Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_PARTIALLU_H |
| 12 | #define EIGEN_PARTIALLU_H |
| 13 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> > |
| 18 | : traits<_MatrixType> |
| 19 | { |
| 20 | typedef MatrixXpr XprKind; |
| 21 | typedef SolverStorage StorageKind; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 22 | typedef int StorageIndex; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 23 | typedef traits<_MatrixType> BaseTraits; |
| 24 | enum { |
| 25 | Flags = BaseTraits::Flags & RowMajorBit, |
| 26 | CoeffReadCost = Dynamic |
| 27 | }; |
| 28 | }; |
| 29 | |
| 30 | template<typename T,typename Derived> |
| 31 | struct enable_if_ref; |
| 32 | // { |
| 33 | // typedef Derived type; |
| 34 | // }; |
| 35 | |
| 36 | template<typename T,typename Derived> |
| 37 | struct enable_if_ref<Ref<T>,Derived> { |
| 38 | typedef Derived type; |
| 39 | }; |
| 40 | |
| 41 | } // end namespace internal |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 42 | |
| 43 | /** \ingroup LU_Module |
| 44 | * |
| 45 | * \class PartialPivLU |
| 46 | * |
| 47 | * \brief LU decomposition of a matrix with partial pivoting, and related features |
| 48 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 49 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 50 | * |
| 51 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
| 52 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
| 53 | * is a permutation matrix. |
| 54 | * |
| 55 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
| 56 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
| 57 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
| 58 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
| 59 | * |
| 60 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
| 61 | * by class FullPivLU. |
| 62 | * |
| 63 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
| 64 | * such as rank computation. If you need these features, use class FullPivLU. |
| 65 | * |
| 66 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
| 67 | * in the general case. |
| 68 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
| 69 | * |
| 70 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
| 71 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 72 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 73 | * |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 74 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
| 75 | */ |
| 76 | template<typename _MatrixType> class PartialPivLU |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 77 | : public SolverBase<PartialPivLU<_MatrixType> > |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 78 | { |
| 79 | public: |
| 80 | |
| 81 | typedef _MatrixType MatrixType; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 82 | typedef SolverBase<PartialPivLU> Base; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 83 | friend class SolverBase<PartialPivLU>; |
| 84 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 85 | EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 86 | enum { |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 87 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 88 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 89 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 90 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| 91 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 92 | typedef typename MatrixType::PlainObject PlainObject; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 93 | |
| 94 | /** |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 95 | * \brief Default Constructor. |
| 96 | * |
| 97 | * The default constructor is useful in cases in which the user intends to |
| 98 | * perform decompositions via PartialPivLU::compute(const MatrixType&). |
| 99 | */ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 100 | PartialPivLU(); |
| 101 | |
| 102 | /** \brief Default Constructor with memory preallocation |
| 103 | * |
| 104 | * Like the default constructor but with preallocation of the internal data |
| 105 | * according to the specified problem \a size. |
| 106 | * \sa PartialPivLU() |
| 107 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 108 | explicit PartialPivLU(Index size); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 109 | |
| 110 | /** Constructor. |
| 111 | * |
| 112 | * \param matrix the matrix of which to compute the LU decomposition. |
| 113 | * |
| 114 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| 115 | * If you need to deal with non-full rank, use class FullPivLU instead. |
| 116 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 117 | template<typename InputType> |
| 118 | explicit PartialPivLU(const EigenBase<InputType>& matrix); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 119 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 120 | /** Constructor for \link InplaceDecomposition inplace decomposition \endlink |
| 121 | * |
| 122 | * \param matrix the matrix of which to compute the LU decomposition. |
| 123 | * |
| 124 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| 125 | * If you need to deal with non-full rank, use class FullPivLU instead. |
| 126 | */ |
| 127 | template<typename InputType> |
| 128 | explicit PartialPivLU(EigenBase<InputType>& matrix); |
| 129 | |
| 130 | template<typename InputType> |
| 131 | PartialPivLU& compute(const EigenBase<InputType>& matrix) { |
| 132 | m_lu = matrix.derived(); |
| 133 | compute(); |
| 134 | return *this; |
| 135 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 136 | |
