blob: 24812be1bf6765a8fdfac60d3c934e56c7201802 [file] [log] [blame]
Austin Schuhc55b0172022-02-20 17:52:35 -08001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_BESSEL_FUNCTIONS_H
11#define EIGEN_BESSEL_FUNCTIONS_H
12
13namespace Eigen {
14namespace internal {
15
16// Parts of this code are based on the Cephes Math Library.
17//
18// Cephes Math Library Release 2.8: June, 2000
19// Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20//
21// Permission has been kindly provided by the original author
22// to incorporate the Cephes software into the Eigen codebase:
23//
24// From: Stephen Moshier
25// To: Eugene Brevdo
26// Subject: Re: Permission to wrap several cephes functions in Eigen
27//
28// Hello Eugene,
29//
30// Thank you for writing.
31//
32// If your licensing is similar to BSD, the formal way that has been
33// handled is simply to add a statement to the effect that you are incorporating
34// the Cephes software by permission of the author.
35//
36// Good luck with your project,
37// Steve
38
39
40/****************************************************************************
41 * Implementation of Bessel function, based on Cephes *
42 ****************************************************************************/
43
44template <typename Scalar>
45struct bessel_i0e_retval {
46 typedef Scalar type;
47};
48
49template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50struct generic_i0e {
51 EIGEN_DEVICE_FUNC
52 static EIGEN_STRONG_INLINE T run(const T&) {
53 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54 THIS_TYPE_IS_NOT_SUPPORTED);
55 return ScalarType(0);
56 }
57};
58
59template <typename T>
60struct generic_i0e<T, float> {
61 EIGEN_DEVICE_FUNC
62 static EIGEN_STRONG_INLINE T run(const T& x) {
63 /* i0ef.c
64 *
65 * Modified Bessel function of order zero,
66 * exponentially scaled
67 *
68 *
69 *
70 * SYNOPSIS:
71 *
72 * float x, y, i0ef();
73 *
74 * y = i0ef( x );
75 *
76 *
77 *
78 * DESCRIPTION:
79 *
80 * Returns exponentially scaled modified Bessel function
81 * of order zero of the argument.
82 *
83 * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84 *
85 *
86 *
87 * ACCURACY:
88 *
89 * Relative error:
90 * arithmetic domain # trials peak rms
91 * IEEE 0,30 100000 3.7e-7 7.0e-8
92 * See i0f().
93 *
94 */
95
96 const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97 -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98 -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99 -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100 -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101 -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102 -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103 -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104 -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
106 const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109 8.04490411014108831608E-1f};
110 T y = pabs(x);
111 T y_le_eight = internal::pchebevl<T, 18>::run(
112 pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113 T y_gt_eight = pmul(
114 internal::pchebevl<T, 7>::run(
115 psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116 prsqrt(y));
117 // TODO: Perhaps instead check whether all packet elements are in
118 // [-8, 8] and evaluate a branch based off of that. It's possible
119 // in practice most elements are in this region.
120 return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121 }
122};
123
124template <typename T>
125struct generic_i0e<T, double> {
126 EIGEN_DEVICE_FUNC
127 static EIGEN_STRONG_INLINE T run(const T& x) {
128 /* i0e.c
129 *
130 * Modified Bessel function of order zero,
131 * exponentially scaled
132 *
133 *
134 *
135 * SYNOPSIS:
136 *
137 * double x, y, i0e();
138 *
139 * y = i0e( x );
140 *
141 *
142 *
143 * DESCRIPTION:
144 *
145 * Returns exponentially scaled modified Bessel function
146 * of order zero of the argument.
147 *
148 * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149 *
150 *
151 *
152 * ACCURACY:
153 *
154 * Relative error:
155 * arithmetic domain # trials peak rms
156 * IEEE 0,30 30000 5.4e-16 1.2e-16
157 * See i0().
158 *
159 */
160
161 const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162 -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163 -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164 -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165 -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166 -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167 -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168 -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169 -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170 -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171 -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172 -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173 -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174 -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175 -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176 const double B[] = {
177 -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179 -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181 -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184 -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189 8.04490411014108831608E-1};
190 T y = pabs(x);
191 T y_le_eight = internal::pchebevl<T, 30>::run(
192 pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193 T y_gt_eight = pmul(
194 internal::pchebevl<T, 25>::run(
195 psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196 prsqrt(y));
197 // TODO: Perhaps instead check whether all packet elements are in
198 // [-8, 8] and evaluate a branch based off of that. It's possible
199 // in practice most elements are in this region.
200 return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201 }
202};
203
204template <typename T>
205struct bessel_i0e_impl {
206 EIGEN_DEVICE_FUNC
207 static EIGEN_STRONG_INLINE T run(const T x) {
208 return generic_i0e<T>::run(x);
209 }
210};
211
212template <typename Scalar>
213struct bessel_i0_retval {
214 typedef Scalar type;
215};
216
217template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218struct generic_i0 {
219 EIGEN_DEVICE_FUNC
220 static EIGEN_STRONG_INLINE T run(const T& x) {
221 return pmul(
222 pexp(pabs(x)),
223 generic_i0e<T, ScalarType>::run(x));
224 }
225};
226
227template <typename T>
228struct bessel_i0_impl {
229 EIGEN_DEVICE_FUNC
230 static EIGEN_STRONG_INLINE T run(const T x) {
231 return generic_i0<T>::run(x);
232 }
233};
234
235template <typename Scalar>
236struct bessel_i1e_retval {
237 typedef Scalar type;
238};
239
240template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241struct generic_i1e {
242 EIGEN_DEVICE_FUNC
243 static EIGEN_STRONG_INLINE T run(const T&) {
244 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245 THIS_TYPE_IS_NOT_SUPPORTED);
246 return ScalarType(0);
247 }
248};
249
250template <typename T>
251struct generic_i1e<T, float> {
252 EIGEN_DEVICE_FUNC
253 static EIGEN_STRONG_INLINE T run(const T& x) {
254 /* i1ef.c
255 *
256 * Modified Bessel function of order one,
257 * exponentially scaled
258 *
259 *
260 *
261 * SYNOPSIS:
262 *
263 * float x, y, i1ef();
264 *
265 * y = i1ef( x );
266 *
267 *
268 *
269 * DESCRIPTION:
270 *
271 * Returns exponentially scaled modified Bessel function
272 * of order one of the argument.
273 *
274 * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275 *
276 *
277 *
278 * ACCURACY:
279 *
280 * Relative error:
281 * arithmetic domain # trials peak rms
282 * IEEE 0, 30 30000 1.5e-6 1.5e-7
283 * See i1().
