Adam Snaider | c4b3c19 | 2015-02-01 01:30:39 +0000 | [diff] [blame^] | 1 | #include <unistd.h> |
| 2 | |
| 3 | #include <memory> |
| 4 | |
| 5 | #include <random> |
| 6 | |
| 7 | #include "gtest/gtest.h" |
| 8 | #include "frc971/zeroing/zeroing_queue.q.h" |
| 9 | #include "frc971/zeroing/zeroing.h" |
| 10 | #include "aos/common/queue_testutils.h" |
| 11 | #include "aos/common/util/thread.h" |
| 12 | #include "aos/common/die.h" |
| 13 | |
| 14 | namespace frc971 { |
| 15 | namespace zeroing { |
| 16 | |
| 17 | const int kSeed1 = 0; |
| 18 | const int kSeed2 = 3; |
| 19 | |
| 20 | class NoiseGenerator { |
| 21 | public: |
| 22 | virtual double AddNoiseToSample(double sample) = 0; |
| 23 | }; |
| 24 | |
| 25 | class NoNoise : public NoiseGenerator { |
| 26 | public: |
| 27 | double AddNoiseToSample(double sample) { return sample; } |
| 28 | }; |
| 29 | |
| 30 | class FloorNoise : public NoiseGenerator { |
| 31 | public: |
| 32 | FloorNoise(double accuracy) : accuracy_(accuracy) {} |
| 33 | |
| 34 | double AddNoiseToSample(double sample) { |
| 35 | return accuracy_ * ((int)(sample / accuracy_)); |
| 36 | } |
| 37 | |
| 38 | private: |
| 39 | double accuracy_; |
| 40 | }; |
| 41 | |
| 42 | class GaussianNoise : public NoiseGenerator { |
| 43 | public: |
| 44 | GaussianNoise(unsigned int seed, double stddev) |
| 45 | : generator_(seed), distribution_(0.0, stddev) {} |
| 46 | |
| 47 | double AddNoiseToSample(double sample) { |
| 48 | return sample + distribution_(generator_); |
| 49 | } |
| 50 | |
| 51 | private: |
| 52 | std::default_random_engine generator_; |
| 53 | std::normal_distribution<double> distribution_; |
| 54 | }; |
| 55 | |
| 56 | class ZeroingEstimatorSimulator { |
| 57 | public: |
| 58 | ZeroingEstimatorSimulator(double start_pos, double index_diff, |
| 59 | NoiseGenerator& noise, int filter_size = 30) |
| 60 | : estimator_(index_diff, filter_size), noise_generator_(noise) { |
| 61 | cur_index_segment_ = (int)(start_pos / index_diff); |
| 62 | index_diff_ = index_diff; |
| 63 | start_pos_ = start_pos; |
| 64 | cur_pos_ = start_pos; |
| 65 | index_count_ = 0; |
| 66 | encoder_slip_ = 0; |
| 67 | |
| 68 | // Initialize the ZeroingEstimator instance with the first sensor readings. |
| 69 | estimator_.UpdateEstimate(getInfo()); |
| 70 | } |
| 71 | |
| 72 | void MoveTo(double new_pos) { |
| 73 | int new_index = (int)(new_pos - encoder_slip_) / index_diff_; |
| 74 | if (new_index < cur_index_segment_) { |
| 75 | cur_index_ = new_index + 1; |
| 76 | index_count_++; |
| 77 | } |
| 78 | if (new_index > cur_index_segment_) { |
| 79 | cur_index_ = new_index; |
| 80 | index_count_++; |
| 81 | } |
| 82 | cur_index_segment_ = new_index; |
| 83 | cur_pos_ = new_pos; |
| 84 | |
| 85 | estimator_.UpdateEstimate(getInfo()); |
| 86 | } |
| 87 | |
| 88 | // Simulate the encoder slipping by `slip'. |
| 89 | void MoveWithEncoderSlip(double slip) { |
| 90 | encoder_slip_ += slip; |
| 91 | |
| 92 | MoveTo(cur_pos_ + slip); |
| 93 | |
| 94 | estimator_.UpdateEstimate(getInfo()); |
| 95 | } |
| 96 | |
| 97 | ZeroingInfo getInfo() { |
| 98 | ZeroingInfo estimate; |
| 99 | estimate.pot = noise_generator_.AddNoiseToSample(cur_pos_); |
| 100 | if (index_count_ == 0) { |
| 101 | estimate.index_encoder = 0.0; |
| 102 | } else { |
| 103 | estimate.index_encoder = cur_index_ * index_diff_ - start_pos_; |
| 104 | } |
| 105 | estimate.index_count = index_count_; |
