Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_BESSEL_FUNCTIONS_H |
| 11 | #define EIGEN_BESSEL_FUNCTIONS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | namespace internal { |
| 15 | |
| 16 | // Parts of this code are based on the Cephes Math Library. |
| 17 | // |
| 18 | // Cephes Math Library Release 2.8: June, 2000 |
| 19 | // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier |
| 20 | // |
| 21 | // Permission has been kindly provided by the original author |
| 22 | // to incorporate the Cephes software into the Eigen codebase: |
| 23 | // |
| 24 | // From: Stephen Moshier |
| 25 | // To: Eugene Brevdo |
| 26 | // Subject: Re: Permission to wrap several cephes functions in Eigen |
| 27 | // |
| 28 | // Hello Eugene, |
| 29 | // |
| 30 | // Thank you for writing. |
| 31 | // |
| 32 | // If your licensing is similar to BSD, the formal way that has been |
| 33 | // handled is simply to add a statement to the effect that you are incorporating |
| 34 | // the Cephes software by permission of the author. |
| 35 | // |
| 36 | // Good luck with your project, |
| 37 | // Steve |
| 38 | |
| 39 | |
| 40 | /**************************************************************************** |
| 41 | * Implementation of Bessel function, based on Cephes * |
| 42 | ****************************************************************************/ |
| 43 | |
| 44 | template <typename Scalar> |
| 45 | struct bessel_i0e_retval { |
| 46 | typedef Scalar type; |
| 47 | }; |
| 48 | |
| 49 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 50 | struct generic_i0e { |
| 51 | EIGEN_DEVICE_FUNC |
| 52 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 53 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 54 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 55 | return ScalarType(0); |
| 56 | } |
| 57 | }; |
| 58 | |
| 59 | template <typename T> |
| 60 | struct generic_i0e<T, float> { |
| 61 | EIGEN_DEVICE_FUNC |
| 62 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 63 | /* i0ef.c |
| 64 | * |
| 65 | * Modified Bessel function of order zero, |
| 66 | * exponentially scaled |
| 67 | * |
| 68 | * |
| 69 | * |
| 70 | * SYNOPSIS: |
| 71 | * |
| 72 | * float x, y, i0ef(); |
| 73 | * |
| 74 | * y = i0ef( x ); |
| 75 | * |
| 76 | * |
| 77 | * |
| 78 | * DESCRIPTION: |
| 79 | * |
| 80 | * Returns exponentially scaled modified Bessel function |
| 81 | * of order zero of the argument. |
| 82 | * |
| 83 | * The function is defined as i0e(x) = exp(-|x|) j0( ix ). |
| 84 | * |
| 85 | * |
| 86 | * |
| 87 | * ACCURACY: |
| 88 | * |
| 89 | * Relative error: |
| 90 | * arithmetic domain # trials peak rms |
| 91 | * IEEE 0,30 100000 3.7e-7 7.0e-8 |
| 92 | * See i0f(). |
| 93 | * |
| 94 | */ |
| 95 | |
| 96 | const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f, |
| 97 | -2.67079385394061173391E-7f, 1.11738753912010371815E-6f, |
| 98 | -4.41673835845875056359E-6f, 1.64484480707288970893E-5f, |
| 99 | -5.75419501008210370398E-5f, 1.88502885095841655729E-4f, |
| 100 | -5.76375574538582365885E-4f, 1.63947561694133579842E-3f, |
| 101 | -4.32430999505057594430E-3f, 1.05464603945949983183E-2f, |
| 102 | -2.37374148058994688156E-2f, 4.93052842396707084878E-2f, |
| 103 | -9.49010970480476444210E-2f, 1.71620901522208775349E-1f, |
| 104 | -3.04682672343198398683E-1f, 6.76795274409476084995E-1f}; |
| 105 | |
| 106 | const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f, |
| 107 | 2.04891858946906374183E-7f, 2.89137052083475648297E-6f, |
| 108 | 6.88975834691682398426E-5f, 3.36911647825569408990E-3f, |
| 109 | 8.04490411014108831608E-1f}; |
| 110 | T y = pabs(x); |
| 111 | T y_le_eight = internal::pchebevl<T, 18>::run( |
| 112 | pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A); |
| 113 | T y_gt_eight = pmul( |
| 114 | internal::pchebevl<T, 7>::run( |
| 115 | psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B), |
| 116 | prsqrt(y)); |
| 117 | // TODO: Perhaps instead check whether all packet elements are in |
| 118 | // [-8, 8] and evaluate a branch based off of that. It's possible |
| 119 | // in practice most elements are in this region. |
| 120 | return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight); |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | template <typename T> |
| 125 | struct generic_i0e<T, double> { |
| 126 | EIGEN_DEVICE_FUNC |
| 127 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 128 | /* i0e.c |
| 129 | * |
| 130 | * Modified Bessel function of order zero, |
| 131 | * exponentially scaled |
| 132 | * |
| 133 | * |
| 134 | * |
| 135 | * SYNOPSIS: |
| 136 | * |
| 137 | * double x, y, i0e(); |
| 138 | * |
| 139 | * y = i0e( x ); |
| 140 | * |
| 141 | * |
| 142 | * |
| 143 | * DESCRIPTION: |
| 144 | * |
| 145 | * Returns exponentially scaled modified Bessel function |
| 146 | * of order zero of the argument. |
| 147 | * |
| 148 | * The function is defined as i0e(x) = exp(-|x|) j0( ix ). |
| 149 | * |
| 150 | * |
| 151 | * |
| 152 | * ACCURACY: |
| 153 | * |
| 154 | * Relative error: |
| 155 | * arithmetic domain # trials peak rms |
| 156 | * IEEE 0,30 30000 5.4e-16 1.2e-16 |
| 157 | * See i0(). |
| 158 | * |
| 159 | */ |
| 160 | |
| 161 | const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17, |
| 162 | -2.43127984654795469359E-16, 1.71539128555513303061E-15, |
| 163 | -1.16853328779934516808E-14, 7.67618549860493561688E-14, |
| 164 | -4.85644678311192946090E-13, 2.95505266312963983461E-12, |
| 165 | -1.72682629144155570723E-11, 9.67580903537323691224E-11, |
| 166 | -5.18979560163526290666E-10, 2.65982372468238665035E-9, |
| 167 | -1.30002500998624804212E-8, 6.04699502254191894932E-8, |
| 168 | -2.67079385394061173391E-7, 1.11738753912010371815E-6, |
| 169 | -4.41673835845875056359E-6, 1.64484480707288970893E-5, |
| 170 | -5.75419501008210370398E-5, 1.88502885095841655729E-4, |
| 171 | -5.76375574538582365885E-4, 1.63947561694133579842E-3, |
| 172 | -4.32430999505057594430E-3, 1.05464603945949983183E-2, |
| 173 | -2.37374148058994688156E-2, 4.93052842396707084878E-2, |
| 174 | -9.49010970480476444210E-2, 1.71620901522208775349E-1, |
| 175 | -3.04682672343198398683E-1, 6.76795274409476084995E-1}; |
| 176 | const double B[] = { |
| 177 | -7.23318048787475395456E-18, -4.83050448594418207126E-18, |
| 178 | 4.46562142029675999901E-17, 3.46122286769746109310E-17, |
| 179 | -2.82762398051658348494E-16, -3.42548561967721913462E-16, |
| 180 | 1.77256013305652638360E-15, 3.81168066935262242075E-15, |
| 181 | -9.55484669882830764870E-15, -4.15056934728722208663E-14, |
| 182 | 1.54008621752140982691E-14, 3.85277838274214270114E-13, |
| 183 | 7.18012445138366623367E-13, -1.79417853150680611778E-12, |
| 184 | -1.32158118404477131188E-11, -3.14991652796324136454E-11, |
| 185 | 1.18891471078464383424E-11, 4.94060238822496958910E-10, |
| 186 | 3.39623202570838634515E-9, 2.26666899049817806459E-8, |
| 187 | 2.04891858946906374183E-7, 2.89137052083475648297E-6, |
| 188 | 6.88975834691682398426E-5, 3.36911647825569408990E-3, |
| 189 | 8.04490411014108831608E-1}; |
| 190 | T y = pabs(x); |
| 191 | T y_le_eight = internal::pchebevl<T, 30>::run( |
| 192 | pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A); |
| 193 | T y_gt_eight = pmul( |
| 194 | internal::pchebevl<T, 25>::run( |
| 195 | psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B), |
| 196 | prsqrt(y)); |
| 197 | // TODO: Perhaps instead check whether all packet elements are in |
| 198 | // [-8, 8] and evaluate a branch based off of that. It's possible |
| 199 | // in practice most elements are in this region. |
| 200 | return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight); |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | template <typename T> |
| 205 | struct bessel_i0e_impl { |
| 206 | EIGEN_DEVICE_FUNC |
| 207 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 208 | return generic_i0e<T>::run(x); |
| 209 | } |
| 210 | }; |
| 211 | |
| 212 | template <typename Scalar> |
| 213 | struct bessel_i0_retval { |
| 214 | typedef Scalar type; |
| 215 | }; |
| 216 | |
| 217 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 218 | struct generic_i0 { |
| 219 | EIGEN_DEVICE_FUNC |
| 220 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 221 | return pmul( |
| 222 | pexp(pabs(x)), |
| 223 | generic_i0e<T, ScalarType>::run(x)); |
| 224 | } |
| 225 | }; |
| 226 | |
| 227 | template <typename T> |
| 228 | struct bessel_i0_impl { |
| 229 | EIGEN_DEVICE_FUNC |
| 230 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 231 | return generic_i0<T>::run(x); |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | template <typename Scalar> |
| 236 | struct bessel_i1e_retval { |
| 237 | typedef Scalar type; |
| 238 | }; |
| 239 | |
| 240 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type > |
| 241 | struct generic_i1e { |
| 242 | EIGEN_DEVICE_FUNC |
| 243 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 244 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 245 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 246 | return ScalarType(0); |
| 247 | } |
| 248 | }; |
| 249 | |
| 250 | template <typename T> |
| 251 | struct generic_i1e<T, float> { |
| 252 | EIGEN_DEVICE_FUNC |
| 253 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 254 | /* i1ef.c |
| 255 | * |
| 256 | * Modified Bessel function of order one, |
