Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SPLINE_FITTING_H |
| 11 | #define EIGEN_SPLINE_FITTING_H |
| 12 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 13 | #include <algorithm> |
| 14 | #include <functional> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 15 | #include <numeric> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 16 | #include <vector> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 17 | |
| 18 | #include "SplineFwd.h" |
| 19 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 20 | #include "../../../../Eigen/LU" |
| 21 | #include "../../../../Eigen/QR" |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 22 | |
| 23 | namespace Eigen |
| 24 | { |
| 25 | /** |
| 26 | * \brief Computes knot averages. |
| 27 | * \ingroup Splines_Module |
| 28 | * |
| 29 | * The knots are computed as |
| 30 | * \f{align*} |
| 31 | * u_0 & = \hdots = u_p = 0 \\ |
| 32 | * u_{m-p} & = \hdots = u_{m} = 1 \\ |
| 33 | * u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p |
| 34 | * \f} |
| 35 | * where \f$p\f$ is the degree and \f$m+1\f$ the number knots |
| 36 | * of the desired interpolating spline. |
| 37 | * |
| 38 | * \param[in] parameters The input parameters. During interpolation one for each data point. |
| 39 | * \param[in] degree The spline degree which is used during the interpolation. |
| 40 | * \param[out] knots The output knot vector. |
| 41 | * |
| 42 | * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data |
| 43 | **/ |
| 44 | template <typename KnotVectorType> |
| 45 | void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots) |
| 46 | { |
| 47 | knots.resize(parameters.size()+degree+1); |
| 48 | |
| 49 | for (DenseIndex j=1; j<parameters.size()-degree; ++j) |
| 50 | knots(j+degree) = parameters.segment(j,degree).mean(); |
| 51 | |
| 52 | knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1); |
| 53 | knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1); |
| 54 | } |
| 55 | |
| 56 | /** |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 57 | * \brief Computes knot averages when derivative constraints are present. |
| 58 | * Note that this is a technical interpretation of the referenced article |
| 59 | * since the algorithm contained therein is incorrect as written. |
| 60 | * \ingroup Splines_Module |
| 61 | * |
| 62 | * \param[in] parameters The parameters at which the interpolation B-Spline |
| 63 | * will intersect the given interpolation points. The parameters |
| 64 | * are assumed to be a non-decreasing sequence. |
| 65 | * \param[in] degree The degree of the interpolating B-Spline. This must be |
| 66 | * greater than zero. |
| 67 | * \param[in] derivativeIndices The indices corresponding to parameters at |
| 68 | * which there are derivative constraints. The indices are assumed |
| 69 | * to be a non-decreasing sequence. |
| 70 | * \param[out] knots The calculated knot vector. These will be returned as a |
| 71 | * non-decreasing sequence |
| 72 | * |
| 73 | * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| 74 | * Curve interpolation with directional constraints for engineering design. |
| 75 | * Engineering with Computers |
| 76 | **/ |
| 77 | template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray> |
| 78 | void KnotAveragingWithDerivatives(const ParameterVectorType& parameters, |
| 79 | const unsigned int degree, |
| 80 | const IndexArray& derivativeIndices, |
| 81 | KnotVectorType& knots) |
| 82 | { |
| 83 | typedef typename ParameterVectorType::Scalar Scalar; |
| 84 | |
| 85 | DenseIndex numParameters = parameters.size(); |
| 86 | DenseIndex numDerivatives = derivativeIndices.size(); |
| 87 | |
| 88 | if (numDerivatives < 1) |
| 89 | { |
| 90 | KnotAveraging(parameters, degree, knots); |
| 91 | return; |
| 92 | } |
| 93 | |
| 94 | DenseIndex startIndex; |
| 95 | DenseIndex endIndex; |
| 96 | |
| 97 | DenseIndex numInternalDerivatives = numDerivatives; |
| 98 | |
| 99 | if (derivativeIndices[0] == 0) |
| 100 | { |
| 101 | startIndex = 0; |
| 102 | --numInternalDerivatives; |
| 103 | } |
| 104 | else |
| 105 | { |
| 106 | startIndex = 1; |
| 107 | } |
| 108 | if (derivativeIndices[numDerivatives - 1] == numParameters - 1) |
| 109 | { |
| 110 | endIndex = numParameters - degree; |
| 111 | --numInternalDerivatives; |
| 112 | } |
| 113 | else |
| 114 | { |
| 115 | endIndex = numParameters - degree - 1; |
| 116 | } |
| 117 | |
| 118 | // There are (endIndex - startIndex + 1) knots obtained from the averaging |