284 *
285 */
286 const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294 2.52587186443633654823E-1f};
295
296 const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297 -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298 -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299 7.78576235018280120474E-1f};
300
301
302 T y = pabs(x);
303 T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304 pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305 T y_gt_eight = pmul(
306 internal::pchebevl<T, 7>::run(
307 psub(pdiv(pset1<T>(32.0f), y),
308 pset1<T>(2.0f)), B),
309 prsqrt(y));
310 // TODO: Perhaps instead check whether all packet elements are in
311 // [-8, 8] and evaluate a branch based off of that. It's possible
312 // in practice most elements are in this region.
313 y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314 return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315 }
316};
317
318template <typename T>
319struct generic_i1e<T, double> {
320 EIGEN_DEVICE_FUNC
321 static EIGEN_STRONG_INLINE T run(const T& x) {
322 /* i1e.c
323 *
324 * Modified Bessel function of order one,
325 * exponentially scaled
326 *
327 *
328 *
329 * SYNOPSIS:
330 *
331 * double x, y, i1e();
332 *
333 * y = i1e( x );
334 *
335 *
336 *
337 * DESCRIPTION:
338 *
339 * Returns exponentially scaled modified Bessel function
340 * of order one of the argument.
341 *
342 * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343 *
344 *
345 *
346 * ACCURACY:
347 *
348 * Relative error:
349 * arithmetic domain # trials peak rms
350 * IEEE 0, 30 30000 2.0e-15 2.0e-16
351 * See i1().
352 *
353 */
354 const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368 2.52587186443633654823E-1};
369 const double B[] = {
370 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371 -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373 -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375 -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376 -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378 -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379 -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380 -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381 -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382 7.78576235018280120474E-1};
383 T y = pabs(x);
384 T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385 pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386 T y_gt_eight = pmul(
387 internal::pchebevl<T, 25>::run(
388 psub(pdiv(pset1<T>(32.0), y),
389 pset1<T>(2.0)), B),
390 prsqrt(y));
391 // TODO: Perhaps instead check whether all packet elements are in
392 // [-8, 8] and evaluate a branch based off of that. It's possible
393 // in practice most elements are in this region.
394 y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395 return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396 }
397};
398
399template <typename T>
400struct bessel_i1e_impl {
401 EIGEN_DEVICE_FUNC
402 static EIGEN_STRONG_INLINE T run(const T x) {
403 return generic_i1e<T>::run(x);
404 }
405};
406
407template <typename T>
408struct bessel_i1_retval {
409 typedef T type;
410};
411
412template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413struct generic_i1 {
414 EIGEN_DEVICE_FUNC
415 static EIGEN_STRONG_INLINE T run(const T& x) {
416 return pmul(
417 pexp(pabs(x)),
418 generic_i1e<T, ScalarType>::run(x));
419 }
420};
421
422template <typename T>
423struct bessel_i1_impl {
424 EIGEN_DEVICE_FUNC
425 static EIGEN_STRONG_INLINE T run(const T x) {
426 return generic_i1<T>::run(x);
427 }
428};
429
430template <typename T>
431struct bessel_k0e_retval {
432 typedef T type;
433};
434
435template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436struct generic_k0e {
437 EIGEN_DEVICE_FUNC
438 static EIGEN_STRONG_INLINE T run(const T&) {
439 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440 THIS_TYPE_IS_NOT_SUPPORTED);
441 return ScalarType(0);
442 }
443};
444
445template <typename T>
446struct generic_k0e<T, float> {
447 EIGEN_DEVICE_FUNC
448 static EIGEN_STRONG_INLINE T run(const T& x) {
449 /* k0ef.c
450 * Modified Bessel function, third kind, order zero,
451 * exponentially scaled
452 *
453 *
454 *
455 * SYNOPSIS:
456 *
457 * float x, y, k0ef();
458 *
459 * y = k0ef( x );
460 *
461 *
462 *
463 * DESCRIPTION:
464 *
465 * Returns exponentially scaled modified Bessel function
466 * of the third kind of order zero of the argument.
467 *
468 *
469 *
470 * ACCURACY:
471 *
472 * Relative error:
473 * arithmetic domain # trials peak rms
474 * IEEE 0, 30 30000 8.1e-7 7.8e-8
475 * See k0().
476 *
477 */
478
479 const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482 -5.35327393233902768720E-1f};
483
484 const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485 -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486 -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487 -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488 -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489 const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490 const T two = pset1<T>(2.0);
491 T x_le_two = internal::pchebevl<T, 7>::run(
492 pmadd(x, x, pset1<T>(-2.0)), A);
493 x_le_two = pmadd(
494 generic_i0<T, float>::run(x), pnegate(
495 plog(pmul(pset1<T>(0.5), x))), x_le_two);
496 x_le_two = pmul(pexp(x), x_le_two);
497 T x_gt_two = pmul(
498 internal::pchebevl<T, 10>::run(
499 psub(pdiv(pset1<T>(8.0), x), two), B),
500 prsqrt(x));
501 return pselect(
502 pcmp_le(x, pset1<T>(0.0)),
503 MAXNUM,
504 pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505 }
506};
507
508template <typename T>
509struct generic_k0e<T, double> {
510 EIGEN_DEVICE_FUNC
511 static EIGEN_STRONG_INLINE T run(const T& x) {
512 /* k0e.c
513 * Modified Bessel function, third kind, order zero,
514 * exponentially scaled
515 *
516 *
517 *
518 * SYNOPSIS:
519 *
520 * double x, y, k0e();
521 *
522 * y = k0e( x );
523 *
524 *
525 *
526 * DESCRIPTION:
527 *
528 * Returns exponentially scaled modified Bessel function
529 * of the third kind of order zero of the argument.
530 *
531 *
532 *
533 * ACCURACY:
534 *
535 * Relative error:
536 * arithmetic domain # trials peak rms
537 * IEEE 0, 30 30000 1.4e-15 1.4e-16
538 * See k0().
