
| 76 | struct randomMatrixWithImagEivals<MatrixType, 1> |
| 77 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 78 | static MatrixType run(const Index size) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 79 | { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 80 | typedef typename MatrixType::Scalar Scalar; |
| 81 | typedef typename MatrixType::RealScalar RealScalar; |
| 82 | const Scalar imagUnit(0, 1); |
| 83 | MatrixType diag = MatrixType::Zero(size, size); |
| 84 | for (Index i = 0; i < size; ++i) { |
| 85 | diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit |
| 86 | + internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
| 87 | } |
| 88 | MatrixType A = MatrixType::Random(size, size); |
| 89 | HouseholderQR<MatrixType> QRofA(A); |
| 90 | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | |
| 95 | template<typename MatrixType> |
| 96 | void testMatrixExponential(const MatrixType& A) |
| 97 | { |
| 98 | typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| 99 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 100 | typedef std::complex<RealScalar> ComplexScalar; |
| 101 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 102 | VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 103 | } |
| 104 | |
| 105 | template<typename MatrixType> |
| 106 | void testMatrixLogarithm(const MatrixType& A) |
| 107 | { |
| 108 | typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| 109 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 110 | |
| 111 | MatrixType scaledA; |
| 112 | RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 113 | if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) |
| 114 | scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 115 | else |
| 116 | scaledA = A; |
| 117 | |
| 118 | // identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X |
| 119 | MatrixType expA = scaledA.exp(); |
| 120 | MatrixType logExpA = expA.log(); |
| 121 | VERIFY_IS_APPROX(logExpA, scaledA); |
| 122 | } |
| 123 | |
| 124 | template<typename MatrixType> |
| 125 | void testHyperbolicFunctions(const MatrixType& A) |
| 126 | { |
| 127 | // Need to use absolute error because of possible cancellation when |
| 128 | // adding/subtracting expA and expmA. |
| 129 | VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); |
| 130 | VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); |
| 131 | } |
| 132 | |
| 133 | template<typename MatrixType> |
| 134 | void testGonioFunctions(const MatrixType& A) |
| 135 | { |
| 136 | typedef typename MatrixType::Scalar Scalar; |
| 137 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 138 | typedef std::complex<RealScalar> ComplexScalar; |
| 139 | typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, |
| 140 | MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; |
| 141 | |
| 142 | ComplexScalar imagUnit(0,1); |
| 143 | ComplexScalar two(2,0); |
| 144 | |
| 145 | ComplexMatrix Ac = A.template cast<ComplexScalar>(); |
| 146 | |
| 147 | ComplexMatrix exp_iA = (imagUnit * Ac).exp(); |
| 148 | ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); |
| 149 | |
| 150 | ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); |
| 151 | VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); |
| 152 | |
| 153 | ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); |
| 154 | VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); |
| 155 | } |
| 156 | |
| 157 | template<typename MatrixType> |
| 158 | void testMatrix(const MatrixType& A) |
| 159 | { |
| 160 | testMatrixExponential(A); |
| 161 | testMatrixLogarithm(A); |
| 162 | testHyperbolicFunctions(A); |
| 163 | testGonioFunctions(A); |
| 164 | } |
| 165 | |
| 166 | template<typename MatrixType> |
| 167 | void testMatrixType(const MatrixType& m) |
| 168 | { |
| 169 | // Matrices with clustered eigenvalue lead to different code paths |
| 170 | // in MatrixFunction.h and are thus useful for testing. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 171 | |
| 172 | const Index size = m.rows(); |
| 173 | for (int i = 0; i < g_repeat; i++) { |
| 174 | testMatrix(MatrixType::Random(size, size).eval()); |
| 175 | testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); |
| 176 | testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); |
| 177 | } |
| 178 | } |
| 179 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 180 | template<typename MatrixType> |
| 181 | void testMapRef(const MatrixType& A) |
| 182 | { |
| 183 | // Test if passing Ref and Map objects is possible |
| 184 | // (Regression test for Bug #1796) |
| 185 | Index size = A.rows(); |
| 186 | MatrixType X; X.setRandom(size, size); |
| 187 | MatrixType Y(size,size); |
| 188 | Ref< MatrixType> R(Y); |
| 189 | Ref<const MatrixType> Rc(X); |
| 190 | Map< MatrixType> M(Y.data(), size, size); |
| 191 | Map<const MatrixType> Mc(X.data(), size, size); |
| 192 | |
| 193 | X = X*X; // make sure sqrt is possible |
| 194 | Y = X.sqrt(); |
| 195 | R = Rc.sqrt(); |
| 196 | M = Mc.sqrt(); |
| 197 | Y = X.exp(); |
| 198 | R = Rc.exp(); |
| 199 | M = Mc.exp(); |
| 200 | X = Y; // make sure log is possible |
| 201 | Y = X.log(); |
| 202 | R = Rc.log(); |
| 203 | M = Mc.log(); |
| 204 | |
| 205 | Y = X.cos() + Rc.cos() + Mc.cos(); |
| 206 | Y = X.sin() + Rc.sin() + Mc.sin(); |
| 207 | |
| 208 | Y = X.cosh() + Rc.cosh() + Mc.cosh(); |
| 209 | Y = X.sinh() + Rc.sinh() + Mc.sinh(); |
| 210 | } |
| 211 | |
| 212 | |
| 213 | EIGEN_DECLARE_TEST(matrix_function) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 214 | { |
| 215 | CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); |
| 216 | CALL_SUBTEST_2(testMatrixType(Matrix3cf())); |
| 217 | CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); |
| 218 | CALL_SUBTEST_4(testMatrixType(Matrix2d())); |
| 219 | CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); |
| 220 | CALL_SUBTEST_6(testMatrixType(Matrix4cd())); |
| 221 | CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 222 | |
| 223 | CALL_SUBTEST_1(testMapRef(Matrix<float,1,1>())); |
| 224 | CALL_SUBTEST_2(testMapRef(Matrix3cf())); |
| 225 | CALL_SUBTEST_3(testMapRef(MatrixXf(8,8))); |
| 226 | CALL_SUBTEST_7(testMapRef(MatrixXd(13,13))); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 227 | } |