| 119 | // and 2 for the first and last parameters. |
| 120 | DenseIndex numAverageKnots = endIndex - startIndex + 3; |
| 121 | KnotVectorType averageKnots(numAverageKnots); |
| 122 | averageKnots[0] = parameters[0]; |
| 123 | |
| 124 | int newKnotIndex = 0; |
| 125 | for (DenseIndex i = startIndex; i <= endIndex; ++i) |
| 126 | averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean(); |
| 127 | averageKnots[++newKnotIndex] = parameters[numParameters - 1]; |
| 128 | |
| 129 | newKnotIndex = -1; |
| 130 | |
| 131 | ParameterVectorType temporaryParameters(numParameters + 1); |
| 132 | KnotVectorType derivativeKnots(numInternalDerivatives); |
| 133 | for (DenseIndex i = 0; i < numAverageKnots - 1; ++i) |
| 134 | { |
| 135 | temporaryParameters[0] = averageKnots[i]; |
| 136 | ParameterVectorType parameterIndices(numParameters); |
| 137 | int temporaryParameterIndex = 1; |
| 138 | for (DenseIndex j = 0; j < numParameters; ++j) |
| 139 | { |
| 140 | Scalar parameter = parameters[j]; |
| 141 | if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1]) |
| 142 | { |
| 143 | parameterIndices[temporaryParameterIndex] = j; |
| 144 | temporaryParameters[temporaryParameterIndex++] = parameter; |
| 145 | } |
| 146 | } |
| 147 | temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1]; |
| 148 | |
| 149 | for (int j = 0; j <= temporaryParameterIndex - 2; ++j) |
| 150 | { |
| 151 | for (DenseIndex k = 0; k < derivativeIndices.size(); ++k) |
| 152 | { |
| 153 | if (parameterIndices[j + 1] == derivativeIndices[k] |
| 154 | && parameterIndices[j + 1] != 0 |
| 155 | && parameterIndices[j + 1] != numParameters - 1) |
| 156 | { |
| 157 | derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean(); |
| 158 | break; |
| 159 | } |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size()); |
| 165 | |
| 166 | std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(), |
| 167 | derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(), |
| 168 | temporaryKnots.data()); |
| 169 | |
| 170 | // Number of knots (one for each point and derivative) plus spline order. |
| 171 | DenseIndex numKnots = numParameters + numDerivatives + degree + 1; |
| 172 | knots.resize(numKnots); |
| 173 | |
| 174 | knots.head(degree).fill(temporaryKnots[0]); |
| 175 | knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]); |
| 176 | knots.segment(degree, temporaryKnots.size()) = temporaryKnots; |
| 177 | } |
| 178 | |
| 179 | /** |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 180 | * \brief Computes chord length parameters which are required for spline interpolation. |
| 181 | * \ingroup Splines_Module |
| 182 | * |
| 183 | * \param[in] pts The data points to which a spline should be fit. |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 184 | * \param[out] chord_lengths The resulting chord length vector. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 185 | * |
| 186 | * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data |
| 187 | **/ |
| 188 | template <typename PointArrayType, typename KnotVectorType> |
| 189 | void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths) |
| 190 | { |
| 191 | typedef typename KnotVectorType::Scalar Scalar; |
| 192 | |
| 193 | const DenseIndex n = pts.cols(); |
| 194 | |
| 195 | // 1. compute the column-wise norms |
| 196 | chord_lengths.resize(pts.cols()); |
| 197 | chord_lengths[0] = 0; |
| 198 | chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm(); |
| 199 | |
| 200 | // 2. compute the partial sums |
| 201 | std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data()); |
| 202 | |
| 203 | // 3. normalize the data |
| 204 | chord_lengths /= chord_lengths(n-1); |
| 205 | chord_lengths(n-1) = Scalar(1); |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * \brief Spline fitting methods. |
| 210 | * \ingroup Splines_Module |
| 211 | **/ |
| 212 | template <typename SplineType> |
| 213 | struct SplineFitting |
| 214 | { |
| 215 | typedef typename SplineType::KnotVectorType KnotVectorType; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 216 | typedef typename SplineType::ParameterVectorType ParameterVectorType; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 217 | |
| 218 | /** |
| 219 | * \brief Fits an interpolating Spline to the given data points. |
| 220 | * |
| 221 | * \param pts The points for which an interpolating spline will be computed. |
| 222 | * \param degree The degree of the interpolating spline. |