| 257 | * exponentially scaled |
| 258 | * |
| 259 | * |
| 260 | * |
| 261 | * SYNOPSIS: |
| 262 | * |
| 263 | * float x, y, i1ef(); |
| 264 | * |
| 265 | * y = i1ef( x ); |
| 266 | * |
| 267 | * |
| 268 | * |
| 269 | * DESCRIPTION: |
| 270 | * |
| 271 | * Returns exponentially scaled modified Bessel function |
| 272 | * of order one of the argument. |
| 273 | * |
| 274 | * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). |
| 275 | * |
| 276 | * |
| 277 | * |
| 278 | * ACCURACY: |
| 279 | * |
| 280 | * Relative error: |
| 281 | * arithmetic domain # trials peak rms |
| 282 | * IEEE 0, 30 30000 1.5e-6 1.5e-7 |
| 283 | * See i1(). |
| 284 | * |
| 285 | */ |
| 286 | const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f, |
| 287 | 2.00329475355213526229E-7f, -8.56872026469545474066E-7f, |
| 288 | 3.47025130813767847674E-6f, -1.32731636560394358279E-5f, |
| 289 | 4.78156510755005422638E-5f, -1.61760815825896745588E-4f, |
| 290 | 5.12285956168575772895E-4f, -1.51357245063125314899E-3f, |
| 291 | 4.15642294431288815669E-3f, -1.05640848946261981558E-2f, |
| 292 | 2.47264490306265168283E-2f, -5.29459812080949914269E-2f, |
| 293 | 1.02643658689847095384E-1f, -1.76416518357834055153E-1f, |
| 294 | 2.52587186443633654823E-1f}; |
| 295 | |
| 296 | const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f, |
| 297 | -2.51223623787020892529E-7f, -3.88256480887769039346E-6f, |
| 298 | -1.10588938762623716291E-4f, -9.76109749136146840777E-3f, |
| 299 | 7.78576235018280120474E-1f}; |
| 300 | |
| 301 | |
| 302 | T y = pabs(x); |
| 303 | T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run( |
| 304 | pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A)); |
| 305 | T y_gt_eight = pmul( |
| 306 | internal::pchebevl<T, 7>::run( |
| 307 | psub(pdiv(pset1<T>(32.0f), y), |
| 308 | pset1<T>(2.0f)), B), |
| 309 | prsqrt(y)); |
| 310 | // TODO: Perhaps instead check whether all packet elements are in |
| 311 | // [-8, 8] and evaluate a branch based off of that. It's possible |
| 312 | // in practice most elements are in this region. |
| 313 | y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight); |
| 314 | return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y); |
| 315 | } |
| 316 | }; |
| 317 | |
| 318 | template <typename T> |
| 319 | struct generic_i1e<T, double> { |
| 320 | EIGEN_DEVICE_FUNC |
| 321 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 322 | /* i1e.c |
| 323 | * |
| 324 | * Modified Bessel function of order one, |
| 325 | * exponentially scaled |
| 326 | * |
| 327 | * |
| 328 | * |
| 329 | * SYNOPSIS: |
| 330 | * |
| 331 | * double x, y, i1e(); |
| 332 | * |
| 333 | * y = i1e( x ); |
| 334 | * |
| 335 | * |
| 336 | * |
| 337 | * DESCRIPTION: |
| 338 | * |
| 339 | * Returns exponentially scaled modified Bessel function |
| 340 | * of order one of the argument. |
| 341 | * |
| 342 | * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). |
| 343 | * |
| 344 | * |
| 345 | * |
| 346 | * ACCURACY: |
| 347 | * |
| 348 | * Relative error: |
| 349 | * arithmetic domain # trials peak rms |
| 350 | * IEEE 0, 30 30000 2.0e-15 2.0e-16 |
| 351 | * See i1(). |
| 352 | * |
| 353 | */ |
| 354 | const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17, |
| 355 | 1.55363195773620046921E-16, -1.10559694773538630805E-15, |
| 356 | 7.60068429473540693410E-15, -5.04218550472791168711E-14, |
| 357 | 3.22379336594557470981E-13, -1.98397439776494371520E-12, |
| 358 | 1.17361862988909016308E-11, -6.66348972350202774223E-11, |
| 359 | 3.62559028155211703701E-10, -1.88724975172282928790E-9, |
| 360 | 9.38153738649577178388E-9, -4.44505912879632808065E-8, |
| 361 | 2.00329475355213526229E-7, -8.56872026469545474066E-7, |
| 362 | 3.47025130813767847674E-6, -1.32731636560394358279E-5, |
| 363 | 4.78156510755005422638E-5, -1.61760815825896745588E-4, |
| 364 | 5.12285956168575772895E-4, -1.51357245063125314899E-3, |
| 365 | 4.15642294431288815669E-3, -1.05640848946261981558E-2, |
| 366 | 2.47264490306265168283E-2, -5.29459812080949914269E-2, |
| 367 | 1.02643658689847095384E-1, -1.76416518357834055153E-1, |
| 368 | 2.52587186443633654823E-1}; |
| 369 | const double B[] = { |
| 370 | 7.51729631084210481353E-18, 4.41434832307170791151E-18, |
| 371 | -4.65030536848935832153E-17, -3.20952592199342395980E-17, |
| 372 | 2.96262899764595013876E-16, 3.30820231092092828324E-16, |
| 373 | -1.88035477551078244854E-15, -3.81440307243700780478E-15, |
| 374 | 1.04202769841288027642E-14, 4.27244001671195135429E-14, |
| 375 | -2.10154184277266431302E-14, -4.08355111109219731823E-13, |
| 376 | -7.19855177624590851209E-13, 2.03562854414708950722E-12, |
| 377 | 1.41258074366137813316E-11, 3.25260358301548823856E-11, |
| 378 | -1.89749581235054123450E-11, -5.58974346219658380687E-10, |
| 379 | -3.83538038596423702205E-9, -2.63146884688951950684E-8, |
| 380 | -2.51223623787020892529E-7, -3.88256480887769039346E-6, |
| 381 | -1.10588938762623716291E-4, -9.76109749136146840777E-3, |
| 382 | 7.78576235018280120474E-1}; |
| 383 | T y = pabs(x); |
| 384 | T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run( |
| 385 | pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A)); |
| 386 | T y_gt_eight = pmul( |
| 387 | internal::pchebevl<T, 25>::run( |
| 388 | psub(pdiv(pset1<T>(32.0), y), |
| 389 | pset1<T>(2.0)), B), |
| 390 | prsqrt(y)); |
| 391 | // TODO: Perhaps instead check whether all packet elements are in |
| 392 | // [-8, 8] and evaluate a branch based off of that. It's possible |
| 393 | // in practice most elements are in this region. |
| 394 | y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight); |
| 395 | return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y); |
| 396 | } |
| 397 | }; |
| 398 | |
| 399 | template <typename T> |
| 400 | struct bessel_i1e_impl { |
| 401 | EIGEN_DEVICE_FUNC |
| 402 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 403 | return generic_i1e<T>::run(x); |
| 404 | } |
| 405 | }; |
| 406 | |
| 407 | template <typename T> |
| 408 | struct bessel_i1_retval { |
| 409 | typedef T type; |
| 410 | }; |
| 411 | |
| 412 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 413 | struct generic_i1 { |
| 414 | EIGEN_DEVICE_FUNC |
| 415 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 416 | return pmul( |
| 417 | pexp(pabs(x)), |
| 418 | generic_i1e<T, ScalarType>::run(x)); |
| 419 | } |
| 420 | }; |
| 421 | |
| 422 | template <typename T> |
| 423 | struct bessel_i1_impl { |
| 424 | EIGEN_DEVICE_FUNC |
| 425 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 426 | return generic_i1<T>::run(x); |
| 427 | } |
| 428 | }; |
| 429 | |
| 430 | template <typename T> |
| 431 | struct bessel_k0e_retval { |
| 432 | typedef T type; |
| 433 | }; |
| 434 | |
| 435 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 436 | struct generic_k0e { |
| 437 | EIGEN_DEVICE_FUNC |
| 438 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 439 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 440 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 441 | return ScalarType(0); |
| 442 | } |
| 443 | }; |
| 444 | |
| 445 | template <typename T> |
| 446 | struct generic_k0e<T, float> { |
| 447 | EIGEN_DEVICE_FUNC |
| 448 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 449 | /* k0ef.c |
| 450 | * Modified Bessel function, third kind, order zero, |
| 451 | * exponentially scaled |
| 452 | * |
| 453 | * |
| 454 | * |
| 455 | * SYNOPSIS: |
| 456 | * |
| 457 | * float x, y, k0ef(); |
| 458 | * |
| 459 | * y = k0ef( x ); |
| 460 | * |
| 461 | * |
| 462 | * |
| 463 | * DESCRIPTION: |
| 464 | * |
| 465 | * Returns exponentially scaled modified Bessel function |
| 466 | * of the third kind of order zero of the argument. |
| 467 | * |
| 468 | * |
| 469 | * |
| 470 | * ACCURACY: |
| 471 | * |
| 472 | * Relative error: |
| 473 | * arithmetic domain # trials peak rms |
| 474 | * IEEE 0, 30 30000 8.1e-7 7.8e-8 |
| 475 | * See k0(). |
| 476 | * |
| 477 | */ |
| 478 | |
| 479 | const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f, |
| 480 | 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, |
| 481 | 3.59799365153615016266E-2f, 3.44289899924628486886E-1f, |
| 482 | -5.35327393233902768720E-1f}; |
| 483 | |
| 484 | const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f, |
| 485 | -4.66048989768794782956E-8f, 2.76681363944501510342E-7f, |
| 486 | -1.83175552271911948767E-6f, 1.39498137188764993662E-5f, |
| 487 | -1.28495495816278026384E-4f, 1.56988388573005337491E-3f, |
| 488 | -3.14481013119645005427E-2f, 2.44030308206595545468E0f}; |
| 489 | const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); |
| 490 | const T two = pset1<T>(2.0); |
| 491 | T x_le_two = internal::pchebevl<T, 7>::run( |
| 492 | pmadd(x, x, pset1<T>(-2.0)), A); |
| 493 | x_le_two = pmadd( |
| 494 | generic_i0<T, float>::run(x), pnegate( |
| 495 | plog(pmul(pset1<T>(0.5), x))), x_le_two); |
| 496 | x_le_two = pmul(pexp(x), x_le_two); |
| 497 | T x_gt_two = pmul( |
| 498 | internal::pchebevl<T, 10>::run( |
| 499 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 500 | prsqrt(x)); |
| 501 | return pselect( |
| 502 | pcmp_le(x, pset1<T>(0.0)), |
| 503 | MAXNUM, |
| 504 | pselect(pcmp_le(x, two), x_le_two, x_gt_two)); |
| 505 | } |
| 506 | }; |
| 507 | |
| 508 | template <typename T> |