539 *
540 */
541
542 const double A[] = {
543 1.37446543561352307156E-16,
544 4.25981614279661018399E-14,
545 1.03496952576338420167E-11,
546 1.90451637722020886025E-9,
547 2.53479107902614945675E-7,
548 2.28621210311945178607E-5,
549 1.26461541144692592338E-3,
550 3.59799365153615016266E-2,
551 3.44289899924628486886E-1,
552 -5.35327393233902768720E-1};
553 const double B[] = {
554 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566 2.44030308206595545468E0
567 };
568 const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569 const T two = pset1<T>(2.0);
570 T x_le_two = internal::pchebevl<T, 10>::run(
571 pmadd(x, x, pset1<T>(-2.0)), A);
572 x_le_two = pmadd(
573 generic_i0<T, double>::run(x), pmul(
574 pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575 x_le_two = pmul(pexp(x), x_le_two);
576 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577 T x_gt_two = pmul(
578 internal::pchebevl<T, 25>::run(
579 psub(pdiv(pset1<T>(8.0), x), two), B),
580 prsqrt(x));
581 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582 }
583};
584
585template <typename T>
586struct bessel_k0e_impl {
587 EIGEN_DEVICE_FUNC
588 static EIGEN_STRONG_INLINE T run(const T x) {
589 return generic_k0e<T>::run(x);
590 }
591};
592
593template <typename T>
594struct bessel_k0_retval {
595 typedef T type;
596};
597
598template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599struct generic_k0 {
600 EIGEN_DEVICE_FUNC
601 static EIGEN_STRONG_INLINE T run(const T&) {
602 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603 THIS_TYPE_IS_NOT_SUPPORTED);
604 return ScalarType(0);
605 }
606};
607
608template <typename T>
609struct generic_k0<T, float> {
610 EIGEN_DEVICE_FUNC
611 static EIGEN_STRONG_INLINE T run(const T& x) {
612 /* k0f.c
613 * Modified Bessel function, third kind, order zero
614 *
615 *
616 *
617 * SYNOPSIS:
618 *
619 * float x, y, k0f();
620 *
621 * y = k0f( x );
622 *
623 *
624 *
625 * DESCRIPTION:
626 *
627 * Returns modified Bessel function of the third kind
628 * of order zero of the argument.
629 *
630 * The range is partitioned into the two intervals [0,8] and
631 * (8, infinity). Chebyshev polynomial expansions are employed
632 * in each interval.
633 *
634 *
635 *
636 * ACCURACY:
637 *
638 * Tested at 2000 random points between 0 and 8. Peak absolute
639 * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640 * Relative error:
641 * arithmetic domain # trials peak rms
642 * IEEE 0, 30 30000 7.8e-7 8.5e-8
643 *
644 * ERROR MESSAGES:
645 *
646 * message condition value returned
647 * K0 domain x <= 0 MAXNUM
648 *
649 */
650
651 const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654 -5.35327393233902768720E-1f};
655
656 const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657 -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658 -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659 -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660 -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661 const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662 const T two = pset1<T>(2.0);
663 T x_le_two = internal::pchebevl<T, 7>::run(
664 pmadd(x, x, pset1<T>(-2.0)), A);
665 x_le_two = pmadd(
666 generic_i0<T, float>::run(x), pnegate(
667 plog(pmul(pset1<T>(0.5), x))), x_le_two);
668 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669 T x_gt_two = pmul(
670 pmul(
671 pexp(pnegate(x)),
672 internal::pchebevl<T, 10>::run(
673 psub(pdiv(pset1<T>(8.0), x), two), B)),
674 prsqrt(x));
675 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676 }
677};
678
679template <typename T>
680struct generic_k0<T, double> {
681 EIGEN_DEVICE_FUNC
682 static EIGEN_STRONG_INLINE T run(const T& x) {
683 /*
684 *
685 * Modified Bessel function, third kind, order zero,
686 * exponentially scaled
687 *
688 *
689 *
690 * SYNOPSIS:
691 *
692 * double x, y, k0();
693 *
694 * y = k0( x );
695 *
696 *
697 *
698 * DESCRIPTION:
699 *
700 * Returns exponentially scaled modified Bessel function
701 * of the third kind of order zero of the argument.
702 *
703 *
704 *
705 * ACCURACY:
706 *
707 * Relative error:
708 * arithmetic domain # trials peak rms
709 * IEEE 0, 30 30000 1.4e-15 1.4e-16
710 * See k0().
711 *
712 */
713 const double A[] = {
714 1.37446543561352307156E-16,
715 4.25981614279661018399E-14,
716 1.03496952576338420167E-11,
717 1.90451637722020886025E-9,
718 2.53479107902614945675E-7,
719 2.28621210311945178607E-5,
720 1.26461541144692592338E-3,
721 3.59799365153615016266E-2,
722 3.44289899924628486886E-1,
723 -5.35327393233902768720E-1};
724 const double B[] = {
725 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737 2.44030308206595545468E0
738 };
739 const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740 const T two = pset1<T>(2.0);
741 T x_le_two = internal::pchebevl<T, 10>::run(
742 pmadd(x, x, pset1<T>(-2.0)), A);
743 x_le_two = pmadd(
744 generic_i0<T, double>::run(x), pnegate(
745 plog(pmul(pset1<T>(0.5), x))), x_le_two);
746 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747 T x_gt_two = pmul(
748 pmul(
749 pexp(-x),
750 internal::pchebevl<T, 25>::run(
751 psub(pdiv(pset1<T>(8.0), x), two), B)),
752 prsqrt(x));
753 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754 }
755};
756
757template <typename T>
758struct bessel_k0_impl {
759 EIGEN_DEVICE_FUNC
760 static EIGEN_STRONG_INLINE T run(const T x) {
761 return generic_k0<T>::run(x);
762 }
763};
764
765template <typename T>
766struct bessel_k1e_retval {
767 typedef T type;
768};
769
770template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771struct generic_k1e {
772 EIGEN_DEVICE_FUNC
773 static EIGEN_STRONG_INLINE T run(const T&) {
774 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775 THIS_TYPE_IS_NOT_SUPPORTED);
776 return ScalarType(0);
777 }
778};
779
780template <typename T>
781struct generic_k1e<T, float> {
782 EIGEN_DEVICE_FUNC
783 static EIGEN_STRONG_INLINE T run(const T& x) {
784 /* k1ef.c
785 *
786 * Modified Bessel function, third kind, order one,
787 * exponentially scaled
788 *
789 *
790 *
791 * SYNOPSIS:
792 *
793 * float x, y, k1ef();
794 *
795 * y = k1ef( x );
796 *
797 *
798 *
799 * DESCRIPTION:
800 *
801 * Returns exponentially scaled modified Bessel function
802 * of the third kind of order one of the argument:
803 *
804 * k1e(x) = exp(x) * k1(x).
805 *
806 *
807 *
808 * ACCURACY:
809 *
810 * Relative error:
811 * arithmetic domain # trials peak rms
812 * IEEE 0, 30 30000 4.9e-7 6.7e-8
813 * See k1().