| 223 | * |
| 224 | * \returns A spline interpolating the initially provided points. |
| 225 | **/ |
| 226 | template <typename PointArrayType> |
| 227 | static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree); |
| 228 | |
| 229 | /** |
| 230 | * \brief Fits an interpolating Spline to the given data points. |
| 231 | * |
| 232 | * \param pts The points for which an interpolating spline will be computed. |
| 233 | * \param degree The degree of the interpolating spline. |
| 234 | * \param knot_parameters The knot parameters for the interpolation. |
| 235 | * |
| 236 | * \returns A spline interpolating the initially provided points. |
| 237 | **/ |
| 238 | template <typename PointArrayType> |
| 239 | static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 240 | |
| 241 | /** |
| 242 | * \brief Fits an interpolating spline to the given data points and |
| 243 | * derivatives. |
| 244 | * |
| 245 | * \param points The points for which an interpolating spline will be computed. |
| 246 | * \param derivatives The desired derivatives of the interpolating spline at interpolation |
| 247 | * points. |
| 248 | * \param derivativeIndices An array indicating which point each derivative belongs to. This |
| 249 | * must be the same size as @a derivatives. |
| 250 | * \param degree The degree of the interpolating spline. |
| 251 | * |
| 252 | * \returns A spline interpolating @a points with @a derivatives at those points. |
| 253 | * |
| 254 | * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| 255 | * Curve interpolation with directional constraints for engineering design. |
| 256 | * Engineering with Computers |
| 257 | **/ |
| 258 | template <typename PointArrayType, typename IndexArray> |
| 259 | static SplineType InterpolateWithDerivatives(const PointArrayType& points, |
| 260 | const PointArrayType& derivatives, |
| 261 | const IndexArray& derivativeIndices, |
| 262 | const unsigned int degree); |
| 263 | |
| 264 | /** |
| 265 | * \brief Fits an interpolating spline to the given data points and derivatives. |
| 266 | * |
| 267 | * \param points The points for which an interpolating spline will be computed. |
| 268 | * \param derivatives The desired derivatives of the interpolating spline at interpolation points. |
| 269 | * \param derivativeIndices An array indicating which point each derivative belongs to. This |
| 270 | * must be the same size as @a derivatives. |
| 271 | * \param degree The degree of the interpolating spline. |
| 272 | * \param parameters The parameters corresponding to the interpolation points. |
| 273 | * |
| 274 | * \returns A spline interpolating @a points with @a derivatives at those points. |
| 275 | * |
| 276 | * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| 277 | * Curve interpolation with directional constraints for engineering design. |
| 278 | * Engineering with Computers |
| 279 | */ |
| 280 | template <typename PointArrayType, typename IndexArray> |
| 281 | static SplineType InterpolateWithDerivatives(const PointArrayType& points, |
| 282 | const PointArrayType& derivatives, |
| 283 | const IndexArray& derivativeIndices, |
| 284 | const unsigned int degree, |
| 285 | const ParameterVectorType& parameters); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 286 | }; |
| 287 | |
| 288 | template <typename SplineType> |
| 289 | template <typename PointArrayType> |
| 290 | SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters) |
| 291 | { |
| 292 | typedef typename SplineType::KnotVectorType::Scalar Scalar; |
| 293 | typedef typename SplineType::ControlPointVectorType ControlPointVectorType; |
| 294 | |
| 295 | typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; |
| 296 | |
| 297 | KnotVectorType knots; |
| 298 | KnotAveraging(knot_parameters, degree, knots); |
| 299 | |
| 300 | DenseIndex n = pts.cols(); |
| 301 | MatrixType A = MatrixType::Zero(n,n); |
| 302 | for (DenseIndex i=1; i<n-1; ++i) |
| 303 | { |
| 304 | const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots); |
| 305 | |
| 306 | // The segment call should somehow be told the spline order at compile time. |
| 307 | A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots); |
| 308 | } |
| 309 | A(0,0) = 1.0; |
| 310 | A(n-1,n-1) = 1.0; |
| 311 | |
| 312 | HouseholderQR<MatrixType> qr(A); |
| 313 | |
| 314 | // Here, we are creating a temporary due to an Eigen issue. |
| 315 | ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose(); |
| 316 | |
