Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // Small bench routine for Eigen available in Eigen |
| 2 | // (C) Desire NUENTSA WAKAM, INRIA |
| 3 | |
| 4 | #include <iostream> |
| 5 | #include <fstream> |
| 6 | #include <iomanip> |
| 7 | #include <Eigen/Jacobi> |
| 8 | #include <Eigen/Householder> |
| 9 | #include <Eigen/IterativeLinearSolvers> |
| 10 | #include <Eigen/LU> |
| 11 | #include <unsupported/Eigen/SparseExtra> |
| 12 | //#include <Eigen/SparseLU> |
| 13 | #include <Eigen/SuperLUSupport> |
| 14 | // #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h> |
| 15 | #include <bench/BenchTimer.h> |
| 16 | #include <unsupported/Eigen/IterativeSolvers> |
| 17 | using namespace std; |
| 18 | using namespace Eigen; |
| 19 | |
| 20 | int main(int argc, char **args) |
| 21 | { |
| 22 | SparseMatrix<double, ColMajor> A; |
| 23 | typedef SparseMatrix<double, ColMajor>::Index Index; |
| 24 | typedef Matrix<double, Dynamic, Dynamic> DenseMatrix; |
| 25 | typedef Matrix<double, Dynamic, 1> DenseRhs; |
| 26 | VectorXd b, x, tmp; |
| 27 | BenchTimer timer,totaltime; |
| 28 | //SparseLU<SparseMatrix<double, ColMajor> > solver; |
| 29 | // SuperLU<SparseMatrix<double, ColMajor> > solver; |
| 30 | ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver; |
| 31 | ifstream matrix_file; |
| 32 | string line; |
| 33 | int n; |
| 34 | // Set parameters |
| 35 | // solver.iparm(IPARM_THREAD_NBR) = 4; |
| 36 | /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ |
| 37 | if (argc < 2) assert(false && "please, give the matrix market file "); |
| 38 | |
| 39 | timer.start(); |
| 40 | totaltime.start(); |
| 41 | loadMarket(A, args[1]); |
| 42 | cout << "End charging matrix " << endl; |
| 43 | bool iscomplex=false, isvector=false; |
| 44 | int sym; |
| 45 | getMarketHeader(args[1], sym, iscomplex, isvector); |
| 46 | if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } |
| 47 | if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} |
| 48 | if (sym != 0) { // symmetric matrices, only the lower part is stored |
| 49 | SparseMatrix<double, ColMajor> temp; |
| 50 | temp = A; |
| 51 | A = temp.selfadjointView<Lower>(); |
| 52 | } |
| 53 | timer.stop(); |
| 54 | |
| 55 | n = A.cols(); |
| 56 | // ====== TESTS FOR SPARSE TUTORIAL ====== |
| 57 | // cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl; |
| 58 | // SparseMatrix<double, RowMajor> mat1(A); |
| 59 | // SparseMatrix<double, RowMajor> mat2; |
| 60 | // cout << " norm of A " << mat1.norm() << endl; ; |
| 61 | // PermutationMatrix<Dynamic, Dynamic, int> perm(n); |
| 62 | // perm.resize(n,1); |
| 63 | // perm.indices().setLinSpaced(n, 0, n-1); |
| 64 | // mat2 = perm * mat1; |
| 65 | // mat.subrows(); |
| 66 | // mat2.resize(n,n); |
| 67 | // mat2.reserve(10); |
| 68 | // mat2.setConstant(); |
| 69 | // std::cout<< "NORM " << mat1.squaredNorm()<< endl; |
| 70 | |
| 71 | cout<< "Time to load the matrix " << timer.value() <<endl; |
| 72 | /* Fill the right hand side */ |
| 73 | |
| 74 | // solver.set_restart(374); |
| 75 | if (argc > 2) |
| 76 | loadMarketVector(b, args[2]); |
| 77 | else |
| 78 | { |
| 79 | b.resize(n); |
| 80 | tmp.resize(n); |
| 81 | // tmp.setRandom(); |
| 82 | for (int i = 0; i < n; i++) tmp(i) = i; |
| 83 | b = A * tmp ; |
| 84 | } |
| 85 | // Scaling<SparseMatrix<double> > scal; |
| 86 | // scal.computeRef(A); |
| 87 | // b = scal.LeftScaling().cwiseProduct(b); |
| 88 | |
| 89 | /* Compute the factorization */ |
| 90 | cout<< "Starting the factorization "<< endl; |
| 91 | timer.reset(); |
| 92 | timer.start(); |
| 93 | cout<< "Size of Input Matrix "<< b.size()<<"\n\n"; |
| 94 | cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n"; |
| 95 | solver.compute(A); |
| 96 | // solver.analyzePattern(A); |
| 97 | // solver.factorize(A); |
| 98 | if (solver.info() != Success) { |
| 99 | std::cout<< "The solver failed \n"; |
| 100 | return -1; |
| 101 | } |
| 102 | timer.stop(); |
| 103 | float time_comp = timer.value(); |
| 104 | cout <<" Compute Time " << time_comp<< endl; |
| 105 | |
| 106 | timer.reset(); |
| 107 | timer.start(); |
| 108 | x = solver.solve(b); |
| 109 | // x = scal.RightScaling().cwiseProduct(x); |
| 110 | timer.stop(); |
| 111 | float time_solve = timer.value(); |
| 112 | cout<< " Time to solve " << time_solve << endl; |
| 113 | |
| 114 | /* Check the accuracy */ |
| 115 | VectorXd tmp2 = b - A*x; |
| 116 | double tempNorm = tmp2.norm()/b.norm(); |
| 117 | cout << "Relative norm of the computed solution : " << tempNorm <<"\n"; |
| 118 | // cout << "Iterations : " << solver.iterations() << "\n"; |
| 119 | |
| 120 | totaltime.stop(); |
| 121 | cout << "Total time " << totaltime.value() << "\n"; |
| 122 | // std::cout<<x.transpose()<<"\n"; |
| 123 | |
| 124 | return 0; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 125 | } |