| 137 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
| 138 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
| 139 | * case, special care is needed, see the documentation of class FullPivLU). |
| 140 | * |
| 141 | * \sa matrixL(), matrixU() |
| 142 | */ |
| 143 | inline const MatrixType& matrixLU() const |
| 144 | { |
| 145 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| 146 | return m_lu; |
| 147 | } |
| 148 | |
| 149 | /** \returns the permutation matrix P. |
| 150 | */ |
| 151 | inline const PermutationType& permutationP() const |
| 152 | { |
| 153 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| 154 | return m_p; |
| 155 | } |
| 156 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 157 | #ifdef EIGEN_PARSED_BY_DOXYGEN |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 158 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
| 159 | * *this is the LU decomposition. |
| 160 | * |
| 161 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
| 162 | * the only requirement in order for the equation to make sense is that |
| 163 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
| 164 | * |
| 165 | * \returns the solution. |
| 166 | * |
| 167 | * Example: \include PartialPivLU_solve.cpp |
| 168 | * Output: \verbinclude PartialPivLU_solve.out |
| 169 | * |
| 170 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
| 171 | * theoretically exists and is unique regardless of b. |
| 172 | * |
| 173 | * \sa TriangularView::solve(), inverse(), computeInverse() |
| 174 | */ |
| 175 | template<typename Rhs> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 176 | inline const Solve<PartialPivLU, Rhs> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 177 | solve(const MatrixBase<Rhs>& b) const; |
| 178 | #endif |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 179 | |
| 180 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is |
| 181 | the LU decomposition. |
| 182 | */ |
| 183 | inline RealScalar rcond() const |
| 184 | { |
| 185 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| 186 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 187 | } |
| 188 | |
| 189 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
| 190 | * |
| 191 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
| 192 | * invertibility, use class FullPivLU instead. |
| 193 | * |
| 194 | * \sa MatrixBase::inverse(), LU::inverse() |
| 195 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 196 | inline const Inverse<PartialPivLU> inverse() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 197 | { |
| 198 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 199 | return Inverse<PartialPivLU>(*this); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 200 | } |
| 201 | |
| 202 | /** \returns the determinant of the matrix of which |
| 203 | * *this is the LU decomposition. It has only linear complexity |
| 204 | * (that is, O(n) where n is the dimension of the square matrix) |
| 205 | * as the LU decomposition has already been computed. |
| 206 | * |
| 207 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
| 208 | * optimized paths. |
| 209 | * |
| 210 | * \warning a determinant can be very big or small, so for matrices |
| 211 | * of large enough dimension, there is a risk of overflow/underflow. |
| 212 | * |
| 213 | * \sa MatrixBase::determinant() |
| 214 | */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 215 | Scalar determinant() const; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 216 | |
| 217 | MatrixType reconstructedMatrix() const; |
| 218 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 219 | EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } |
| 220 | EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 221 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 222 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 223 | template<typename RhsType, typename DstType> |
| 224 | EIGEN_DEVICE_FUNC |
| 225 | void _solve_impl(const RhsType &rhs, DstType &dst) const { |
| 226 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
| 227 | * So we proceed as follows: |
| 228 | * Step 1: compute c = Pb. |
| 229 | * Step 2: replace c by the solution x to Lx = c. |
| 230 | * Step 3: replace c by the solution x to Ux = c. |
| 231 | */ |
| 232 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 233 | // Step 1 |
| 234 | dst = permutationP() * rhs; |
| 235 | |
| 236 | // Step 2 |
| 237 | m_lu.template triangularView<UnitLower>().solveInPlace(dst); |
| 238 | |
| 239 | // Step 3 |
| 240 | m_lu.template triangularView<Upper>().solveInPlace(dst); |
| 241 | } |
| 242 | |
| 243 | template<bool Conjugate, typename RhsType, typename DstType> |
| 244 | EIGEN_DEVICE_FUNC |
| 245 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 246 | /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 247 | * So we proceed as follows: |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 248 | * Step 1: compute c as the solution to L^T c = b |
| 249 | * Step 2: replace c by the solution x to U^T x = c. |
| 250 | * Step 3: update c = P^-1 c. |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 251 | */ |
| 252 | |
| 253 | eigen_assert(rhs.rows() == m_lu.cols()); |
| 254 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 255 | // Step 1 |
| 256 | dst = m_lu.template triangularView<Upper>().transpose() |
| 257 | .template conjugateIf<Conjugate>().solve(rhs); |
| 258 | // Step 2 |
| 259 | m_lu.template triangularView<UnitLower>().transpose() |