| 509 | struct generic_k0e<T, double> { |
| 510 | EIGEN_DEVICE_FUNC |
| 511 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 512 | /* k0e.c |
| 513 | * Modified Bessel function, third kind, order zero, |
| 514 | * exponentially scaled |
| 515 | * |
| 516 | * |
| 517 | * |
| 518 | * SYNOPSIS: |
| 519 | * |
| 520 | * double x, y, k0e(); |
| 521 | * |
| 522 | * y = k0e( x ); |
| 523 | * |
| 524 | * |
| 525 | * |
| 526 | * DESCRIPTION: |
| 527 | * |
| 528 | * Returns exponentially scaled modified Bessel function |
| 529 | * of the third kind of order zero of the argument. |
| 530 | * |
| 531 | * |
| 532 | * |
| 533 | * ACCURACY: |
| 534 | * |
| 535 | * Relative error: |
| 536 | * arithmetic domain # trials peak rms |
| 537 | * IEEE 0, 30 30000 1.4e-15 1.4e-16 |
| 538 | * See k0(). |
| 539 | * |
| 540 | */ |
| 541 | |
| 542 | const double A[] = { |
| 543 | 1.37446543561352307156E-16, |
| 544 | 4.25981614279661018399E-14, |
| 545 | 1.03496952576338420167E-11, |
| 546 | 1.90451637722020886025E-9, |
| 547 | 2.53479107902614945675E-7, |
| 548 | 2.28621210311945178607E-5, |
| 549 | 1.26461541144692592338E-3, |
| 550 | 3.59799365153615016266E-2, |
| 551 | 3.44289899924628486886E-1, |
| 552 | -5.35327393233902768720E-1}; |
| 553 | const double B[] = { |
| 554 | 5.30043377268626276149E-18, -1.64758043015242134646E-17, |
| 555 | 5.21039150503902756861E-17, -1.67823109680541210385E-16, |
| 556 | 5.51205597852431940784E-16, -1.84859337734377901440E-15, |
| 557 | 6.34007647740507060557E-15, -2.22751332699166985548E-14, |
| 558 | 8.03289077536357521100E-14, -2.98009692317273043925E-13, |
| 559 | 1.14034058820847496303E-12, -4.51459788337394416547E-12, |
| 560 | 1.85594911495471785253E-11, -7.95748924447710747776E-11, |
| 561 | 3.57739728140030116597E-10, -1.69753450938905987466E-9, |
| 562 | 8.57403401741422608519E-9, -4.66048989768794782956E-8, |
| 563 | 2.76681363944501510342E-7, -1.83175552271911948767E-6, |
| 564 | 1.39498137188764993662E-5, -1.28495495816278026384E-4, |
| 565 | 1.56988388573005337491E-3, -3.14481013119645005427E-2, |
| 566 | 2.44030308206595545468E0 |
| 567 | }; |
| 568 | const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); |
| 569 | const T two = pset1<T>(2.0); |
| 570 | T x_le_two = internal::pchebevl<T, 10>::run( |
| 571 | pmadd(x, x, pset1<T>(-2.0)), A); |
| 572 | x_le_two = pmadd( |
| 573 | generic_i0<T, double>::run(x), pmul( |
| 574 | pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two); |
| 575 | x_le_two = pmul(pexp(x), x_le_two); |
| 576 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 577 | T x_gt_two = pmul( |
| 578 | internal::pchebevl<T, 25>::run( |
| 579 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 580 | prsqrt(x)); |
| 581 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 582 | } |
| 583 | }; |
| 584 | |
| 585 | template <typename T> |
| 586 | struct bessel_k0e_impl { |
| 587 | EIGEN_DEVICE_FUNC |
| 588 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 589 | return generic_k0e<T>::run(x); |
| 590 | } |
| 591 | }; |
| 592 | |
| 593 | template <typename T> |
| 594 | struct bessel_k0_retval { |
| 595 | typedef T type; |
| 596 | }; |
| 597 | |
| 598 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 599 | struct generic_k0 { |
| 600 | EIGEN_DEVICE_FUNC |
| 601 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 602 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 603 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 604 | return ScalarType(0); |
| 605 | } |
| 606 | }; |
| 607 | |
| 608 | template <typename T> |
| 609 | struct generic_k0<T, float> { |
| 610 | EIGEN_DEVICE_FUNC |
| 611 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 612 | /* k0f.c |
| 613 | * Modified Bessel function, third kind, order zero |
| 614 | * |
| 615 | * |
| 616 | * |
| 617 | * SYNOPSIS: |
| 618 | * |
| 619 | * float x, y, k0f(); |
| 620 | * |
| 621 | * y = k0f( x ); |
| 622 | * |
| 623 | * |
| 624 | * |
| 625 | * DESCRIPTION: |
| 626 | * |
| 627 | * Returns modified Bessel function of the third kind |
| 628 | * of order zero of the argument. |
| 629 | * |
| 630 | * The range is partitioned into the two intervals [0,8] and |
| 631 | * (8, infinity). Chebyshev polynomial expansions are employed |
| 632 | * in each interval. |
| 633 | * |
| 634 | * |
| 635 | * |
| 636 | * ACCURACY: |
| 637 | * |
| 638 | * Tested at 2000 random points between 0 and 8. Peak absolute |
| 639 | * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. |
| 640 | * Relative error: |
| 641 | * arithmetic domain # trials peak rms |
| 642 | * IEEE 0, 30 30000 7.8e-7 8.5e-8 |
| 643 | * |
| 644 | * ERROR MESSAGES: |
| 645 | * |
| 646 | * message condition value returned |
| 647 | * K0 domain x <= 0 MAXNUM |
| 648 | * |
| 649 | */ |
| 650 | |
| 651 | const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f, |
| 652 | 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, |
| 653 | 3.59799365153615016266E-2f, 3.44289899924628486886E-1f, |
| 654 | -5.35327393233902768720E-1f}; |
| 655 | |
| 656 | const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f, |
| 657 | -4.66048989768794782956E-8f, 2.76681363944501510342E-7f, |
| 658 | -1.83175552271911948767E-6f, 1.39498137188764993662E-5f, |
| 659 | -1.28495495816278026384E-4f, 1.56988388573005337491E-3f, |
| 660 | -3.14481013119645005427E-2f, 2.44030308206595545468E0f}; |
| 661 | const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); |
| 662 | const T two = pset1<T>(2.0); |
| 663 | T x_le_two = internal::pchebevl<T, 7>::run( |
| 664 | pmadd(x, x, pset1<T>(-2.0)), A); |
| 665 | x_le_two = pmadd( |
| 666 | generic_i0<T, float>::run(x), pnegate( |
| 667 | plog(pmul(pset1<T>(0.5), x))), x_le_two); |
| 668 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 669 | T x_gt_two = pmul( |
| 670 | pmul( |
| 671 | pexp(pnegate(x)), |
| 672 | internal::pchebevl<T, 10>::run( |
| 673 | psub(pdiv(pset1<T>(8.0), x), two), B)), |
| 674 | prsqrt(x)); |
| 675 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 676 | } |
| 677 | }; |
| 678 | |
| 679 | template <typename T> |
| 680 | struct generic_k0<T, double> { |
| 681 | EIGEN_DEVICE_FUNC |
| 682 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 683 | /* |
| 684 | * |
| 685 | * Modified Bessel function, third kind, order zero, |
| 686 | * exponentially scaled |
| 687 | * |
| 688 | * |
| 689 | * |
| 690 | * SYNOPSIS: |
| 691 | * |
| 692 | * double x, y, k0(); |
| 693 | * |
| 694 | * y = k0( x ); |
| 695 | * |
| 696 | * |
| 697 | * |
| 698 | * DESCRIPTION: |
| 699 | * |
| 700 | * Returns exponentially scaled modified Bessel function |
| 701 | * of the third kind of order zero of the argument. |
| 702 | * |
| 703 | * |
| 704 | * |
| 705 | * ACCURACY: |
| 706 | * |
| 707 | * Relative error: |
| 708 | * arithmetic domain # trials peak rms |
| 709 | * IEEE 0, 30 30000 1.4e-15 1.4e-16 |
| 710 | * See k0(). |
| 711 | * |
| 712 | */ |
| 713 | const double A[] = { |
| 714 | 1.37446543561352307156E-16, |
| 715 | 4.25981614279661018399E-14, |
| 716 | 1.03496952576338420167E-11, |
| 717 | 1.90451637722020886025E-9, |
| 718 | 2.53479107902614945675E-7, |
| 719 | 2.28621210311945178607E-5, |
| 720 | 1.26461541144692592338E-3, |
| 721 | 3.59799365153615016266E-2, |
| 722 | 3.44289899924628486886E-1, |
| 723 | -5.35327393233902768720E-1}; |
| 724 | const double B[] = { |
| 725 | 5.30043377268626276149E-18, -1.64758043015242134646E-17, |
| 726 | 5.21039150503902756861E-17, -1.67823109680541210385E-16, |
| 727 | 5.51205597852431940784E-16, -1.84859337734377901440E-15, |
| 728 | 6.34007647740507060557E-15, -2.22751332699166985548E-14, |
| 729 | 8.03289077536357521100E-14, -2.98009692317273043925E-13, |
| 730 | 1.14034058820847496303E-12, -4.51459788337394416547E-12, |
| 731 | 1.85594911495471785253E-11, -7.95748924447710747776E-11, |
| 732 | 3.57739728140030116597E-10, -1.69753450938905987466E-9, |
| 733 | 8.57403401741422608519E-9, -4.66048989768794782956E-8, |
| 734 | 2.76681363944501510342E-7, -1.83175552271911948767E-6, |
| 735 | 1.39498137188764993662E-5, -1.28495495816278026384E-4, |
| 736 | 1.56988388573005337491E-3, -3.14481013119645005427E-2, |
| 737 | 2.44030308206595545468E0 |
| 738 | }; |
| 739 | const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); |
| 740 | const T two = pset1<T>(2.0); |
| 741 | T x_le_two = internal::pchebevl<T, 10>::run( |
| 742 | pmadd(x, x, pset1<T>(-2.0)), A); |
| 743 | x_le_two = pmadd( |
| 744 | generic_i0<T, double>::run(x), pnegate( |
| 745 | plog(pmul(pset1<T>(0.5), x))), x_le_two); |
| 746 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 747 | T x_gt_two = pmul( |
| 748 | pmul( |
| 749 | pexp(-x), |
| 750 | internal::pchebevl<T, 25>::run( |
| 751 | psub(pdiv(pset1<T>(8.0), x), two), B)), |
| 752 | prsqrt(x)); |
| 753 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 754 | } |
| 755 | }; |
| 756 | |
| 757 | template <typename T> |
| 758 | struct bessel_k0_impl { |
| 759 | EIGEN_DEVICE_FUNC |
| 760 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 761 | return generic_k0<T>::run(x); |
| 762 | } |
| 763 | }; |
| 764 | |
| 765 | template <typename T> |
| 766 | struct bessel_k1e_retval { |
| 767 | typedef T type; |
| 768 | }; |
| 769 | |
| 770 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 771 | struct generic_k1e { |
| 772 | EIGEN_DEVICE_FUNC |