814 *
815 */
816
817 const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818 -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819 -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820 1.52530022733894777053E0f};
821 const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826 const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827 const T two = pset1<T>(2.0);
828 T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829 pmadd(x, x, pset1<T>(-2.0)), A), x);
830 x_le_two = pmadd(
831 generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832 x_le_two = pmul(x_le_two, pexp(x));
833 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834 T x_gt_two = pmul(
835 internal::pchebevl<T, 10>::run(
836 psub(pdiv(pset1<T>(8.0), x), two), B),
837 prsqrt(x));
838 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839 }
840};
841
842template <typename T>
843struct generic_k1e<T, double> {
844 EIGEN_DEVICE_FUNC
845 static EIGEN_STRONG_INLINE T run(const T& x) {
846 /* k1e.c
847 *
848 * Modified Bessel function, third kind, order one,
849 * exponentially scaled
850 *
851 *
852 *
853 * SYNOPSIS:
854 *
855 * double x, y, k1e();
856 *
857 * y = k1e( x );
858 *
859 *
860 *
861 * DESCRIPTION:
862 *
863 * Returns exponentially scaled modified Bessel function
864 * of the third kind of order one of the argument:
865 *
866 * k1e(x) = exp(x) * k1(x).
867 *
868 *
869 *
870 * ACCURACY:
871 *
872 * Relative error:
873 * arithmetic domain # trials peak rms
874 * IEEE 0, 30 30000 7.8e-16 1.2e-16
875 * See k1().
876 *
877 */
878 const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879 -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880 -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881 -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882 -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883 1.52530022733894777053E0};
884 const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885 -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886 -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887 -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888 -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889 -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890 -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891 -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892 -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893 -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894 -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895 -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896 2.72062619048444266945E0};
897 const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898 const T two = pset1<T>(2.0);
899 T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900 pmadd(x, x, pset1<T>(-2.0)), A), x);
901 x_le_two = pmadd(
902 generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903 x_le_two = pmul(x_le_two, pexp(x));
904 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905 T x_gt_two = pmul(
906 internal::pchebevl<T, 25>::run(
907 psub(pdiv(pset1<T>(8.0), x), two), B),
908 prsqrt(x));
909 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910 }
911};
912
913template <typename T>
914struct bessel_k1e_impl {
915 EIGEN_DEVICE_FUNC
916 static EIGEN_STRONG_INLINE T run(const T x) {
917 return generic_k1e<T>::run(x);
918 }
919};
920
921template <typename T>
922struct bessel_k1_retval {
923 typedef T type;
924};
925
926template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927struct generic_k1 {
928 EIGEN_DEVICE_FUNC
929 static EIGEN_STRONG_INLINE T run(const T&) {
930 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931 THIS_TYPE_IS_NOT_SUPPORTED);
932 return ScalarType(0);
933 }
934};
935
936template <typename T>
937struct generic_k1<T, float> {
938 EIGEN_DEVICE_FUNC
939 static EIGEN_STRONG_INLINE T run(const T& x) {
940 /* k1f.c
941 * Modified Bessel function, third kind, order one
942 *
943 *
944 *
945 * SYNOPSIS:
946 *
947 * float x, y, k1f();
948 *
949 * y = k1f( x );
950 *
951 *
952 *
953 * DESCRIPTION:
954 *
955 * Computes the modified Bessel function of the third kind
956 * of order one of the argument.
957 *
958 * The range is partitioned into the two intervals [0,2] and
959 * (2, infinity). Chebyshev polynomial expansions are employed
960 * in each interval.
961 *
962 *
963 *
964 * ACCURACY:
965 *
966 * Relative error:
967 * arithmetic domain # trials peak rms
968 * IEEE 0, 30 30000 4.6e-7 7.6e-8
969 *
970 * ERROR MESSAGES:
971 *
972 * message condition value returned
973 * k1 domain x <= 0 MAXNUM
974 *
975 */
976
977 const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978 -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979 -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980 1.52530022733894777053E0f};
981 const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986 const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987 const T two = pset1<T>(2.0);
988 T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989 pmadd(x, x, pset1<T>(-2.0)), A), x);
990 x_le_two = pmadd(
991 generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993 T x_gt_two = pmul(
994 pexp(pnegate(x)),
995 pmul(
996 internal::pchebevl<T, 10>::run(
997 psub(pdiv(pset1<T>(8.0), x), two), B),
998 prsqrt(x)));
999 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000 }
1001};
1002
1003template <typename T>
1004struct generic_k1<T, double> {
1005 EIGEN_DEVICE_FUNC
1006 static EIGEN_STRONG_INLINE T run(const T& x) {
1007 /* k1.c
1008 * Modified Bessel function, third kind, order one
1009 *
1010 *
1011 *
1012 * SYNOPSIS:
1013 *
1014 * float x, y, k1f();
1015 *
1016 * y = k1f( x );
1017 *
1018 *
1019 *
1020 * DESCRIPTION:
1021 *
1022 * Computes the modified Bessel function of the third kind
1023 * of order one of the argument.
1024 *
1025 * The range is partitioned into the two intervals [0,2] and
1026 * (2, infinity). Chebyshev polynomial expansions are employed
1027 * in each interval.
1028 *
1029 *
1030 *
1031 * ACCURACY:
1032 *
1033 * Relative error:
1034 * arithmetic domain # trials peak rms
1035 * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036 *
1037 * ERROR MESSAGES:
1038 *
1039 * message condition value returned
1040 * k1 domain x <= 0 MAXNUM
1041 *
1042 */
1043 const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044 -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045 -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046 -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047 -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048 1.52530022733894777053E0};
1049 const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050 -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051 -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052 -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053 -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054 -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055 -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056 -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057 -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058 -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059 -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060 -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061 2.72062619048444266945E0};
1062 const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063 const T two = pset1<T>(2.0);
1064 T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065 pmadd(x, x, pset1<T>(-2.0)), A), x);
1066 x_le_two = pmadd(
1067 generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069 T x_gt_two = pmul(
1070 pexp(-x),
1071 pmul(
1072 internal::pchebevl<T, 25>::run(
1073 psub(pdiv(pset1<T>(8.0), x), two), B),
1074 prsqrt(x)));
1075 return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076 }
1077};
1078
1079template <typename T>
1080struct bessel_k1_impl {
1081 EIGEN_DEVICE_FUNC
1082 static EIGEN_STRONG_INLINE T run(const T x) {
1083 return generic_k1<T>::run(x);
1084 }
1085};
1086
1087template <typename T>
1088struct bessel_j0_retval {
1089 typedef T type;
1090};
1091
1092template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093struct generic_j0 {
1094 EIGEN_DEVICE_FUNC
1095 static EIGEN_STRONG_INLINE T run(const T&) {
1096 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097 THIS_TYPE_IS_NOT_SUPPORTED);
1098 return ScalarType(0);
1099 }
1100};
1101
1102template <typename T>
1103struct generic_j0<T, float> {
1104 EIGEN_DEVICE_FUNC
1105 static EIGEN_STRONG_INLINE T run(const T& x) {
1106 /* j0f.c
1107 * Bessel function of order zero
1108 *
1109 *
1110 *
1111 * SYNOPSIS:
1112 *
1113 * float x, y, j0f();
1114 *
1115 * y = j0f( x );
1116 *
1117 *
1118 *
1119 * DESCRIPTION:
1120 *
1121 * Returns Bessel function of order zero of the argument.