| 260 | .template conjugateIf<Conjugate>().solveInPlace(dst); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 261 | // Step 3 |
| 262 | dst = permutationP().transpose() * dst; |
| 263 | } |
| 264 | #endif |
| 265 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 266 | protected: |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 267 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 268 | static void check_template_parameters() |
| 269 | { |
| 270 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 271 | } |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 272 | |
| 273 | void compute(); |
| 274 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 275 | MatrixType m_lu; |
| 276 | PermutationType m_p; |
| 277 | TranspositionType m_rowsTranspositions; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 278 | RealScalar m_l1_norm; |
| 279 | signed char m_det_p; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 280 | bool m_isInitialized; |
| 281 | }; |
| 282 | |
| 283 | template<typename MatrixType> |
| 284 | PartialPivLU<MatrixType>::PartialPivLU() |
| 285 | : m_lu(), |
| 286 | m_p(), |
| 287 | m_rowsTranspositions(), |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 288 | m_l1_norm(0), |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 289 | m_det_p(0), |
| 290 | m_isInitialized(false) |
| 291 | { |
| 292 | } |
| 293 | |
| 294 | template<typename MatrixType> |
| 295 | PartialPivLU<MatrixType>::PartialPivLU(Index size) |
| 296 | : m_lu(size, size), |
| 297 | m_p(size), |
| 298 | m_rowsTranspositions(size), |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 299 | m_l1_norm(0), |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 300 | m_det_p(0), |
| 301 | m_isInitialized(false) |
| 302 | { |
| 303 | } |
| 304 | |
| 305 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 306 | template<typename InputType> |
| 307 | PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix) |
| 308 | : m_lu(matrix.rows(),matrix.cols()), |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 309 | m_p(matrix.rows()), |
| 310 | m_rowsTranspositions(matrix.rows()), |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 311 | m_l1_norm(0), |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 312 | m_det_p(0), |
| 313 | m_isInitialized(false) |
| 314 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 315 | compute(matrix.derived()); |
| 316 | } |
| 317 | |
| 318 | template<typename MatrixType> |
| 319 | template<typename InputType> |
| 320 | PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix) |
| 321 | : m_lu(matrix.derived()), |
| 322 | m_p(matrix.rows()), |
| 323 | m_rowsTranspositions(matrix.rows()), |
| 324 | m_l1_norm(0), |
| 325 | m_det_p(0), |
| 326 | m_isInitialized(false) |
| 327 | { |
| 328 | compute(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 329 | } |
| 330 | |
| 331 | namespace internal { |
| 332 | |
| 333 | /** \internal This is the blocked version of fullpivlu_unblocked() */ |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 334 | template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 335 | struct partial_lu_impl |
| 336 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 337 | static const int UnBlockedBound = 16; |
| 338 | static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound; |
| 339 | static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic; |
| 340 | // Remaining rows and columns at compile-time: |
| 341 | static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic; |
| 342 | static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic; |
| 343 | typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType; |
| 344 | typedef Ref<MatrixType> MatrixTypeRef; |
| 345 | typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 346 | typedef typename MatrixType::RealScalar RealScalar; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 347 | |
| 348 | /** \internal performs the LU decomposition in-place of the matrix \a lu |
| 349 | * using an unblocked algorithm. |
| 350 | * |
| 351 | * In addition, this function returns the row transpositions in the |
| 352 | * vector \a row_transpositions which must have a size equal to the number |
| 353 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| 354 | * which returns the actual number of transpositions. |
| 355 | * |
| 356 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
| 357 | */ |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 358 | static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 359 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 360 | typedef scalar_score_coeff_op<Scalar> Scoring; |
| 361 | typedef typename Scoring::result_type Score; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 362 | const Index rows = lu.rows(); |
| 363 | const Index cols = lu.cols(); |
| 364 | const Index size = (std::min)(rows,cols); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 365 | // For small compile-time matrices it is worth processing the last row separately: |
| 366 | // speedup: +100% for 2x2, +10% for others. |
| 367 | const Index endk = UnBlockedAtCompileTime ? size-1 : size; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 368 | nb_transpositions = 0; |
| 369 | Index first_zero_pivot = -1; |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 370 | for(Index k = 0; k < endk; ++k) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 371 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 372 | int rrows = internal::convert_index<int>(rows-k-1); |