| 317 | return SplineType(knots, ctrls); |
| 318 | } |
| 319 | |
| 320 | template <typename SplineType> |
| 321 | template <typename PointArrayType> |
| 322 | SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree) |
| 323 | { |
| 324 | KnotVectorType chord_lengths; // knot parameters |
| 325 | ChordLengths(pts, chord_lengths); |
| 326 | return Interpolate(pts, degree, chord_lengths); |
| 327 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 328 | |
| 329 | template <typename SplineType> |
| 330 | template <typename PointArrayType, typename IndexArray> |
| 331 | SplineType |
| 332 | SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, |
| 333 | const PointArrayType& derivatives, |
| 334 | const IndexArray& derivativeIndices, |
| 335 | const unsigned int degree, |
| 336 | const ParameterVectorType& parameters) |
| 337 | { |
| 338 | typedef typename SplineType::KnotVectorType::Scalar Scalar; |
| 339 | typedef typename SplineType::ControlPointVectorType ControlPointVectorType; |
| 340 | |
| 341 | typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType; |
| 342 | |
| 343 | const DenseIndex n = points.cols() + derivatives.cols(); |
| 344 | |
| 345 | KnotVectorType knots; |
| 346 | |
| 347 | KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots); |
| 348 | |
| 349 | // fill matrix |
| 350 | MatrixType A = MatrixType::Zero(n, n); |
| 351 | |
| 352 | // Use these dimensions for quicker populating, then transpose for solving. |
| 353 | MatrixType b(points.rows(), n); |
| 354 | |
| 355 | DenseIndex startRow; |
| 356 | DenseIndex derivativeStart; |
| 357 | |
| 358 | // End derivatives. |
| 359 | if (derivativeIndices[0] == 0) |
| 360 | { |
| 361 | A.template block<1, 2>(1, 0) << -1, 1; |
| 362 | |
| 363 | Scalar y = (knots(degree + 1) - knots(0)) / degree; |
| 364 | b.col(1) = y*derivatives.col(0); |
| 365 | |
| 366 | startRow = 2; |
| 367 | derivativeStart = 1; |
| 368 | } |
| 369 | else |
| 370 | { |
| 371 | startRow = 1; |
| 372 | derivativeStart = 0; |
| 373 | } |
| 374 | if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1) |
| 375 | { |
| 376 | A.template block<1, 2>(n - 2, n - 2) << -1, 1; |
| 377 | |
| 378 | Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree; |
| 379 | b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1); |
| 380 | } |
| 381 | |
| 382 | DenseIndex row = startRow; |
| 383 | DenseIndex derivativeIndex = derivativeStart; |
| 384 | for (DenseIndex i = 1; i < parameters.size() - 1; ++i) |
| 385 | { |
| 386 | const DenseIndex span = SplineType::Span(parameters[i], degree, knots); |
| 387 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 388 | if (derivativeIndex < derivativeIndices.size() && derivativeIndices[derivativeIndex] == i) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 389 | { |
| 390 | A.block(row, span - degree, 2, degree + 1) |
| 391 | = SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots); |
| 392 | |
| 393 | b.col(row++) = points.col(i); |
| 394 | b.col(row++) = derivatives.col(derivativeIndex++); |
| 395 | } |
| 396 | else |
| 397 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 398 | A.row(row).segment(span - degree, degree + 1) |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 399 | = SplineType::BasisFunctions(parameters[i], degree, knots); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 400 | b.col(row++) = points.col(i); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 401 | } |
| 402 | } |
| 403 | b.col(0) = points.col(0); |
| 404 | b.col(b.cols() - 1) = points.col(points.cols() - 1); |
| 405 | A(0,0) = 1; |
| 406 | A(n - 1, n - 1) = 1; |
| 407 | |
| 408 | // Solve |
| 409 | FullPivLU<MatrixType> lu(A); |
| 410 | ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose(); |
| 411 | |
| 412 | SplineType spline(knots, controlPoints); |
| 413 | |
| 414 | return spline; |
| 415 | } |
| 416 | |
| 417 | template <typename SplineType> |
| 418 | template <typename PointArrayType, typename IndexArray> |
| 419 | SplineType |
| 420 | SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, |
| 421 | const PointArrayType& derivatives, |
| 422 | const IndexArray& derivativeIndices, |
| 423 | const unsigned int degree) |
| 424 | { |
| 425 | ParameterVectorType parameters; |
| 426 | ChordLengths(points, parameters); |
| 427 | return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters); |
| 428 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 429 | } |
| 430 | |
| 431 | #endif // EIGEN_SPLINE_FITTING_H |