| 773 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 774 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 775 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 776 | return ScalarType(0); |
| 777 | } |
| 778 | }; |
| 779 | |
| 780 | template <typename T> |
| 781 | struct generic_k1e<T, float> { |
| 782 | EIGEN_DEVICE_FUNC |
| 783 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 784 | /* k1ef.c |
| 785 | * |
| 786 | * Modified Bessel function, third kind, order one, |
| 787 | * exponentially scaled |
| 788 | * |
| 789 | * |
| 790 | * |
| 791 | * SYNOPSIS: |
| 792 | * |
| 793 | * float x, y, k1ef(); |
| 794 | * |
| 795 | * y = k1ef( x ); |
| 796 | * |
| 797 | * |
| 798 | * |
| 799 | * DESCRIPTION: |
| 800 | * |
| 801 | * Returns exponentially scaled modified Bessel function |
| 802 | * of the third kind of order one of the argument: |
| 803 | * |
| 804 | * k1e(x) = exp(x) * k1(x). |
| 805 | * |
| 806 | * |
| 807 | * |
| 808 | * ACCURACY: |
| 809 | * |
| 810 | * Relative error: |
| 811 | * arithmetic domain # trials peak rms |
| 812 | * IEEE 0, 30 30000 4.9e-7 6.7e-8 |
| 813 | * See k1(). |
| 814 | * |
| 815 | */ |
| 816 | |
| 817 | const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f, |
| 818 | -1.73028895751305206302E-4f, -6.97572385963986435018E-3f, |
| 819 | -1.22611180822657148235E-1f, -3.53155960776544875667E-1f, |
| 820 | 1.52530022733894777053E0f}; |
| 821 | const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f, |
| 822 | 5.74108412545004946722E-8f, -3.50196060308781257119E-7f, |
| 823 | 2.40648494783721712015E-6f, -1.93619797416608296024E-5f, |
| 824 | 1.95215518471351631108E-4f, -2.85781685962277938680E-3f, |
| 825 | 1.03923736576817238437E-1f, 2.72062619048444266945E0f}; |
| 826 | const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); |
| 827 | const T two = pset1<T>(2.0); |
| 828 | T x_le_two = pdiv(internal::pchebevl<T, 7>::run( |
| 829 | pmadd(x, x, pset1<T>(-2.0)), A), x); |
| 830 | x_le_two = pmadd( |
| 831 | generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); |
| 832 | x_le_two = pmul(x_le_two, pexp(x)); |
| 833 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 834 | T x_gt_two = pmul( |
| 835 | internal::pchebevl<T, 10>::run( |
| 836 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 837 | prsqrt(x)); |
| 838 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 839 | } |
| 840 | }; |
| 841 | |
| 842 | template <typename T> |
| 843 | struct generic_k1e<T, double> { |
| 844 | EIGEN_DEVICE_FUNC |
| 845 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 846 | /* k1e.c |
| 847 | * |
| 848 | * Modified Bessel function, third kind, order one, |
| 849 | * exponentially scaled |
| 850 | * |
| 851 | * |
| 852 | * |
| 853 | * SYNOPSIS: |
| 854 | * |
| 855 | * double x, y, k1e(); |
| 856 | * |
| 857 | * y = k1e( x ); |
| 858 | * |
| 859 | * |
| 860 | * |
| 861 | * DESCRIPTION: |
| 862 | * |
| 863 | * Returns exponentially scaled modified Bessel function |
| 864 | * of the third kind of order one of the argument: |
| 865 | * |
| 866 | * k1e(x) = exp(x) * k1(x). |
| 867 | * |
| 868 | * |
| 869 | * |
| 870 | * ACCURACY: |
| 871 | * |
| 872 | * Relative error: |
| 873 | * arithmetic domain # trials peak rms |
| 874 | * IEEE 0, 30 30000 7.8e-16 1.2e-16 |
| 875 | * See k1(). |
| 876 | * |
| 877 | */ |
| 878 | const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15, |
| 879 | -6.66690169419932900609E-13, -1.41148839263352776110E-10, |
| 880 | -2.21338763073472585583E-8, -2.43340614156596823496E-6, |
| 881 | -1.73028895751305206302E-4, -6.97572385963986435018E-3, |
| 882 | -1.22611180822657148235E-1, -3.53155960776544875667E-1, |
| 883 | 1.52530022733894777053E0}; |
| 884 | const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17, |
| 885 | -5.68946255844285935196E-17, 1.83809354436663880070E-16, |
| 886 | -6.05704724837331885336E-16, 2.03870316562433424052E-15, |
| 887 | -7.01983709041831346144E-15, 2.47715442448130437068E-14, |
| 888 | -8.97670518232499435011E-14, 3.34841966607842919884E-13, |
| 889 | -1.28917396095102890680E-12, 5.13963967348173025100E-12, |
| 890 | -2.12996783842756842877E-11, 9.21831518760500529508E-11, |
| 891 | -4.19035475934189648750E-10, 2.01504975519703286596E-9, |
| 892 | -1.03457624656780970260E-8, 5.74108412545004946722E-8, |
| 893 | -3.50196060308781257119E-7, 2.40648494783721712015E-6, |
| 894 | -1.93619797416608296024E-5, 1.95215518471351631108E-4, |
| 895 | -2.85781685962277938680E-3, 1.03923736576817238437E-1, |
| 896 | 2.72062619048444266945E0}; |
| 897 | const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); |
| 898 | const T two = pset1<T>(2.0); |
| 899 | T x_le_two = pdiv(internal::pchebevl<T, 11>::run( |
| 900 | pmadd(x, x, pset1<T>(-2.0)), A), x); |
| 901 | x_le_two = pmadd( |
| 902 | generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); |
| 903 | x_le_two = pmul(x_le_two, pexp(x)); |
| 904 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 905 | T x_gt_two = pmul( |
| 906 | internal::pchebevl<T, 25>::run( |
| 907 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 908 | prsqrt(x)); |
| 909 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 910 | } |
| 911 | }; |
| 912 | |
| 913 | template <typename T> |
| 914 | struct bessel_k1e_impl { |
| 915 | EIGEN_DEVICE_FUNC |
| 916 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 917 | return generic_k1e<T>::run(x); |
| 918 | } |
| 919 | }; |
| 920 | |
| 921 | template <typename T> |
| 922 | struct bessel_k1_retval { |
| 923 | typedef T type; |
| 924 | }; |
| 925 | |
| 926 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 927 | struct generic_k1 { |
| 928 | EIGEN_DEVICE_FUNC |
| 929 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 930 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 931 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 932 | return ScalarType(0); |
| 933 | } |
| 934 | }; |
| 935 | |
| 936 | template <typename T> |
| 937 | struct generic_k1<T, float> { |
| 938 | EIGEN_DEVICE_FUNC |
| 939 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 940 | /* k1f.c |
| 941 | * Modified Bessel function, third kind, order one |
| 942 | * |
| 943 | * |
| 944 | * |
| 945 | * SYNOPSIS: |
| 946 | * |
| 947 | * float x, y, k1f(); |
| 948 | * |
| 949 | * y = k1f( x ); |
| 950 | * |
| 951 | * |
| 952 | * |
| 953 | * DESCRIPTION: |
| 954 | * |
| 955 | * Computes the modified Bessel function of the third kind |
| 956 | * of order one of the argument. |
| 957 | * |
| 958 | * The range is partitioned into the two intervals [0,2] and |
| 959 | * (2, infinity). Chebyshev polynomial expansions are employed |
| 960 | * in each interval. |
| 961 | * |
| 962 | * |
| 963 | * |
| 964 | * ACCURACY: |
| 965 | * |
| 966 | * Relative error: |
| 967 | * arithmetic domain # trials peak rms |
| 968 | * IEEE 0, 30 30000 4.6e-7 7.6e-8 |
| 969 | * |
| 970 | * ERROR MESSAGES: |
| 971 | * |
| 972 | * message condition value returned |
| 973 | * k1 domain x <= 0 MAXNUM |
| 974 | * |
| 975 | */ |
| 976 | |
| 977 | const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f, |
| 978 | -1.73028895751305206302E-4f, -6.97572385963986435018E-3f, |
| 979 | -1.22611180822657148235E-1f, -3.53155960776544875667E-1f, |
| 980 | 1.52530022733894777053E0f}; |
| 981 | const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f, |
| 982 | 5.74108412545004946722E-8f, -3.50196060308781257119E-7f, |
| 983 | 2.40648494783721712015E-6f, -1.93619797416608296024E-5f, |
| 984 | 1.95215518471351631108E-4f, -2.85781685962277938680E-3f, |
| 985 | 1.03923736576817238437E-1f, 2.72062619048444266945E0f}; |
| 986 | const T MAXNUM = pset1<T>(NumTraits<float>::infinity()); |
| 987 | const T two = pset1<T>(2.0); |
| 988 | T x_le_two = pdiv(internal::pchebevl<T, 7>::run( |
| 989 | pmadd(x, x, pset1<T>(-2.0)), A), x); |
| 990 | x_le_two = pmadd( |
| 991 | generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); |
| 992 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 993 | T x_gt_two = pmul( |
| 994 | pexp(pnegate(x)), |
| 995 | pmul( |
| 996 | internal::pchebevl<T, 10>::run( |
| 997 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 998 | prsqrt(x))); |
| 999 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 1000 | } |
| 1001 | }; |
| 1002 | |
| 1003 | template <typename T> |
| 1004 | struct generic_k1<T, double> { |
| 1005 | EIGEN_DEVICE_FUNC |
| 1006 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1007 | /* k1.c |
| 1008 | * Modified Bessel function, third kind, order one |
| 1009 | * |
| 1010 | * |
| 1011 | * |
| 1012 | * SYNOPSIS: |
| 1013 | * |
| 1014 | * float x, y, k1f(); |
| 1015 | * |
| 1016 | * y = k1f( x ); |
| 1017 | * |
| 1018 | * |
| 1019 | * |
| 1020 | * DESCRIPTION: |
| 1021 | * |
| 1022 | * Computes the modified Bessel function of the third kind |
| 1023 | * of order one of the argument. |
| 1024 | * |
| 1025 | * The range is partitioned into the two intervals [0,2] and |
| 1026 | * (2, infinity). Chebyshev polynomial expansions are employed |
| 1027 | * in each interval. |
| 1028 | * |
| 1029 | * |
| 1030 | * |
| 1031 | * ACCURACY: |
| 1032 | * |
| 1033 | * Relative error: |
| 1034 | * arithmetic domain # trials peak rms |
| 1035 | * IEEE 0, 30 30000 4.6e-7 7.6e-8 |
| 1036 | * |
| 1037 | * ERROR MESSAGES: |
| 1038 | * |
| 1039 | * message condition value returned |