| 373 | int rcols = internal::convert_index<int>(cols-k-1); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 374 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 375 | Index row_of_biggest_in_col; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 376 | Score biggest_in_corner |
| 377 | = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 378 | row_of_biggest_in_col += k; |
| 379 | |
| 380 | row_transpositions[k] = PivIndex(row_of_biggest_in_col); |
| 381 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 382 | if(biggest_in_corner != Score(0)) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 383 | { |
| 384 | if(k != row_of_biggest_in_col) |
| 385 | { |
| 386 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
| 387 | ++nb_transpositions; |
| 388 | } |
| 389 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 390 | lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 391 | } |
| 392 | else if(first_zero_pivot==-1) |
| 393 | { |
| 394 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
| 395 | // and continue the factorization such we still have A = PLU |
| 396 | first_zero_pivot = k; |
| 397 | } |
| 398 | |
| 399 | if(k<rows-1) |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 400 | lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 401 | } |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 402 | |
| 403 | // special handling of the last entry |
| 404 | if(UnBlockedAtCompileTime) |
| 405 | { |
| 406 | Index k = endk; |
| 407 | row_transpositions[k] = PivIndex(k); |
| 408 | if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1) |
| 409 | first_zero_pivot = k; |
| 410 | } |
| 411 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 412 | return first_zero_pivot; |
| 413 | } |
| 414 | |
| 415 | /** \internal performs the LU decomposition in-place of the matrix represented |
| 416 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
| 417 | * recursive, blocked algorithm. |
| 418 | * |
| 419 | * In addition, this function returns the row transpositions in the |
| 420 | * vector \a row_transpositions which must have a size equal to the number |
| 421 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| 422 | * which returns the actual number of transpositions. |
| 423 | * |
| 424 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
| 425 | * |
| 426 | * \note This very low level interface using pointers, etc. is to: |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 427 | * 1 - reduce the number of instantiations to the strict minimum |
| 428 | * 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > > |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 429 | */ |
| 430 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
| 431 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 432 | MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 433 | |
| 434 | const Index size = (std::min)(rows,cols); |
| 435 | |
| 436 | // if the matrix is too small, no blocking: |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 437 | if(UnBlockedAtCompileTime || size<=UnBlockedBound) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 438 | { |
| 439 | return unblocked_lu(lu, row_transpositions, nb_transpositions); |
| 440 | } |
| 441 | |
| 442 | // automatically adjust the number of subdivisions to the size |
| 443 | // of the matrix so that there is enough sub blocks: |
| 444 | Index blockSize; |
| 445 | { |
| 446 | blockSize = size/8; |
| 447 | blockSize = (blockSize/16)*16; |
| 448 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
| 449 | } |
| 450 | |
| 451 | nb_transpositions = 0; |
| 452 | Index first_zero_pivot = -1; |
| 453 | for(Index k = 0; k < size; k+=blockSize) |
| 454 | { |
| 455 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
| 456 | Index trows = rows - k - bs; // trailing rows |
| 457 | Index tsize = size - k - bs; // trailing size |
| 458 | |
| 459 | // partition the matrix: |
| 460 | // A00 | A01 | A02 |
| 461 | // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
| 462 | // A20 | A21 | A22 |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 463 | BlockType A_0 = lu.block(0,0,rows,k); |
| 464 | BlockType A_2 = lu.block(0,k+bs,rows,tsize); |
| 465 | BlockType A11 = lu.block(k,k,bs,bs); |
| 466 | BlockType A12 = lu.block(k,k+bs,bs,tsize); |
| 467 | BlockType A21 = lu.block(k+bs,k,trows,bs); |
| 468 | BlockType A22 = lu.block(k+bs,k+bs,trows,tsize); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 469 | |
| 470 | PivIndex nb_transpositions_in_panel; |
| 471 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
| 472 | // with a very small blocking size: |
| 473 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
| 474 | row_transpositions+k, nb_transpositions_in_panel, 16); |
| 475 | if(ret>=0 && first_zero_pivot==-1) |
| 476 | first_zero_pivot = k+ret; |
| 477 | |
| 478 | nb_transpositions += nb_transpositions_in_panel; |
| 479 | // update permutations and apply them to A_0 |
| 480 | for(Index i=k; i<k+bs; ++i) |
| 481 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 482 | Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k)); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 483 | A_0.row(i).swap(A_0.row(piv)); |
| 484 | } |
| 485 | |
| 486 | if(trows) |
| 487 | { |
| 488 | // apply permutations to A_2 |
| 489 | for(Index i=k;i<k+bs; ++i) |
| 490 | A_2.row(i).swap(A_2.row(row_transpositions[i])); |
| 491 | |
| 492 | // A12 = A11^-1 A12 |
| 493 | A11.template triangularView<UnitLower>().solveInPlace(A12); |
| 494 | |
| 495 | A22.noalias() -= A21 * A12; |
| 496 | } |
| 497 | } |
| 498 | return first_zero_pivot; |
| 499 | } |
