Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) |
| 2 | * .. Scalar Arguments .. |
| 3 | INTEGER INCX,K,LDA,N |
| 4 | CHARACTER DIAG,TRANS,UPLO |
| 5 | * .. |
| 6 | * .. Array Arguments .. |
| 7 | REAL A(LDA,*),X(*) |
| 8 | * .. |
| 9 | * |
| 10 | * Purpose |
| 11 | * ======= |
| 12 | * |
| 13 | * STBMV performs one of the matrix-vector operations |
| 14 | * |
| 15 | * x := A*x, or x := A'*x, |
| 16 | * |
| 17 | * where x is an n element vector and A is an n by n unit, or non-unit, |
| 18 | * upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
| 19 | * |
| 20 | * Arguments |
| 21 | * ========== |
| 22 | * |
| 23 | * UPLO - CHARACTER*1. |
| 24 | * On entry, UPLO specifies whether the matrix is an upper or |
| 25 | * lower triangular matrix as follows: |
| 26 | * |
| 27 | * UPLO = 'U' or 'u' A is an upper triangular matrix. |
| 28 | * |
| 29 | * UPLO = 'L' or 'l' A is a lower triangular matrix. |
| 30 | * |
| 31 | * Unchanged on exit. |
| 32 | * |
| 33 | * TRANS - CHARACTER*1. |
| 34 | * On entry, TRANS specifies the operation to be performed as |
| 35 | * follows: |
| 36 | * |
| 37 | * TRANS = 'N' or 'n' x := A*x. |
| 38 | * |
| 39 | * TRANS = 'T' or 't' x := A'*x. |
| 40 | * |
| 41 | * TRANS = 'C' or 'c' x := A'*x. |
| 42 | * |
| 43 | * Unchanged on exit. |
| 44 | * |
| 45 | * DIAG - CHARACTER*1. |
| 46 | * On entry, DIAG specifies whether or not A is unit |
| 47 | * triangular as follows: |
| 48 | * |
| 49 | * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| 50 | * |
| 51 | * DIAG = 'N' or 'n' A is not assumed to be unit |
| 52 | * triangular. |
| 53 | * |
| 54 | * Unchanged on exit. |
| 55 | * |
| 56 | * N - INTEGER. |
| 57 | * On entry, N specifies the order of the matrix A. |
| 58 | * N must be at least zero. |
| 59 | * Unchanged on exit. |
| 60 | * |
| 61 | * K - INTEGER. |
| 62 | * On entry with UPLO = 'U' or 'u', K specifies the number of |
| 63 | * super-diagonals of the matrix A. |
| 64 | * On entry with UPLO = 'L' or 'l', K specifies the number of |
| 65 | * sub-diagonals of the matrix A. |
| 66 | * K must satisfy 0 .le. K. |
| 67 | * Unchanged on exit. |
| 68 | * |
| 69 | * A - REAL array of DIMENSION ( LDA, n ). |
| 70 | * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
| 71 | * by n part of the array A must contain the upper triangular |
| 72 | * band part of the matrix of coefficients, supplied column by |
| 73 | * column, with the leading diagonal of the matrix in row |
| 74 | * ( k + 1 ) of the array, the first super-diagonal starting at |
| 75 | * position 2 in row k, and so on. The top left k by k triangle |
| 76 | * of the array A is not referenced. |
| 77 | * The following program segment will transfer an upper |
| 78 | * triangular band matrix from conventional full matrix storage |
| 79 | * to band storage: |
| 80 | * |
| 81 | * DO 20, J = 1, N |
| 82 | * M = K + 1 - J |
| 83 | * DO 10, I = MAX( 1, J - K ), J |
| 84 | * A( M + I, J ) = matrix( I, J ) |
| 85 | * 10 CONTINUE |
| 86 | * 20 CONTINUE |
| 87 | * |
| 88 | * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
| 89 | * by n part of the array A must contain the lower triangular |
| 90 | * band part of the matrix of coefficients, supplied column by |
| 91 | * column, with the leading diagonal of the matrix in row 1 of |
| 92 | * the array, the first sub-diagonal starting at position 1 in |
| 93 | * row 2, and so on. The bottom right k by k triangle of the |
| 94 | * array A is not referenced. |
| 95 | * The following program segment will transfer a lower |
| 96 | * triangular band matrix from conventional full matrix storage |
| 97 | * to band storage: |
| 98 | * |
| 99 | * DO 20, J = 1, N |
| 100 | * M = 1 - J |
| 101 | * DO 10, I = J, MIN( N, J + K ) |
| 102 | * A( M + I, J ) = matrix( I, J ) |
| 103 | * 10 CONTINUE |
| 104 | * 20 CONTINUE |
| 105 | * |
| 106 | * Note that when DIAG = 'U' or 'u' the elements of the array A |
| 107 | * corresponding to the diagonal elements of the matrix are not |
| 108 | * referenced, but are assumed to be unity. |
| 109 | * Unchanged on exit. |
| 110 | * |
| 111 | * LDA - INTEGER. |
| 112 | * On entry, LDA specifies the first dimension of A as declared |
| 113 | * in the calling (sub) program. LDA must be at least |