1122 *
1123 * The domain is divided into the intervals [0, 2] and
1124 * (2, infinity). In the first interval the following polynomial
1125 * approximation is used:
1126 *
1127 *
1128 * 2 2 2
1129 * (w - r ) (w - r ) (w - r ) P(w)
1130 * 1 2 3
1131 *
1132 * 2
1133 * where w = x and the three r's are zeros of the function.
1134 *
1135 * In the second interval, the modulus and phase are approximated
1136 * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137 * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138 *
1139 * j0(x) = Modulus(x) cos( Phase(x) ).
1140 *
1141 *
1142 *
1143 * ACCURACY:
1144 *
1145 * Absolute error:
1146 * arithmetic domain # trials peak rms
1147 * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148 * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149 *
1150 */
1151
1152 const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153 -3.969646342510940E-004f, 1.332913422519003E-002f,
1154 -1.729150680240724E-001f};
1155 const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156 -2.145007480346739E-001f, 1.197549369473540E-001f,
1157 -3.560281861530129E-003f, -4.969382655296620E-002f,
1158 -3.355424622293709E-006f, 7.978845717621440E-001f};
1159 const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160 1.756221482109099E+001f, -4.974978466280903E+000f,
1161 1.001973420681837E+000f, -1.939906941791308E-001f,
1162 6.490598792654666E-002f, -1.249992184872738E-001f};
1163 const T DR1 = pset1<T>(5.78318596294678452118f);
1164 const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165 T y = pabs(x);
1166 T z = pmul(y, y);
1167 T y_le_two = pselect(
1168 pcmp_lt(y, pset1<T>(1.0e-3f)),
1169 pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170 pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171 T q = pdiv(pset1<T>(1.0f), y);
1172 T w = prsqrt(y);
1173 T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174 w = pmul(q, q);
1175 T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176 T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177 return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178 }
1179};
1180
1181template <typename T>
1182struct generic_j0<T, double> {
1183 EIGEN_DEVICE_FUNC
1184 static EIGEN_STRONG_INLINE T run(const T& x) {
1185 /* j0.c
1186 * Bessel function of order zero
1187 *
1188 *
1189 *
1190 * SYNOPSIS:
1191 *
1192 * double x, y, j0();
1193 *
1194 * y = j0( x );
1195 *
1196 *
1197 *
1198 * DESCRIPTION:
1199 *
1200 * Returns Bessel function of order zero of the argument.
1201 *
1202 * The domain is divided into the intervals [0, 5] and
1203 * (5, infinity). In the first interval the following rational
1204 * approximation is used:
1205 *
1206 *
1207 * 2 2
1208 * (w - r ) (w - r ) P (w) / Q (w)
1209 * 1 2 3 8
1210 *
1211 * 2
1212 * where w = x and the two r's are zeros of the function.
1213 *
1214 * In the second interval, the Hankel asymptotic expansion
1215 * is employed with two rational functions of degree 6/6
1216 * and 7/7.
1217 *
1218 *
1219 *
1220 * ACCURACY:
1221 *
1222 * Absolute error:
1223 * arithmetic domain # trials peak rms
1224 * DEC 0, 30 10000 4.4e-17 6.3e-18
1225 * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226 *
1227 */
1228 const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229 1.23953371646414299388E0, 5.44725003058768775090E0,
1230 8.74716500199817011941E0, 5.30324038235394892183E0,
1231 9.99999999999999997821E-1};
1232 const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233 1.25352743901058953537E0, 5.47097740330417105182E0,
1234 8.76190883237069594232E0, 5.30605288235394617618E0,
1235 1.00000000000000000218E0};
1236 const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237 -1.95539544257735972385E1, -9.32060152123768231369E1,
1238 -1.77681167980488050595E2, -1.47077505154951170175E2,
1239 -5.14105326766599330220E1, -6.05014350600728481186E0};
1240 const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241 8.56430025976980587198E2, 3.88240183605401609683E3,
1242 7.24046774195652478189E3, 5.93072701187316984827E3,
1243 2.06209331660327847417E3, 2.42005740240291393179E2};
1244 const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245 -2.49248344360967716204E14, 9.70862251047306323952E15};
1246 const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247 1.73785401676374683123E5, 4.84409658339962045305E7,
1248 1.11855537045356834862E10, 2.11277520115489217587E12,
1249 3.10518229857422583814E14, 3.18121955943204943306E16,
1250 1.71086294081043136091E18};
1251 const T DR1 = pset1<T>(5.78318596294678452118E0);
1252 const T DR2 = pset1<T>(3.04712623436620863991E1);
1253 const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254 const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
1256 T y = pabs(x);
1257 T z = pmul(y, y);
1258 T y_le_five = pselect(
1259 pcmp_lt(y, pset1<T>(1.0e-5)),
1260 pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261 pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262 pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263 internal::ppolevl<T, 8>::run(z, RQ))));
1264 T s = pdiv(pset1<T>(25.0), z);
1265 T p = pdiv(
1266 internal::ppolevl<T, 6>::run(s, PP),
1267 internal::ppolevl<T, 6>::run(s, PQ));
1268 T q = pdiv(
1269 internal::ppolevl<T, 7>::run(s, QP),
1270 internal::ppolevl<T, 7>::run(s, QQ));
1271 T yn = padd(y, NEG_PIO4);
1272 T w = pdiv(pset1<T>(-5.0), y);
1273 p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274 T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275 return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276 }
1277};
1278
1279template <typename T>
1280struct bessel_j0_impl {
1281 EIGEN_DEVICE_FUNC
1282 static EIGEN_STRONG_INLINE T run(const T x) {
1283 return generic_j0<T>::run(x);
1284 }
1285};
1286
1287template <typename T>
1288struct bessel_y0_retval {
1289 typedef T type;
1290};
1291
1292template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293struct generic_y0 {
1294 EIGEN_DEVICE_FUNC
1295 static EIGEN_STRONG_INLINE T run(const T&) {
1296 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297 THIS_TYPE_IS_NOT_SUPPORTED);
1298 return ScalarType(0);
1299 }
1300};
1301
1302template <typename T>
1303struct generic_y0<T, float> {
1304 EIGEN_DEVICE_FUNC
1305 static EIGEN_STRONG_INLINE T run(const T& x) {
1306 /* j0f.c
1307 * Bessel function of the second kind, order zero
1308 *
1309 *
1310 *
1311 * SYNOPSIS:
1312 *
1313 * float x, y, y0f();
1314 *
1315 * y = y0f( x );
1316 *
1317 *
1318 *
1319 * DESCRIPTION:
1320 *
1321 * Returns Bessel function of the second kind, of order
1322 * zero, of the argument.