| 1040 | * k1 domain x <= 0 MAXNUM |
| 1041 | * |
| 1042 | */ |
| 1043 | const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15, |
| 1044 | -6.66690169419932900609E-13, -1.41148839263352776110E-10, |
| 1045 | -2.21338763073472585583E-8, -2.43340614156596823496E-6, |
| 1046 | -1.73028895751305206302E-4, -6.97572385963986435018E-3, |
| 1047 | -1.22611180822657148235E-1, -3.53155960776544875667E-1, |
| 1048 | 1.52530022733894777053E0}; |
| 1049 | const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17, |
| 1050 | -5.68946255844285935196E-17, 1.83809354436663880070E-16, |
| 1051 | -6.05704724837331885336E-16, 2.03870316562433424052E-15, |
| 1052 | -7.01983709041831346144E-15, 2.47715442448130437068E-14, |
| 1053 | -8.97670518232499435011E-14, 3.34841966607842919884E-13, |
| 1054 | -1.28917396095102890680E-12, 5.13963967348173025100E-12, |
| 1055 | -2.12996783842756842877E-11, 9.21831518760500529508E-11, |
| 1056 | -4.19035475934189648750E-10, 2.01504975519703286596E-9, |
| 1057 | -1.03457624656780970260E-8, 5.74108412545004946722E-8, |
| 1058 | -3.50196060308781257119E-7, 2.40648494783721712015E-6, |
| 1059 | -1.93619797416608296024E-5, 1.95215518471351631108E-4, |
| 1060 | -2.85781685962277938680E-3, 1.03923736576817238437E-1, |
| 1061 | 2.72062619048444266945E0}; |
| 1062 | const T MAXNUM = pset1<T>(NumTraits<double>::infinity()); |
| 1063 | const T two = pset1<T>(2.0); |
| 1064 | T x_le_two = pdiv(internal::pchebevl<T, 11>::run( |
| 1065 | pmadd(x, x, pset1<T>(-2.0)), A), x); |
| 1066 | x_le_two = pmadd( |
| 1067 | generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two); |
| 1068 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two); |
| 1069 | T x_gt_two = pmul( |
| 1070 | pexp(-x), |
| 1071 | pmul( |
| 1072 | internal::pchebevl<T, 25>::run( |
| 1073 | psub(pdiv(pset1<T>(8.0), x), two), B), |
| 1074 | prsqrt(x))); |
| 1075 | return pselect(pcmp_le(x, two), x_le_two, x_gt_two); |
| 1076 | } |
| 1077 | }; |
| 1078 | |
| 1079 | template <typename T> |
| 1080 | struct bessel_k1_impl { |
| 1081 | EIGEN_DEVICE_FUNC |
| 1082 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 1083 | return generic_k1<T>::run(x); |
| 1084 | } |
| 1085 | }; |
| 1086 | |
| 1087 | template <typename T> |
| 1088 | struct bessel_j0_retval { |
| 1089 | typedef T type; |
| 1090 | }; |
| 1091 | |
| 1092 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 1093 | struct generic_j0 { |
| 1094 | EIGEN_DEVICE_FUNC |
| 1095 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 1096 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 1097 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1098 | return ScalarType(0); |
| 1099 | } |
| 1100 | }; |
| 1101 | |
| 1102 | template <typename T> |
| 1103 | struct generic_j0<T, float> { |
| 1104 | EIGEN_DEVICE_FUNC |
| 1105 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1106 | /* j0f.c |
| 1107 | * Bessel function of order zero |
| 1108 | * |
| 1109 | * |
| 1110 | * |
| 1111 | * SYNOPSIS: |
| 1112 | * |
| 1113 | * float x, y, j0f(); |
| 1114 | * |
| 1115 | * y = j0f( x ); |
| 1116 | * |
| 1117 | * |
| 1118 | * |
| 1119 | * DESCRIPTION: |
| 1120 | * |
| 1121 | * Returns Bessel function of order zero of the argument. |
| 1122 | * |
| 1123 | * The domain is divided into the intervals [0, 2] and |
| 1124 | * (2, infinity). In the first interval the following polynomial |
| 1125 | * approximation is used: |
| 1126 | * |
| 1127 | * |
| 1128 | * 2 2 2 |
| 1129 | * (w - r ) (w - r ) (w - r ) P(w) |
| 1130 | * 1 2 3 |
| 1131 | * |
| 1132 | * 2 |
| 1133 | * where w = x and the three r's are zeros of the function. |
| 1134 | * |
| 1135 | * In the second interval, the modulus and phase are approximated |
| 1136 | * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) |
| 1137 | * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is |
| 1138 | * |
| 1139 | * j0(x) = Modulus(x) cos( Phase(x) ). |
| 1140 | * |
| 1141 | * |
| 1142 | * |
| 1143 | * ACCURACY: |
| 1144 | * |
| 1145 | * Absolute error: |
| 1146 | * arithmetic domain # trials peak rms |
| 1147 | * IEEE 0, 2 100000 1.3e-7 3.6e-8 |
| 1148 | * IEEE 2, 32 100000 1.9e-7 5.4e-8 |
| 1149 | * |
| 1150 | */ |
| 1151 | |
| 1152 | const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f, |
| 1153 | -3.969646342510940E-004f, 1.332913422519003E-002f, |
| 1154 | -1.729150680240724E-001f}; |
| 1155 | const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f, |
| 1156 | -2.145007480346739E-001f, 1.197549369473540E-001f, |
| 1157 | -3.560281861530129E-003f, -4.969382655296620E-002f, |
| 1158 | -3.355424622293709E-006f, 7.978845717621440E-001f}; |
| 1159 | const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f, |
| 1160 | 1.756221482109099E+001f, -4.974978466280903E+000f, |
| 1161 | 1.001973420681837E+000f, -1.939906941791308E-001f, |
| 1162 | 6.490598792654666E-002f, -1.249992184872738E-001f}; |
| 1163 | const T DR1 = pset1<T>(5.78318596294678452118f); |
| 1164 | const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */ |
| 1165 | T y = pabs(x); |
| 1166 | T z = pmul(y, y); |
| 1167 | T y_le_two = pselect( |
| 1168 | pcmp_lt(y, pset1<T>(1.0e-3f)), |
| 1169 | pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)), |
| 1170 | pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP))); |
| 1171 | T q = pdiv(pset1<T>(1.0f), y); |
| 1172 | T w = prsqrt(y); |
| 1173 | T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO)); |
| 1174 | w = pmul(q, q); |
| 1175 | T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F); |
| 1176 | T y_gt_two = pmul(p, pcos(padd(yn, y))); |
| 1177 | return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two); |
| 1178 | } |
| 1179 | }; |
| 1180 | |
| 1181 | template <typename T> |
| 1182 | struct generic_j0<T, double> { |
| 1183 | EIGEN_DEVICE_FUNC |
| 1184 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1185 | /* j0.c |
| 1186 | * Bessel function of order zero |
| 1187 | * |
| 1188 | * |
| 1189 | * |
| 1190 | * SYNOPSIS: |
| 1191 | * |
| 1192 | * double x, y, j0(); |
| 1193 | * |
| 1194 | * y = j0( x ); |
| 1195 | * |
| 1196 | * |
| 1197 | * |
| 1198 | * DESCRIPTION: |
| 1199 | * |
| 1200 | * Returns Bessel function of order zero of the argument. |
| 1201 | * |
| 1202 | * The domain is divided into the intervals [0, 5] and |
| 1203 | * (5, infinity). In the first interval the following rational |
| 1204 | * approximation is used: |
| 1205 | * |
| 1206 | * |
| 1207 | * 2 2 |
| 1208 | * (w - r ) (w - r ) P (w) / Q (w) |
| 1209 | * 1 2 3 8 |
| 1210 | * |
| 1211 | * 2 |
| 1212 | * where w = x and the two r's are zeros of the function. |
| 1213 | * |
| 1214 | * In the second interval, the Hankel asymptotic expansion |
| 1215 | * is employed with two rational functions of degree 6/6 |
| 1216 | * and 7/7. |
| 1217 | * |
| 1218 | * |
| 1219 | * |
| 1220 | * ACCURACY: |
| 1221 | * |
| 1222 | * Absolute error: |
| 1223 | * arithmetic domain # trials peak rms |
| 1224 | * DEC 0, 30 10000 4.4e-17 6.3e-18 |
| 1225 | * IEEE 0, 30 60000 4.2e-16 1.1e-16 |
| 1226 | * |
| 1227 | */ |
| 1228 | const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2, |
| 1229 | 1.23953371646414299388E0, 5.44725003058768775090E0, |
| 1230 | 8.74716500199817011941E0, 5.30324038235394892183E0, |
| 1231 | 9.99999999999999997821E-1}; |
| 1232 | const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2, |
| 1233 | 1.25352743901058953537E0, 5.47097740330417105182E0, |
| 1234 | 8.76190883237069594232E0, 5.30605288235394617618E0, |
| 1235 | 1.00000000000000000218E0}; |
| 1236 | const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0, |
| 1237 | -1.95539544257735972385E1, -9.32060152123768231369E1, |
| 1238 | -1.77681167980488050595E2, -1.47077505154951170175E2, |
| 1239 | -5.14105326766599330220E1, -6.05014350600728481186E0}; |
| 1240 | const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1, |
| 1241 | 8.56430025976980587198E2, 3.88240183605401609683E3, |
| 1242 | 7.24046774195652478189E3, 5.93072701187316984827E3, |
| 1243 | 2.06209331660327847417E3, 2.42005740240291393179E2}; |
| 1244 | const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12, |
| 1245 | -2.49248344360967716204E14, 9.70862251047306323952E15}; |
| 1246 | const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2, |
| 1247 | 1.73785401676374683123E5, 4.84409658339962045305E7, |
| 1248 | 1.11855537045356834862E10, 2.11277520115489217587E12, |
| 1249 | 3.10518229857422583814E14, 3.18121955943204943306E16, |
| 1250 | 1.71086294081043136091E18}; |
| 1251 | const T DR1 = pset1<T>(5.78318596294678452118E0); |
| 1252 | const T DR2 = pset1<T>(3.04712623436620863991E1); |
| 1253 | const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ |
| 1254 | const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */ |
| 1255 | |
| 1256 | T y = pabs(x); |
| 1257 | T z = pmul(y, y); |
| 1258 | T y_le_five = pselect( |
| 1259 | pcmp_lt(y, pset1<T>(1.0e-5)), |
| 1260 | pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)), |
| 1261 | pmul(pmul(psub(z, DR1), psub(z, DR2)), |
| 1262 | pdiv(internal::ppolevl<T, 3>::run(z, RP), |
| 1263 | internal::ppolevl<T, 8>::run(z, RQ)))); |
| 1264 | T s = pdiv(pset1<T>(25.0), z); |
| 1265 | T p = pdiv( |
| 1266 | internal::ppolevl<T, 6>::run(s, PP), |
| 1267 | internal::ppolevl<T, 6>::run(s, PQ)); |