| 106 | estimate.encoder = cur_pos_ - start_pos_ - encoder_slip_; |
| 107 | return estimate; |
| 108 | } |
| 109 | |
| 110 | double getEstimate(void) { return estimator_.getPosition(); } |
| 111 | |
| 112 | private: |
| 113 | int index_count_; |
| 114 | int cur_index_; |
| 115 | int cur_index_segment_; |
| 116 | double index_diff_; |
| 117 | double start_pos_; |
| 118 | double cur_pos_; |
| 119 | double encoder_slip_; |
| 120 | ZeroingEstimator estimator_; |
| 121 | NoiseGenerator& noise_generator_; |
| 122 | }; |
| 123 | |
| 124 | class QueueTest : public ::testing::Test { |
| 125 | protected: |
| 126 | void SetUp() override { aos::SetDieTestMode(true); } |
| 127 | |
| 128 | aos::common::testing::GlobalCoreInstance my_core; |
| 129 | // Create a new instance of the test queue so that it invalidates the queue |
| 130 | // that it points to. Otherwise, we will have a pointer to shared memory that |
| 131 | // is no longer valid. |
| 132 | ::aos::Queue<TestMessage> my_test_queue; |
| 133 | |
| 134 | QueueTest() : my_test_queue(".frc971.zeroing.test_queue") {} |
| 135 | }; |
| 136 | |
| 137 | TEST_F(QueueTest, FetchBlocking) { |
| 138 | // Make sure that the queue works. |
| 139 | my_test_queue.MakeWithBuilder().test_int(0x971).Send(); |
| 140 | EXPECT_TRUE(my_test_queue.FetchNext()); |
| 141 | } |
| 142 | |
| 143 | TEST_F(QueueTest, SimpleStep) { |
| 144 | FloorNoise floored_pot(0.25); |
| 145 | ZeroingEstimatorSimulator sim(3.6, 1.0, floored_pot, 1); |
| 146 | |
| 147 | // The first estimate should be 3.5 since that's the only reliable number we |
| 148 | // have. (i.e. 3.6 rounded down to the nearest 0.25 multiple. |
| 149 | ASSERT_NEAR(3.5, sim.getEstimate(), 0.001); |
| 150 | |
| 151 | // Next we'll move to 3.65 which should still give us a reading of 3.50. This |
| 152 | // is because we're just using one sample to "filter" the noise. In this case |
| 153 | // the filter would take 3.5 from the pot value and subract the encoder |
| 154 | // reading of 0.05. In order to come up with an accurate estimate, we add the |
| 155 | // encoder value back in. |
| 156 | sim.MoveTo(3.65); |
| 157 | ASSERT_NEAR(3.50, sim.getEstimate(), 0.001); |
| 158 | |
| 159 | // Now we move to 3.80 which should give us the a reading of 3.70. Similar to |
| 160 | // the above scenario we've now moved 0.20 in total which is the reading of |
| 161 | // the encoder. Unfortunately, we can't use the encoder value yet since we |
| 162 | // don't know where it is relative to the index pulse. |
| 163 | sim.MoveTo(3.80); |
| 164 | ASSERT_NEAR(3.75, sim.getEstimate(), 0.001); |
| 165 | |
| 166 | // We move past the 4.00 mark right to 4.10. The pot value will read 4.00, |
| 167 | // the encoder reads 0.5 and the index pulse sample will read 0.4. Now we |
| 168 | // know that we are 0.1 past the 4.00 mark. |
| 169 | sim.MoveTo(4.10); |
| 170 | ASSERT_NEAR(4.10, sim.getEstimate(), 0.001); |
| 171 | |
| 172 | // We move back to 3.80 and now we should have an accurate reading. The pot |
| 173 | // value reads 3.75, the encoder reads 0.2 and the index pulse is again set |
| 174 | // at 0.4. Thus we can deduce that we're 0.2 below the 4.00 mark (i.e. at |
| 175 | // 3.80) |
| 176 | sim.MoveTo(3.80); |
| 177 | ASSERT_NEAR(3.80, sim.getEstimate(), 0.001); |
| 178 | |
| 179 | // Just for kicks we'll move back to a value of 2.56 which the estimator |