1323 *
1324 * The domain is divided into the intervals [0, 2] and
1325 * (2, infinity). In the first interval a rational approximation
1326 * R(x) is employed to compute
1327 *
1328 * 2 2 2
1329 * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330 * 1 2 3
1331 *
1332 * Thus a call to j0() is required. The three zeros are removed
1333 * from R(x) to improve its numerical stability.
1334 *
1335 * In the second interval, the modulus and phase are approximated
1336 * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337 * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338 *
1339 * y0(x) = Modulus(x) sin( Phase(x) ).
1340 *
1341 *
1342 *
1343 *
1344 * ACCURACY:
1345 *
1346 * Absolute error, when y0(x) < 1; else relative error:
1347 *
1348 * arithmetic domain # trials peak rms
1349 * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350 * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351 *
1352 */
1353
1354 const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355 5.344486707214273E-004f, -1.584289289821316E-002f,
1356 1.707584643733568E-001f};
1357 const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358 -2.145007480346739E-001f, 1.197549369473540E-001f,
1359 -3.560281861530129E-003f, -4.969382655296620E-002f,
1360 -3.355424622293709E-006f, 7.978845717621440E-001f};
1361 const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362 1.756221482109099E+001f, -4.974978466280903E+000f,
1363 1.001973420681837E+000f, -1.939906941791308E-001f,
1364 6.490598792654666E-002f, -1.249992184872738E-001f};
1365 const T YZ1 = pset1<T>(0.43221455686510834878f);
1366 const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367 const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368 const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369 T z = pmul(x, x);
1370 T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371 x_le_two = pmadd(
1372 psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373 x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374 T q = pdiv(pset1<T>(1.0), x);
1375 T w = prsqrt(x);
1376 T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377 T u = pmul(q, q);
1378 T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379 T x_gt_two = pmul(p, psin(padd(xn, x)));
1380 return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381 }
1382};
1383
1384template <typename T>
1385struct generic_y0<T, double> {
1386 EIGEN_DEVICE_FUNC
1387 static EIGEN_STRONG_INLINE T run(const T& x) {
1388 /* j0.c
1389 * Bessel function of the second kind, order zero
1390 *
1391 *
1392 *
1393 * SYNOPSIS:
1394 *
1395 * double x, y, y0();
1396 *
1397 * y = y0( x );
1398 *
1399 *
1400 *
1401 * DESCRIPTION:
1402 *
1403 * Returns Bessel function of the second kind, of order
1404 * zero, of the argument.
1405 *
1406 * The domain is divided into the intervals [0, 5] and
1407 * (5, infinity). In the first interval a rational approximation
1408 * R(x) is employed to compute
1409 * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410 * Thus a call to j0() is required.
1411 *
1412 * In the second interval, the Hankel asymptotic expansion
1413 * is employed with two rational functions of degree 6/6
1414 * and 7/7.
1415 *
1416 *
1417 *
1418 * ACCURACY:
1419 *
1420 * Absolute error, when y0(x) < 1; else relative error:
1421 *
1422 * arithmetic domain # trials peak rms
1423 * DEC 0, 30 9400 7.0e-17 7.9e-18
1424 * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425 *
1426 */
1427 const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428 1.23953371646414299388E0, 5.44725003058768775090E0,
1429 8.74716500199817011941E0, 5.30324038235394892183E0,
1430 9.99999999999999997821E-1};
1431 const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432 1.25352743901058953537E0, 5.47097740330417105182E0,
1433 8.76190883237069594232E0, 5.30605288235394617618E0,
1434 1.00000000000000000218E0};
1435 const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436 -1.95539544257735972385E1, -9.32060152123768231369E1,
1437 -1.77681167980488050595E2, -1.47077505154951170175E2,
1438 -5.14105326766599330220E1, -6.05014350600728481186E0};
1439 const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440 8.56430025976980587198E2, 3.88240183605401609683E3,
1441 7.24046774195652478189E3, 5.93072701187316984827E3,
1442 2.06209331660327847417E3, 2.42005740240291393179E2};
1443 const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444 5.43526477051876500413E9, -9.82136065717911466409E11,
1445 8.75906394395366999549E13, -3.46628303384729719441E15,
1446 4.42733268572569800351E16, -1.84950800436986690637E16};
1447 const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448 6.26107330137134956842E5, 2.68919633393814121987E8,
1449 8.64002487103935000337E10, 2.02979612750105546709E13,
1450 3.17157752842975028269E15, 2.50596256172653059228E17};
1451 const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452 const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453 const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454 const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
1456 T z = pmul(x, x);
1457 T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458 internal::ppolevl<T, 7>::run(z, YQ));
1459 x_le_five = pmadd(
1460 pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461 x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462 T s = pdiv(pset1<T>(25.0), z);
1463 T p = pdiv(
1464 internal::ppolevl<T, 6>::run(s, PP),
1465 internal::ppolevl<T, 6>::run(s, PQ));
1466 T q = pdiv(
1467 internal::ppolevl<T, 7>::run(s, QP),
1468 internal::ppolevl<T, 7>::run(s, QQ));
1469 T xn = padd(x, NEG_PIO4);
1470 T w = pdiv(pset1<T>(5.0), x);
1471 p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472 T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473 return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474 }
1475};
1476
1477template <typename T>
1478struct bessel_y0_impl {
1479 EIGEN_DEVICE_FUNC
1480 static EIGEN_STRONG_INLINE T run(const T x) {
1481 return generic_y0<T>::run(x);
1482 }
1483};
1484
1485template <typename T>
1486struct bessel_j1_retval {
1487 typedef T type;
1488};
1489
1490template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491struct generic_j1 {
1492 EIGEN_DEVICE_FUNC
1493 static EIGEN_STRONG_INLINE T run(const T&) {
1494 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495 THIS_TYPE_IS_NOT_SUPPORTED);
1496 return ScalarType(0);
1497 }
1498};
1499
1500template <typename T>
1501struct generic_j1<T, float> {
1502 EIGEN_DEVICE_FUNC
1503 static EIGEN_STRONG_INLINE T run(const T& x) {
1504 /* j1f.c
1505 * Bessel function of order one
1506 *
1507 *
1508 *
1509 * SYNOPSIS:
1510 *
1511 * float x, y, j1f();
1512 *
1513 * y = j1f( x );
1514 *
1515 *
1516 *
1517 * DESCRIPTION:
1518 *
1519 * Returns Bessel function of order one of the argument.