| 1268 | T q = pdiv( |
| 1269 | internal::ppolevl<T, 7>::run(s, QP), |
| 1270 | internal::ppolevl<T, 7>::run(s, QQ)); |
| 1271 | T yn = padd(y, NEG_PIO4); |
| 1272 | T w = pdiv(pset1<T>(-5.0), y); |
| 1273 | p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn)))); |
| 1274 | T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y))); |
| 1275 | return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five); |
| 1276 | } |
| 1277 | }; |
| 1278 | |
| 1279 | template <typename T> |
| 1280 | struct bessel_j0_impl { |
| 1281 | EIGEN_DEVICE_FUNC |
| 1282 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 1283 | return generic_j0<T>::run(x); |
| 1284 | } |
| 1285 | }; |
| 1286 | |
| 1287 | template <typename T> |
| 1288 | struct bessel_y0_retval { |
| 1289 | typedef T type; |
| 1290 | }; |
| 1291 | |
| 1292 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 1293 | struct generic_y0 { |
| 1294 | EIGEN_DEVICE_FUNC |
| 1295 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 1296 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 1297 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1298 | return ScalarType(0); |
| 1299 | } |
| 1300 | }; |
| 1301 | |
| 1302 | template <typename T> |
| 1303 | struct generic_y0<T, float> { |
| 1304 | EIGEN_DEVICE_FUNC |
| 1305 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1306 | /* j0f.c |
| 1307 | * Bessel function of the second kind, order zero |
| 1308 | * |
| 1309 | * |
| 1310 | * |
| 1311 | * SYNOPSIS: |
| 1312 | * |
| 1313 | * float x, y, y0f(); |
| 1314 | * |
| 1315 | * y = y0f( x ); |
| 1316 | * |
| 1317 | * |
| 1318 | * |
| 1319 | * DESCRIPTION: |
| 1320 | * |
| 1321 | * Returns Bessel function of the second kind, of order |
| 1322 | * zero, of the argument. |
| 1323 | * |
| 1324 | * The domain is divided into the intervals [0, 2] and |
| 1325 | * (2, infinity). In the first interval a rational approximation |
| 1326 | * R(x) is employed to compute |
| 1327 | * |
| 1328 | * 2 2 2 |
| 1329 | * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x). |
| 1330 | * 1 2 3 |
| 1331 | * |
| 1332 | * Thus a call to j0() is required. The three zeros are removed |
| 1333 | * from R(x) to improve its numerical stability. |
| 1334 | * |
| 1335 | * In the second interval, the modulus and phase are approximated |
| 1336 | * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) |
| 1337 | * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is |
| 1338 | * |
| 1339 | * y0(x) = Modulus(x) sin( Phase(x) ). |
| 1340 | * |
| 1341 | * |
| 1342 | * |
| 1343 | * |
| 1344 | * ACCURACY: |
| 1345 | * |
| 1346 | * Absolute error, when y0(x) < 1; else relative error: |
| 1347 | * |
| 1348 | * arithmetic domain # trials peak rms |
| 1349 | * IEEE 0, 2 100000 2.4e-7 3.4e-8 |
| 1350 | * IEEE 2, 32 100000 1.8e-7 5.3e-8 |
| 1351 | * |
| 1352 | */ |
| 1353 | |
| 1354 | const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f, |
| 1355 | 5.344486707214273E-004f, -1.584289289821316E-002f, |
| 1356 | 1.707584643733568E-001f}; |
| 1357 | const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f, |
| 1358 | -2.145007480346739E-001f, 1.197549369473540E-001f, |
| 1359 | -3.560281861530129E-003f, -4.969382655296620E-002f, |
| 1360 | -3.355424622293709E-006f, 7.978845717621440E-001f}; |
| 1361 | const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f, |
| 1362 | 1.756221482109099E+001f, -4.974978466280903E+000f, |
| 1363 | 1.001973420681837E+000f, -1.939906941791308E-001f, |
| 1364 | 6.490598792654666E-002f, -1.249992184872738E-001f}; |
| 1365 | const T YZ1 = pset1<T>(0.43221455686510834878f); |
| 1366 | const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */ |
| 1367 | const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */ |
| 1368 | const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity()); |
| 1369 | T z = pmul(x, x); |
| 1370 | T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x))); |
| 1371 | x_le_two = pmadd( |
| 1372 | psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two); |
| 1373 | x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two); |
| 1374 | T q = pdiv(pset1<T>(1.0), x); |
| 1375 | T w = prsqrt(x); |
| 1376 | T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO)); |
| 1377 | T u = pmul(q, q); |
| 1378 | T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F); |
| 1379 | T x_gt_two = pmul(p, psin(padd(xn, x))); |
| 1380 | return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two); |
| 1381 | } |
| 1382 | }; |
| 1383 | |
| 1384 | template <typename T> |
| 1385 | struct generic_y0<T, double> { |
| 1386 | EIGEN_DEVICE_FUNC |
| 1387 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1388 | /* j0.c |
| 1389 | * Bessel function of the second kind, order zero |
| 1390 | * |
| 1391 | * |
| 1392 | * |
| 1393 | * SYNOPSIS: |
| 1394 | * |
| 1395 | * double x, y, y0(); |
| 1396 | * |
| 1397 | * y = y0( x ); |
| 1398 | * |
| 1399 | * |
| 1400 | * |
| 1401 | * DESCRIPTION: |
| 1402 | * |
| 1403 | * Returns Bessel function of the second kind, of order |
| 1404 | * zero, of the argument. |
| 1405 | * |
| 1406 | * The domain is divided into the intervals [0, 5] and |
| 1407 | * (5, infinity). In the first interval a rational approximation |
| 1408 | * R(x) is employed to compute |
| 1409 | * y0(x) = R(x) + 2 * log(x) * j0(x) / PI. |
| 1410 | * Thus a call to j0() is required. |
| 1411 | * |
| 1412 | * In the second interval, the Hankel asymptotic expansion |
| 1413 | * is employed with two rational functions of degree 6/6 |
| 1414 | * and 7/7. |
| 1415 | * |
| 1416 | * |
| 1417 | * |
| 1418 | * ACCURACY: |
| 1419 | * |
| 1420 | * Absolute error, when y0(x) < 1; else relative error: |
| 1421 | * |
| 1422 | * arithmetic domain # trials peak rms |
| 1423 | * DEC 0, 30 9400 7.0e-17 7.9e-18 |
| 1424 | * IEEE 0, 30 30000 1.3e-15 1.6e-16 |
| 1425 | * |
| 1426 | */ |
| 1427 | const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2, |
| 1428 | 1.23953371646414299388E0, 5.44725003058768775090E0, |
| 1429 | 8.74716500199817011941E0, 5.30324038235394892183E0, |
| 1430 | 9.99999999999999997821E-1}; |
| 1431 | const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2, |
| 1432 | 1.25352743901058953537E0, 5.47097740330417105182E0, |
| 1433 | 8.76190883237069594232E0, 5.30605288235394617618E0, |
| 1434 | 1.00000000000000000218E0}; |
| 1435 | const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0, |
| 1436 | -1.95539544257735972385E1, -9.32060152123768231369E1, |
| 1437 | -1.77681167980488050595E2, -1.47077505154951170175E2, |
| 1438 | -5.14105326766599330220E1, -6.05014350600728481186E0}; |
| 1439 | const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1, |
| 1440 | 8.56430025976980587198E2, 3.88240183605401609683E3, |
| 1441 | 7.24046774195652478189E3, 5.93072701187316984827E3, |
| 1442 | 2.06209331660327847417E3, 2.42005740240291393179E2}; |
| 1443 | const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7, |
| 1444 | 5.43526477051876500413E9, -9.82136065717911466409E11, |
| 1445 | 8.75906394395366999549E13, -3.46628303384729719441E15, |
| 1446 | 4.42733268572569800351E16, -1.84950800436986690637E16}; |
| 1447 | const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3, |
| 1448 | 6.26107330137134956842E5, 2.68919633393814121987E8, |
| 1449 | 8.64002487103935000337E10, 2.02979612750105546709E13, |
| 1450 | 3.17157752842975028269E15, 2.50596256172653059228E17}; |
| 1451 | const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ |
| 1452 | const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */ |
| 1453 | const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */ |
| 1454 | const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity()); |
| 1455 | |
| 1456 | T z = pmul(x, x); |
| 1457 | T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP), |
| 1458 | internal::ppolevl<T, 7>::run(z, YQ)); |
| 1459 | x_le_five = pmadd( |
| 1460 | pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five); |
| 1461 | x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five); |
| 1462 | T s = pdiv(pset1<T>(25.0), z); |
| 1463 | T p = pdiv( |
| 1464 | internal::ppolevl<T, 6>::run(s, PP), |
| 1465 | internal::ppolevl<T, 6>::run(s, PQ)); |
| 1466 | T q = pdiv( |
| 1467 | internal::ppolevl<T, 7>::run(s, QP), |
| 1468 | internal::ppolevl<T, 7>::run(s, QQ)); |
| 1469 | T xn = padd(x, NEG_PIO4); |
| 1470 | T w = pdiv(pset1<T>(5.0), x); |
| 1471 | p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn)))); |
| 1472 | T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x))); |
| 1473 | return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five); |
| 1474 | } |
| 1475 | }; |
| 1476 | |
| 1477 | template <typename T> |
| 1478 | struct bessel_y0_impl { |
| 1479 | EIGEN_DEVICE_FUNC |
| 1480 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 1481 | return generic_y0<T>::run(x); |
| 1482 | } |
| 1483 | }; |
| 1484 | |
| 1485 | template <typename T> |
| 1486 | struct bessel_j1_retval { |
| 1487 | typedef T type; |
| 1488 | }; |
| 1489 | |
| 1490 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 1491 | struct generic_j1 { |
| 1492 | EIGEN_DEVICE_FUNC |
| 1493 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 1494 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 1495 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1496 | return ScalarType(0); |