| 500 | }; |
| 501 | |
| 502 | /** \internal performs the LU decomposition with partial pivoting in-place. |
| 503 | */ |
| 504 | template<typename MatrixType, typename TranspositionType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 505 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 506 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 507 | // Special-case of zero matrix. |
| 508 | if (lu.rows() == 0 || lu.cols() == 0) { |
| 509 | nb_transpositions = 0; |
| 510 | return; |
| 511 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 512 | eigen_assert(lu.cols() == row_transpositions.size()); |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 513 | eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 514 | |
| 515 | partial_lu_impl |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 516 | < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, |
| 517 | typename TranspositionType::StorageIndex, |
| 518 | EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 519 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
| 520 | } |
| 521 | |
| 522 | } // end namespace internal |
| 523 | |
| 524 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 525 | void PartialPivLU<MatrixType>::compute() |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 526 | { |
| 527 | check_template_parameters(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 528 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 529 | // the row permutation is stored as int indices, so just to be sure: |
| 530 | eigen_assert(m_lu.rows()<NumTraits<int>::highest()); |
| 531 | |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 532 | if(m_lu.cols()>0) |
| 533 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
| 534 | else |
| 535 | m_l1_norm = RealScalar(0); |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 536 | |
| 537 | eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
| 538 | const Index size = m_lu.rows(); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 539 | |
| 540 | m_rowsTranspositions.resize(size); |
| 541 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 542 | typename TranspositionType::StorageIndex nb_transpositions; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 543 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
| 544 | m_det_p = (nb_transpositions%2) ? -1 : 1; |
| 545 | |
| 546 | m_p = m_rowsTranspositions; |
| 547 | |
| 548 | m_isInitialized = true; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 549 | } |
| 550 | |
| 551 | template<typename MatrixType> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 552 | typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 553 | { |
| 554 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| 555 | return Scalar(m_det_p) * m_lu.diagonal().prod(); |
| 556 | } |
| 557 | |
| 558 | /** \returns the matrix represented by the decomposition, |
| 559 | * i.e., it returns the product: P^{-1} L U. |
| 560 | * This function is provided for debug purpose. */ |
| 561 | template<typename MatrixType> |
| 562 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
| 563 | { |
| 564 | eigen_assert(m_isInitialized && "LU is not initialized."); |
| 565 | // LU |
| 566 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
| 567 | * m_lu.template triangularView<Upper>(); |
| 568 | |
| 569 | // P^{-1}(LU) |
| 570 | res = m_p.inverse() * res; |
| 571 | |
| 572 | return res; |
| 573 | } |
| 574 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 575 | /***** Implementation details *****************************************************/ |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 576 | |
| 577 | namespace internal { |
| 578 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 579 | /***** Implementation of inverse() *****************************************************/ |
| 580 | template<typename DstXprType, typename MatrixType> |
| 581 | struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense> |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 582 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 583 | typedef PartialPivLU<MatrixType> LuType; |
| 584 | typedef Inverse<LuType> SrcXprType; |
| 585 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 586 | { |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 587 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 588 | } |
| 589 | }; |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 590 | } // end namespace internal |
| 591 | |
| 592 | /******** MatrixBase methods *******/ |
| 593 | |
| 594 | /** \lu_module |
| 595 | * |
| 596 | * \return the partial-pivoting LU decomposition of \c *this. |
| 597 | * |
| 598 | * \sa class PartialPivLU |
| 599 | */ |
| 600 | template<typename Derived> |
| 601 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| 602 | MatrixBase<Derived>::partialPivLu() const |
| 603 | { |
| 604 | return PartialPivLU<PlainObject>(eval()); |
| 605 | } |
| 606 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 607 | /** \lu_module |
| 608 | * |
| 609 | * Synonym of partialPivLu(). |
| 610 | * |
| 611 | * \return the partial-pivoting LU decomposition of \c *this. |
| 612 | * |
| 613 | * \sa class PartialPivLU |
| 614 | */ |
| 615 | template<typename Derived> |
| 616 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| 617 | MatrixBase<Derived>::lu() const |
| 618 | { |
| 619 | return PartialPivLU<PlainObject>(eval()); |
| 620 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 621 | |
| 622 | } // end namespace Eigen |
| 623 | |
| 624 | #endif // EIGEN_PARTIALLU_H |