1520 *
1521 * The domain is divided into the intervals [0, 2] and
1522 * (2, infinity). In the first interval a polynomial approximation
1523 * 2
1524 * (w - r ) x P(w)
1525 * 1
1526 * 2
1527 * is used, where w = x and r is the first zero of the function.
1528 *
1529 * In the second interval, the modulus and phase are approximated
1530 * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531 * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532 *
1533 * j0(x) = Modulus(x) cos( Phase(x) ).
1534 *
1535 *
1536 *
1537 * ACCURACY:
1538 *
1539 * Absolute error:
1540 * arithmetic domain # trials peak rms
1541 * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542 * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543 *
1544 *
1545 */
1546
1547 const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548 -4.541343896997497E-005f, 1.937383947804541E-003f,
1549 -3.405537384615824E-002f};
1550 const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551 3.138238455499697E-001f, -2.102302420403875E-001f,
1552 5.435364690523026E-003f, 1.493389585089498E-001f,
1553 4.976029650847191E-006f, 7.978845453073848E-001f};
1554 const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555 -2.485774108720340E+001f, 7.222973196770240E+000f,
1556 -1.544842782180211E+000f, 3.503787691653334E-001f,
1557 -1.637986776941202E-001f, 3.749989509080821E-001f};
1558 const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559 const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
1561 T y = pabs(x);
1562 T z = pmul(y, y);
1563 T y_le_two = pmul(
1564 psub(z, Z1),
1565 pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566 T q = pdiv(pset1<T>(1.0f), y);
1567 T w = prsqrt(y);
1568 T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569 w = pmul(q, q);
1570 T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571 T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572 // j1 is an odd function. This implementation differs from cephes to
1573 // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574 y_gt_two = pselect(
1575 pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576 return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577 }
1578};
1579
1580template <typename T>
1581struct generic_j1<T, double> {
1582 EIGEN_DEVICE_FUNC
1583 static EIGEN_STRONG_INLINE T run(const T& x) {
1584 /* j1.c
1585 * Bessel function of order one
1586 *
1587 *
1588 *
1589 * SYNOPSIS:
1590 *
1591 * double x, y, j1();
1592 *
1593 * y = j1( x );
1594 *
1595 *
1596 *
1597 * DESCRIPTION:
1598 *
1599 * Returns Bessel function of order one of the argument.
1600 *
1601 * The domain is divided into the intervals [0, 8] and
1602 * (8, infinity). In the first interval a 24 term Chebyshev
1603 * expansion is used. In the second, the asymptotic
1604 * trigonometric representation is employed using two
1605 * rational functions of degree 5/5.
1606 *
1607 *
1608 *
1609 * ACCURACY:
1610 *
1611 * Absolute error:
1612 * arithmetic domain # trials peak rms
1613 * DEC 0, 30 10000 4.0e-17 1.1e-17
1614 * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615 *
1616 */
1617 const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618 1.12719608129684925192E0, 5.11207951146807644818E0,
1619 8.42404590141772420927E0, 5.21451598682361504063E0,
1620 1.00000000000000000254E0};
1621 const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622 1.10514232634061696926E0, 5.07386386128601488557E0,
1623 8.39985554327604159757E0, 5.20982848682361821619E0,
1624 9.99999999999999997461E-1};
1625 const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626 7.58238284132545283818E1, 3.66779609360150777800E2,
1627 7.10856304998926107277E2, 5.97489612400613639965E2,
1628 2.11688757100572135698E2, 2.52070205858023719784E1};
1629 const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630 1.05644886038262816351E3, 4.98641058337653607651E3,
1631 9.56231892404756170795E3, 7.99704160447350683650E3,
1632 2.82619278517639096600E3, 3.36093607810698293419E2};
1633 const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634 -7.27494245221818276015E13, 3.68295732863852883286E15};
1635 const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636 2.56987256757748830383E5, 8.35146791431949253037E7,
1637 2.21511595479792499675E10, 4.74914122079991414898E12,
1638 7.84369607876235854894E14, 8.95222336184627338078E16,
1639 5.32278620332680085395E18};
1640 const T Z1 = pset1<T>(1.46819706421238932572E1);
1641 const T Z2 = pset1<T>(4.92184563216946036703E1);
1642 const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643 const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644 T y = pabs(x);
1645 T z = pmul(y, y);
1646 T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647 internal::ppolevl<T, 8>::run(z, RQ));
1648 y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649 T s = pdiv(pset1<T>(25.0), z);
1650 T p = pdiv(
1651 internal::ppolevl<T, 6>::run(s, PP),
1652 internal::ppolevl<T, 6>::run(s, PQ));
1653 T q = pdiv(
1654 internal::ppolevl<T, 7>::run(s, QP),
1655 internal::ppolevl<T, 7>::run(s, QQ));
1656 T yn = padd(y, NEG_THPIO4);
1657 T w = pdiv(pset1<T>(-5.0), y);
1658 p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659 T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660 // j1 is an odd function. This implementation differs from cephes to
1661 // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662 y_gt_five = pselect(
1663 pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664 return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665 }
1666};
1667
1668template <typename T>
1669struct bessel_j1_impl {
1670 EIGEN_DEVICE_FUNC
1671 static EIGEN_STRONG_INLINE T run(const T x) {
1672 return generic_j1<T>::run(x);
1673 }
1674};
1675
1676template <typename T>
1677struct bessel_y1_retval {
1678 typedef T type;
1679};
1680
1681template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682struct generic_y1 {
1683 EIGEN_DEVICE_FUNC
1684 static EIGEN_STRONG_INLINE T run(const T&) {
1685 EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686 THIS_TYPE_IS_NOT_SUPPORTED);
1687 return ScalarType(0);
1688 }
1689};
1690
1691template <typename T>
1692struct generic_y1<T, float> {
1693 EIGEN_DEVICE_FUNC
1694 static EIGEN_STRONG_INLINE T run(const T& x) {
1695 /* j1f.c
1696 * Bessel function of second kind of order one
1697 *
1698 *
1699 *
1700 * SYNOPSIS:
1701 *
1702 * double x, y, y1();
1703 *
1704 * y = y1( x );
1705 *
1706 *
1707 *
1708 * DESCRIPTION:
1709 *
1710 * Returns Bessel function of the second kind of order one
1711 * of the argument.
1712 *
1713 * The domain is divided into the intervals [0, 2] and
1714 * (2, infinity). In the first interval a rational approximation
1715 * R(x) is employed to compute
1716 *
1717 * 2
1718 * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719 * 1
1720 *
1721 * Thus a call to j1() is required.
1722 *
1723 * In the second interval, the modulus and phase are approximated
1724 * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725 * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726 *
1727 * y0(x) = Modulus(x) sin( Phase(x) ).