| 1497 | } |
| 1498 | }; |
| 1499 | |
| 1500 | template <typename T> |
| 1501 | struct generic_j1<T, float> { |
| 1502 | EIGEN_DEVICE_FUNC |
| 1503 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1504 | /* j1f.c |
| 1505 | * Bessel function of order one |
| 1506 | * |
| 1507 | * |
| 1508 | * |
| 1509 | * SYNOPSIS: |
| 1510 | * |
| 1511 | * float x, y, j1f(); |
| 1512 | * |
| 1513 | * y = j1f( x ); |
| 1514 | * |
| 1515 | * |
| 1516 | * |
| 1517 | * DESCRIPTION: |
| 1518 | * |
| 1519 | * Returns Bessel function of order one of the argument. |
| 1520 | * |
| 1521 | * The domain is divided into the intervals [0, 2] and |
| 1522 | * (2, infinity). In the first interval a polynomial approximation |
| 1523 | * 2 |
| 1524 | * (w - r ) x P(w) |
| 1525 | * 1 |
| 1526 | * 2 |
| 1527 | * is used, where w = x and r is the first zero of the function. |
| 1528 | * |
| 1529 | * In the second interval, the modulus and phase are approximated |
| 1530 | * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) |
| 1531 | * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is |
| 1532 | * |
| 1533 | * j0(x) = Modulus(x) cos( Phase(x) ). |
| 1534 | * |
| 1535 | * |
| 1536 | * |
| 1537 | * ACCURACY: |
| 1538 | * |
| 1539 | * Absolute error: |
| 1540 | * arithmetic domain # trials peak rms |
| 1541 | * IEEE 0, 2 100000 1.2e-7 2.5e-8 |
| 1542 | * IEEE 2, 32 100000 2.0e-7 5.3e-8 |
| 1543 | * |
| 1544 | * |
| 1545 | */ |
| 1546 | |
| 1547 | const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f, |
| 1548 | -4.541343896997497E-005f, 1.937383947804541E-003f, |
| 1549 | -3.405537384615824E-002f}; |
| 1550 | const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f, |
| 1551 | 3.138238455499697E-001f, -2.102302420403875E-001f, |
| 1552 | 5.435364690523026E-003f, 1.493389585089498E-001f, |
| 1553 | 4.976029650847191E-006f, 7.978845453073848E-001f}; |
| 1554 | const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f, |
| 1555 | -2.485774108720340E+001f, 7.222973196770240E+000f, |
| 1556 | -1.544842782180211E+000f, 3.503787691653334E-001f, |
| 1557 | -1.637986776941202E-001f, 3.749989509080821E-001f}; |
| 1558 | const T Z1 = pset1<T>(1.46819706421238932572E1f); |
| 1559 | const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */ |
| 1560 | |
| 1561 | T y = pabs(x); |
| 1562 | T z = pmul(y, y); |
| 1563 | T y_le_two = pmul( |
| 1564 | psub(z, Z1), |
| 1565 | pmul(x, internal::ppolevl<T, 4>::run(z, JP))); |
| 1566 | T q = pdiv(pset1<T>(1.0f), y); |
| 1567 | T w = prsqrt(y); |
| 1568 | T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1)); |
| 1569 | w = pmul(q, q); |
| 1570 | T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F); |
| 1571 | T y_gt_two = pmul(p, pcos(padd(yn, y))); |
| 1572 | // j1 is an odd function. This implementation differs from cephes to |
| 1573 | // take this fact in to account. Cephes returns -j1(x) for y > 2 range. |
| 1574 | y_gt_two = pselect( |
| 1575 | pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two); |
| 1576 | return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two); |
| 1577 | } |
| 1578 | }; |
| 1579 | |
| 1580 | template <typename T> |
| 1581 | struct generic_j1<T, double> { |
| 1582 | EIGEN_DEVICE_FUNC |
| 1583 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1584 | /* j1.c |
| 1585 | * Bessel function of order one |
| 1586 | * |
| 1587 | * |
| 1588 | * |
| 1589 | * SYNOPSIS: |
| 1590 | * |
| 1591 | * double x, y, j1(); |
| 1592 | * |
| 1593 | * y = j1( x ); |
| 1594 | * |
| 1595 | * |
| 1596 | * |
| 1597 | * DESCRIPTION: |
| 1598 | * |
| 1599 | * Returns Bessel function of order one of the argument. |
| 1600 | * |
| 1601 | * The domain is divided into the intervals [0, 8] and |
| 1602 | * (8, infinity). In the first interval a 24 term Chebyshev |
| 1603 | * expansion is used. In the second, the asymptotic |
| 1604 | * trigonometric representation is employed using two |
| 1605 | * rational functions of degree 5/5. |
| 1606 | * |
| 1607 | * |
| 1608 | * |
| 1609 | * ACCURACY: |
| 1610 | * |
| 1611 | * Absolute error: |
| 1612 | * arithmetic domain # trials peak rms |
| 1613 | * DEC 0, 30 10000 4.0e-17 1.1e-17 |
| 1614 | * IEEE 0, 30 30000 2.6e-16 1.1e-16 |
| 1615 | * |
| 1616 | */ |
| 1617 | const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2, |
| 1618 | 1.12719608129684925192E0, 5.11207951146807644818E0, |
| 1619 | 8.42404590141772420927E0, 5.21451598682361504063E0, |
| 1620 | 1.00000000000000000254E0}; |
| 1621 | const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2, |
| 1622 | 1.10514232634061696926E0, 5.07386386128601488557E0, |
| 1623 | 8.39985554327604159757E0, 5.20982848682361821619E0, |
| 1624 | 9.99999999999999997461E-1}; |
| 1625 | const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0, |
| 1626 | 7.58238284132545283818E1, 3.66779609360150777800E2, |
| 1627 | 7.10856304998926107277E2, 5.97489612400613639965E2, |
| 1628 | 2.11688757100572135698E2, 2.52070205858023719784E1}; |
| 1629 | const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1, |
| 1630 | 1.05644886038262816351E3, 4.98641058337653607651E3, |
| 1631 | 9.56231892404756170795E3, 7.99704160447350683650E3, |
| 1632 | 2.82619278517639096600E3, 3.36093607810698293419E2}; |
| 1633 | const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11, |
| 1634 | -7.27494245221818276015E13, 3.68295732863852883286E15}; |
| 1635 | const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2, |
| 1636 | 2.56987256757748830383E5, 8.35146791431949253037E7, |
| 1637 | 2.21511595479792499675E10, 4.74914122079991414898E12, |
| 1638 | 7.84369607876235854894E14, 8.95222336184627338078E16, |
| 1639 | 5.32278620332680085395E18}; |
| 1640 | const T Z1 = pset1<T>(1.46819706421238932572E1); |
| 1641 | const T Z2 = pset1<T>(4.92184563216946036703E1); |
| 1642 | const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */ |
| 1643 | const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */ |
| 1644 | T y = pabs(x); |
| 1645 | T z = pmul(y, y); |
| 1646 | T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP), |
| 1647 | internal::ppolevl<T, 8>::run(z, RQ)); |
| 1648 | y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2)); |
| 1649 | T s = pdiv(pset1<T>(25.0), z); |
| 1650 | T p = pdiv( |
| 1651 | internal::ppolevl<T, 6>::run(s, PP), |
| 1652 | internal::ppolevl<T, 6>::run(s, PQ)); |
| 1653 | T q = pdiv( |
| 1654 | internal::ppolevl<T, 7>::run(s, QP), |
| 1655 | internal::ppolevl<T, 7>::run(s, QQ)); |
| 1656 | T yn = padd(y, NEG_THPIO4); |
| 1657 | T w = pdiv(pset1<T>(-5.0), y); |
| 1658 | p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn)))); |
| 1659 | T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y))); |
| 1660 | // j1 is an odd function. This implementation differs from cephes to |
| 1661 | // take this fact in to account. Cephes returns -j1(x) for y > 5 range. |
| 1662 | y_gt_five = pselect( |
| 1663 | pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five); |
| 1664 | return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five); |
| 1665 | } |
| 1666 | }; |
| 1667 | |
| 1668 | template <typename T> |
| 1669 | struct bessel_j1_impl { |
| 1670 | EIGEN_DEVICE_FUNC |
| 1671 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 1672 | return generic_j1<T>::run(x); |
| 1673 | } |
| 1674 | }; |
| 1675 | |
| 1676 | template <typename T> |
| 1677 | struct bessel_y1_retval { |
| 1678 | typedef T type; |
| 1679 | }; |
| 1680 | |
| 1681 | template <typename T, typename ScalarType = typename unpacket_traits<T>::type> |
| 1682 | struct generic_y1 { |
| 1683 | EIGEN_DEVICE_FUNC |
| 1684 | static EIGEN_STRONG_INLINE T run(const T&) { |
| 1685 | EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false), |
| 1686 | THIS_TYPE_IS_NOT_SUPPORTED); |
| 1687 | return ScalarType(0); |
| 1688 | } |
| 1689 | }; |
| 1690 | |
| 1691 | template <typename T> |
| 1692 | struct generic_y1<T, float> { |
| 1693 | EIGEN_DEVICE_FUNC |
| 1694 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1695 | /* j1f.c |
| 1696 | * Bessel function of second kind of order one |
| 1697 | * |
| 1698 | * |
| 1699 | * |
| 1700 | * SYNOPSIS: |
| 1701 | * |
| 1702 | * double x, y, y1(); |
| 1703 | * |
| 1704 | * y = y1( x ); |
| 1705 | * |
| 1706 | * |
| 1707 | * |
| 1708 | * DESCRIPTION: |
| 1709 | * |
| 1710 | * Returns Bessel function of the second kind of order one |
| 1711 | * of the argument. |
| 1712 | * |
| 1713 | * The domain is divided into the intervals [0, 2] and |
| 1714 | * (2, infinity). In the first interval a rational approximation |
| 1715 | * R(x) is employed to compute |
| 1716 | * |
| 1717 | * 2 |
| 1718 | * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) . |
| 1719 | * 1 |
| 1720 | * |
| 1721 | * Thus a call to j1() is required. |
| 1722 | * |
| 1723 | * In the second interval, the modulus and phase are approximated |
| 1724 | * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x) |
| 1725 | * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is |
| 1726 | * |
| 1727 | * y0(x) = Modulus(x) sin( Phase(x) ). |
| 1728 | * |
| 1729 | * |
| 1730 | * |
| 1731 | * |
| 1732 | * ACCURACY: |
| 1733 | * |
| 1734 | * Absolute error: |
| 1735 | * arithmetic domain # trials peak rms |
| 1736 | * IEEE 0, 2 100000 2.2e-7 4.6e-8 |
| 1737 | * IEEE 2, 32 100000 1.9e-7 5.3e-8 |
| 1738 | * |