| 180 | // should be able to calculate. |
| 181 | sim.MoveTo(2.56); |
| 182 | ASSERT_NEAR(2.56, sim.getEstimate(), 0.001); |
| 183 | } |
| 184 | |
| 185 | TEST_F(QueueTest, TestMovingAverageFilter) { |
| 186 | GaussianNoise pot_noise(kSeed1, 0.5 / 3.0); |
| 187 | ZeroingEstimatorSimulator sim(3.6, 1.0, pot_noise); |
| 188 | |
| 189 | // The zeroing code is supposed to perform some filtering on the difference |
| 190 | // between the potentiometer value and the encoder value. We assume that 300 |
| 191 | // samples are sufficient to have updated the filter. |
| 192 | for (int i = 0; i < 300; i++) { |
| 193 | sim.MoveTo(3.3); |
| 194 | } |
| 195 | ASSERT_NEAR(3.3, sim.getEstimate(), 0.1); |
| 196 | |
| 197 | for (int i = 0; i < 300; i++) { |
| 198 | sim.MoveTo(3.9); |
| 199 | } |
| 200 | ASSERT_NEAR(3.9, sim.getEstimate(), 0.1); |
| 201 | } |
| 202 | |
| 203 | TEST_F(QueueTest, TestLotsOfMovement) { |
| 204 | double index_diff = 1.00; |
| 205 | GaussianNoise pot_noise(kSeed2, index_diff / 3.0); |
| 206 | ZeroingEstimatorSimulator sim(3.6, index_diff, pot_noise); |
| 207 | |
| 208 | // The zeroing code is supposed to perform some filtering on the difference |
| 209 | // between the potentiometer value and the encoder value. We assume that 300 |
| 210 | // samples are sufficient to have updated the filter. |
| 211 | for (int i = 0; i < 300; i++) { |
| 212 | sim.MoveTo(3.6); |
| 213 | } |
| 214 | ASSERT_NEAR(3.6, sim.getEstimate(), 0.1); |
| 215 | |
| 216 | // With a single index pulse the zeroing estimator should be able to lock |
| 217 | // onto the true value of the position. |
| 218 | sim.MoveTo(4.01); |
| 219 | ASSERT_NEAR(4.01, sim.getEstimate(), 0.001); |
| 220 | |
| 221 | sim.MoveTo(4.99); |
| 222 | ASSERT_NEAR(4.99, sim.getEstimate(), 0.001); |
| 223 | |
| 224 | sim.MoveTo(3.99); |
| 225 | ASSERT_NEAR(3.99, sim.getEstimate(), 0.001); |
| 226 | |
| 227 | sim.MoveTo(3.01); |
| 228 | ASSERT_NEAR(3.01, sim.getEstimate(), 0.001); |
| 229 | |
| 230 | sim.MoveTo(13.55); |
| 231 | ASSERT_NEAR(13.55, sim.getEstimate(), 0.001); |
| 232 | } |
| 233 | |
| 234 | TEST_F(QueueTest, TestDifferentIndexDiffs) { |
| 235 | double index_diff = 0.89; |
| 236 | GaussianNoise pot_noise(kSeed2, index_diff / 3.0); |
| 237 | ZeroingEstimatorSimulator sim(3.5 * index_diff, index_diff, pot_noise); |
| 238 | |
| 239 | // The zeroing code is supposed to perform some filtering on the difference |
| 240 | // between the potentiometer value and the encoder value. We assume that 300 |
| 241 | // samples are sufficient to have updated the filter. |
| 242 | for (int i = 0; i < 300; i++) { |
| 243 | sim.MoveTo(3.5 * index_diff); |
| 244 | } |
| 245 | ASSERT_NEAR(3.5 * index_diff, sim.getEstimate(), 0.1); |
| 246 | |
| 247 | // With a single index pulse the zeroing estimator should be able to lock |
| 248 | // onto the true value of the position. |
| 249 | sim.MoveTo(4.01); |
| 250 | ASSERT_NEAR(4.01, sim.getEstimate(), 0.001); |
| 251 | |
| 252 | sim.MoveTo(4.99); |
| 253 | ASSERT_NEAR(4.99, sim.getEstimate(), 0.001); |
| 254 | |
| 255 | sim.MoveTo(3.99); |
| 256 | ASSERT_NEAR(3.99, sim.getEstimate(), 0.001); |
| 257 | |
| 258 | sim.MoveTo(3.01); |
| 259 | ASSERT_NEAR(3.01, sim.getEstimate(), 0.001); |
| 260 | |
| 261 | sim.MoveTo(13.55); |
| 262 | ASSERT_NEAR(13.55, sim.getEstimate(), 0.001); |
| 263 | } |
| 264 | |
| 265 | } // namespace zeroing |
| 266 | } // namespace frc971 |