1728 *
1729 *
1730 *
1731 *
1732 * ACCURACY:
1733 *
1734 * Absolute error:
1735 * arithmetic domain # trials peak rms
1736 * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737 * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738 *
1739 * (error criterion relative when |y1| > 1).
1740 *
1741 */
1742
1743 const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744 6.719543806674249E-005f, -2.641785726447862E-003f,
1745 4.202369946500099E-002f};
1746 const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747 3.138238455499697E-001f, -2.102302420403875E-001f,
1748 5.435364690523026E-003f, 1.493389585089498E-001f,
1749 4.976029650847191E-006f, 7.978845453073848E-001f};
1750 const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751 -2.485774108720340E+001f, 7.222973196770240E+000f,
1752 -1.544842782180211E+000f, 3.503787691653334E-001f,
1753 -1.637986776941202E-001f, 3.749989509080821E-001f};
1754 const T YO1 = pset1<T>(4.66539330185668857532f);
1755 const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756 const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757 const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
1759 T z = pmul(x, x);
1760 T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761 x_le_two = pmadd(
1762 x_le_two, x,
1763 pmul(TWOOPI, pmadd(
1764 generic_j1<T, float>::run(x), plog(x),
1765 pdiv(pset1<T>(-1.0f), x))));
1766 x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
1768 T q = pdiv(pset1<T>(1.0), x);
1769 T w = prsqrt(x);
1770 T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771 w = pmul(q, q);
1772 T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773 T x_gt_two = pmul(p, psin(padd(xn, x)));
1774 return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775 }
1776};
1777
1778template <typename T>
1779struct generic_y1<T, double> {
1780 EIGEN_DEVICE_FUNC
1781 static EIGEN_STRONG_INLINE T run(const T& x) {
1782 /* j1.c
1783 * Bessel function of second kind of order one
1784 *
1785 *
1786 *
1787 * SYNOPSIS:
1788 *
1789 * double x, y, y1();
1790 *
1791 * y = y1( x );
1792 *
1793 *
1794 *
1795 * DESCRIPTION:
1796 *
1797 * Returns Bessel function of the second kind of order one
1798 * of the argument.
1799 *
1800 * The domain is divided into the intervals [0, 8] and
1801 * (8, infinity). In the first interval a 25 term Chebyshev
1802 * expansion is used, and a call to j1() is required.
1803 * In the second, the asymptotic trigonometric representation
1804 * is employed using two rational functions of degree 5/5.
1805 *
1806 *
1807 *
1808 * ACCURACY:
1809 *
1810 * Absolute error:
1811 * arithmetic domain # trials peak rms
1812 * DEC 0, 30 10000 8.6e-17 1.3e-17
1813 * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814 *
1815 * (error criterion relative when |y1| > 1).
1816 *
1817 */
1818 const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819 1.12719608129684925192E0, 5.11207951146807644818E0,
1820 8.42404590141772420927E0, 5.21451598682361504063E0,
1821 1.00000000000000000254E0};
1822 const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823 1.10514232634061696926E0, 5.07386386128601488557E0,
1824 8.39985554327604159757E0, 5.20982848682361821619E0,
1825 9.99999999999999997461E-1};
1826 const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827 7.58238284132545283818E1, 3.66779609360150777800E2,
1828 7.10856304998926107277E2, 5.97489612400613639965E2,
1829 2.11688757100572135698E2, 2.52070205858023719784E1};
1830 const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831 1.05644886038262816351E3, 4.98641058337653607651E3,
1832 9.56231892404756170795E3, 7.99704160447350683650E3,
1833 2.82619278517639096600E3, 3.36093607810698293419E2};
1834 const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835 1.14509511541823727583E14, -8.12770255501325109621E15,
1836 2.02439475713594898196E17, -7.78877196265950026825E17};
1837 const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838 2.35564092943068577943E5, 7.34811944459721705660E7,
1839 1.87601316108706159478E10, 3.88231277496238566008E12,
1840 6.20557727146953693363E14, 6.87141087355300489866E16,
1841 3.97270608116560655612E18};
1842 const T SQ2OPI = pset1<T>(.79788456080286535588);
1843 const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844 const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845 const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
1847 T z = pmul(x, x);
1848 T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849 internal::ppolevl<T, 8>::run(z, YQ));
1850 x_le_five = pmadd(
1851 x_le_five, x, pmul(
1852 TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853 pdiv(pset1<T>(-1.0), x))));
1854
1855 x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856 T s = pdiv(pset1<T>(25.0), z);
1857 T p = pdiv(
1858 internal::ppolevl<T, 6>::run(s, PP),
1859 internal::ppolevl<T, 6>::run(s, PQ));
1860 T q = pdiv(
1861 internal::ppolevl<T, 7>::run(s, QP),
1862 internal::ppolevl<T, 7>::run(s, QQ));
1863 T xn = padd(x, NEG_THPIO4);
1864 T w = pdiv(pset1<T>(5.0), x);
1865 p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866 T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867 return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868 }
1869};
1870
1871template <typename T>
1872struct bessel_y1_impl {
1873 EIGEN_DEVICE_FUNC
1874 static EIGEN_STRONG_INLINE T run(const T x) {
1875 return generic_y1<T>::run(x);
1876 }
1877};
1878
1879} // end namespace internal
1880
1881namespace numext {
1882
1883template <typename Scalar>
1884EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885 bessel_i0(const Scalar& x) {
1886 return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887}
1888
1889template <typename Scalar>
1890EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891 bessel_i0e(const Scalar& x) {
1892 return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893}
1894
1895template <typename Scalar>
1896EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897 bessel_i1(const Scalar& x) {
1898 return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899}
1900
1901template <typename Scalar>
1902EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903 bessel_i1e(const Scalar& x) {
1904 return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905}
1906
1907template <typename Scalar>
1908EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909 bessel_k0(const Scalar& x) {
1910 return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911}
1912
1913template <typename Scalar>
1914EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915 bessel_k0e(const Scalar& x) {
1916 return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917}
1918
1919template <typename Scalar>
1920EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921 bessel_k1(const Scalar& x) {
1922 return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923}
1924
1925template <typename Scalar>
1926EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927 bessel_k1e(const Scalar& x) {
1928 return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929}
1930
1931template <typename Scalar>
1932EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933 bessel_j0(const Scalar& x) {
1934 return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935}
1936
1937template <typename Scalar>
1938EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939 bessel_y0(const Scalar& x) {
1940 return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941}
1942
1943template <typename Scalar>
1944EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945 bessel_j1(const Scalar& x) {
1946 return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947}
1948
1949template <typename Scalar>
1950EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951 bessel_y1(const Scalar& x) {
1952 return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953}
1954
1955} // end namespace numext
1956
1957} // end namespace Eigen
1958
1959#endif // EIGEN_BESSEL_FUNCTIONS_H