| 1739 | * (error criterion relative when |y1| > 1). |
| 1740 | * |
| 1741 | */ |
| 1742 | |
| 1743 | const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f, |
| 1744 | 6.719543806674249E-005f, -2.641785726447862E-003f, |
| 1745 | 4.202369946500099E-002f}; |
| 1746 | const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f, |
| 1747 | 3.138238455499697E-001f, -2.102302420403875E-001f, |
| 1748 | 5.435364690523026E-003f, 1.493389585089498E-001f, |
| 1749 | 4.976029650847191E-006f, 7.978845453073848E-001f}; |
| 1750 | const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f, |
| 1751 | -2.485774108720340E+001f, 7.222973196770240E+000f, |
| 1752 | -1.544842782180211E+000f, 3.503787691653334E-001f, |
| 1753 | -1.637986776941202E-001f, 3.749989509080821E-001f}; |
| 1754 | const T YO1 = pset1<T>(4.66539330185668857532f); |
| 1755 | const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */ |
| 1756 | const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */ |
| 1757 | const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity()); |
| 1758 | |
| 1759 | T z = pmul(x, x); |
| 1760 | T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP)); |
| 1761 | x_le_two = pmadd( |
| 1762 | x_le_two, x, |
| 1763 | pmul(TWOOPI, pmadd( |
| 1764 | generic_j1<T, float>::run(x), plog(x), |
| 1765 | pdiv(pset1<T>(-1.0f), x)))); |
| 1766 | x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two); |
| 1767 | |
| 1768 | T q = pdiv(pset1<T>(1.0), x); |
| 1769 | T w = prsqrt(x); |
| 1770 | T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1)); |
| 1771 | w = pmul(q, q); |
| 1772 | T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F); |
| 1773 | T x_gt_two = pmul(p, psin(padd(xn, x))); |
| 1774 | return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two); |
| 1775 | } |
| 1776 | }; |
| 1777 | |
| 1778 | template <typename T> |
| 1779 | struct generic_y1<T, double> { |
| 1780 | EIGEN_DEVICE_FUNC |
| 1781 | static EIGEN_STRONG_INLINE T run(const T& x) { |
| 1782 | /* j1.c |
| 1783 | * Bessel function of second kind of order one |
| 1784 | * |
| 1785 | * |
| 1786 | * |
| 1787 | * SYNOPSIS: |
| 1788 | * |
| 1789 | * double x, y, y1(); |
| 1790 | * |
| 1791 | * y = y1( x ); |
| 1792 | * |
| 1793 | * |
| 1794 | * |
| 1795 | * DESCRIPTION: |
| 1796 | * |
| 1797 | * Returns Bessel function of the second kind of order one |
| 1798 | * of the argument. |
| 1799 | * |
| 1800 | * The domain is divided into the intervals [0, 8] and |
| 1801 | * (8, infinity). In the first interval a 25 term Chebyshev |
| 1802 | * expansion is used, and a call to j1() is required. |
| 1803 | * In the second, the asymptotic trigonometric representation |
| 1804 | * is employed using two rational functions of degree 5/5. |
| 1805 | * |
| 1806 | * |
| 1807 | * |
| 1808 | * ACCURACY: |
| 1809 | * |
| 1810 | * Absolute error: |
| 1811 | * arithmetic domain # trials peak rms |
| 1812 | * DEC 0, 30 10000 8.6e-17 1.3e-17 |
| 1813 | * IEEE 0, 30 30000 1.0e-15 1.3e-16 |
| 1814 | * |
| 1815 | * (error criterion relative when |y1| > 1). |
| 1816 | * |
| 1817 | */ |
| 1818 | const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2, |
| 1819 | 1.12719608129684925192E0, 5.11207951146807644818E0, |
| 1820 | 8.42404590141772420927E0, 5.21451598682361504063E0, |
| 1821 | 1.00000000000000000254E0}; |
| 1822 | const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2, |
| 1823 | 1.10514232634061696926E0, 5.07386386128601488557E0, |
| 1824 | 8.39985554327604159757E0, 5.20982848682361821619E0, |
| 1825 | 9.99999999999999997461E-1}; |
| 1826 | const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0, |
| 1827 | 7.58238284132545283818E1, 3.66779609360150777800E2, |
| 1828 | 7.10856304998926107277E2, 5.97489612400613639965E2, |
| 1829 | 2.11688757100572135698E2, 2.52070205858023719784E1}; |
| 1830 | const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1, |
| 1831 | 1.05644886038262816351E3, 4.98641058337653607651E3, |
| 1832 | 9.56231892404756170795E3, 7.99704160447350683650E3, |
| 1833 | 2.82619278517639096600E3, 3.36093607810698293419E2}; |
| 1834 | const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11, |
| 1835 | 1.14509511541823727583E14, -8.12770255501325109621E15, |
| 1836 | 2.02439475713594898196E17, -7.78877196265950026825E17}; |
| 1837 | const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2, |
| 1838 | 2.35564092943068577943E5, 7.34811944459721705660E7, |
| 1839 | 1.87601316108706159478E10, 3.88231277496238566008E12, |
| 1840 | 6.20557727146953693363E14, 6.87141087355300489866E16, |
| 1841 | 3.97270608116560655612E18}; |
| 1842 | const T SQ2OPI = pset1<T>(.79788456080286535588); |
| 1843 | const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */ |
| 1844 | const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */ |
| 1845 | const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity()); |
| 1846 | |
| 1847 | T z = pmul(x, x); |
| 1848 | T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP), |
| 1849 | internal::ppolevl<T, 8>::run(z, YQ)); |
| 1850 | x_le_five = pmadd( |
| 1851 | x_le_five, x, pmul( |
| 1852 | TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x), |
| 1853 | pdiv(pset1<T>(-1.0), x)))); |
| 1854 | |
| 1855 | x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five); |
| 1856 | T s = pdiv(pset1<T>(25.0), z); |
| 1857 | T p = pdiv( |
| 1858 | internal::ppolevl<T, 6>::run(s, PP), |
| 1859 | internal::ppolevl<T, 6>::run(s, PQ)); |
| 1860 | T q = pdiv( |
| 1861 | internal::ppolevl<T, 7>::run(s, QP), |
| 1862 | internal::ppolevl<T, 7>::run(s, QQ)); |
| 1863 | T xn = padd(x, NEG_THPIO4); |
| 1864 | T w = pdiv(pset1<T>(5.0), x); |
| 1865 | p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn)))); |
| 1866 | T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x))); |
| 1867 | return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five); |
| 1868 | } |
| 1869 | }; |
| 1870 | |
| 1871 | template <typename T> |
| 1872 | struct bessel_y1_impl { |
| 1873 | EIGEN_DEVICE_FUNC |
| 1874 | static EIGEN_STRONG_INLINE T run(const T x) { |
| 1875 | return generic_y1<T>::run(x); |
| 1876 | } |
| 1877 | }; |
| 1878 | |
| 1879 | } // end namespace internal |
| 1880 | |
| 1881 | namespace numext { |
| 1882 | |
| 1883 | template <typename Scalar> |
| 1884 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar) |
| 1885 | bessel_i0(const Scalar& x) { |
| 1886 | return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x); |
| 1887 | } |
| 1888 | |
| 1889 | template <typename Scalar> |
| 1890 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar) |
| 1891 | bessel_i0e(const Scalar& x) { |
| 1892 | return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x); |
| 1893 | } |
| 1894 | |
| 1895 | template <typename Scalar> |
| 1896 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar) |
| 1897 | bessel_i1(const Scalar& x) { |
| 1898 | return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x); |
| 1899 | } |
| 1900 | |
| 1901 | template <typename Scalar> |
| 1902 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar) |
| 1903 | bessel_i1e(const Scalar& x) { |
| 1904 | return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x); |
| 1905 | } |
| 1906 | |
| 1907 | template <typename Scalar> |
| 1908 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar) |
| 1909 | bessel_k0(const Scalar& x) { |
| 1910 | return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x); |
| 1911 | } |
| 1912 | |
| 1913 | template <typename Scalar> |
| 1914 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar) |
| 1915 | bessel_k0e(const Scalar& x) { |
| 1916 | return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x); |
| 1917 | } |
| 1918 | |
| 1919 | template <typename Scalar> |
| 1920 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar) |
| 1921 | bessel_k1(const Scalar& x) { |
| 1922 | return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x); |
| 1923 | } |
| 1924 | |
| 1925 | template <typename Scalar> |
| 1926 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar) |
| 1927 | bessel_k1e(const Scalar& x) { |
| 1928 | return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x); |
| 1929 | } |
| 1930 | |
| 1931 | template <typename Scalar> |
| 1932 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar) |
| 1933 | bessel_j0(const Scalar& x) { |
| 1934 | return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x); |
| 1935 | } |
| 1936 | |
| 1937 | template <typename Scalar> |
| 1938 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar) |
| 1939 | bessel_y0(const Scalar& x) { |
| 1940 | return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x); |
| 1941 | } |
| 1942 | |
| 1943 | template <typename Scalar> |
| 1944 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar) |
| 1945 | bessel_j1(const Scalar& x) { |
| 1946 | return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x); |
| 1947 | } |
| 1948 | |
| 1949 | template <typename Scalar> |
| 1950 | EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar) |
| 1951 | bessel_y1(const Scalar& x) { |
| 1952 | return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x); |
| 1953 | } |
| 1954 | |
| 1955 | } // end namespace numext |
| 1956 | |
| 1957 | } // end namespace Eigen |
| 1958 | |
| 1959 | #endif // EIGEN_BESSEL_FUNCTIONS_H |