| 114 | * ( k + 1 ). |
| 115 | * Unchanged on exit. |
| 116 | * |
| 117 | * X - REAL array of dimension at least |
| 118 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
| 119 | * Before entry, the incremented array X must contain the n |
| 120 | * element vector x. On exit, X is overwritten with the |
| 121 | * tranformed vector x. |
| 122 | * |
| 123 | * INCX - INTEGER. |
| 124 | * On entry, INCX specifies the increment for the elements of |
| 125 | * X. INCX must not be zero. |
| 126 | * Unchanged on exit. |
| 127 | * |
| 128 | * Further Details |
| 129 | * =============== |
| 130 | * |
| 131 | * Level 2 Blas routine. |
| 132 | * |
| 133 | * -- Written on 22-October-1986. |
| 134 | * Jack Dongarra, Argonne National Lab. |
| 135 | * Jeremy Du Croz, Nag Central Office. |
| 136 | * Sven Hammarling, Nag Central Office. |
| 137 | * Richard Hanson, Sandia National Labs. |
| 138 | * |
| 139 | * ===================================================================== |
| 140 | * |
| 141 | * .. Parameters .. |
| 142 | REAL ZERO |
| 143 | PARAMETER (ZERO=0.0E+0) |
| 144 | * .. |
| 145 | * .. Local Scalars .. |
| 146 | REAL TEMP |
| 147 | INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L |
| 148 | LOGICAL NOUNIT |
| 149 | * .. |
| 150 | * .. External Functions .. |
| 151 | LOGICAL LSAME |
| 152 | EXTERNAL LSAME |
| 153 | * .. |
| 154 | * .. External Subroutines .. |
| 155 | EXTERNAL XERBLA |
| 156 | * .. |
| 157 | * .. Intrinsic Functions .. |
| 158 | INTRINSIC MAX,MIN |
| 159 | * .. |
| 160 | * |
| 161 | * Test the input parameters. |
| 162 | * |
| 163 | INFO = 0 |
| 164 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
| 165 | INFO = 1 |
| 166 | ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
| 167 | + .NOT.LSAME(TRANS,'C')) THEN |
| 168 | INFO = 2 |
| 169 | ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
| 170 | INFO = 3 |
| 171 | ELSE IF (N.LT.0) THEN |
| 172 | INFO = 4 |
| 173 | ELSE IF (K.LT.0) THEN |
| 174 | INFO = 5 |
| 175 | ELSE IF (LDA.LT. (K+1)) THEN |
| 176 | INFO = 7 |
| 177 | ELSE IF (INCX.EQ.0) THEN |
| 178 | INFO = 9 |
| 179 | END IF |
| 180 | IF (INFO.NE.0) THEN |
| 181 | CALL XERBLA('STBMV ',INFO) |
| 182 | RETURN |
| 183 | END IF |
| 184 | * |
| 185 | * Quick return if possible. |
| 186 | * |
| 187 | IF (N.EQ.0) RETURN |
| 188 | * |
| 189 | NOUNIT = LSAME(DIAG,'N') |
| 190 | * |
| 191 | * Set up the start point in X if the increment is not unity. This |
| 192 | * will be ( N - 1 )*INCX too small for descending loops. |
| 193 | * |
| 194 | IF (INCX.LE.0) THEN |
| 195 | KX = 1 - (N-1)*INCX |
| 196 | ELSE IF (INCX.NE.1) THEN |
| 197 | KX = 1 |
| 198 | END IF |
| 199 | * |
| 200 | * Start the operations. In this version the elements of A are |
| 201 | * accessed sequentially with one pass through A. |
| 202 | * |
| 203 | IF (LSAME(TRANS,'N')) THEN |
| 204 | * |
| 205 | * Form x := A*x. |
| 206 | * |
| 207 | IF (LSAME(UPLO,'U')) THEN |
| 208 | KPLUS1 = K + 1 |
| 209 | IF (INCX.EQ.1) THEN |
| 210 | DO 20 J = 1,N |
| 211 | IF (X(J).NE.ZERO) THEN |
| 212 | TEMP = X(J) |
| 213 | L = KPLUS1 - J |
| 214 | DO 10 I = MAX(1,J-K),J - 1 |
| 215 | X(I) = X(I) + TEMP*A(L+I,J) |
| 216 | 10 CONTINUE |
| 217 | IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) |
| 218 | END IF |
| 219 | 20 CONTINUE |
| 220 | ELSE |
| 221 | JX = KX |
| 222 | DO 40 J = 1,N |
| 223 | IF (X(JX).NE.ZERO) THEN |
| 224 | TEMP = X(JX) |
| 225 | IX = KX |
| 226 | L = KPLUS1 - J |
| 227 | DO 30 I = MAX(1,J-K),J - 1 |
| 228 | X(IX) = X(IX) + TEMP*A(L+I,J) |
| 229 | IX = IX + INCX |
| 230 | 30 CONTINUE |
| 231 | IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) |
| 232 | END IF |
| 233 | JX = JX + INCX |
| 234 | IF (J.GT.K) KX = KX + INCX |
| 235 | 40 CONTINUE |
| 236 | END IF |
| 237 | ELSE |
| 238 | IF (INCX.EQ.1) THEN |
| 239 | DO 60 J = N,1,-1 |
| 240 | IF (X(J).NE.ZERO) THEN |
| 241 | TEMP = X(J) |
| 242 | L = 1 - J |
| 243 | DO 50 I = MIN(N,J+K),J + 1,-1 |
| 244 | X(I) = X(I) + TEMP*A(L+I,J) |
| 245 | 50 CONTINUE |
| 246 | IF (NOUNIT) X(J) = X(J)*A(1,J) |
| 247 | END IF |
| 248 | 60 CONTINUE |
| 249 | ELSE |
| 250 | KX = KX + (N-1)*INCX |
| 251 | JX = KX |
| 252 | DO 80 J = N,1,-1 |
| 253 | IF (X(JX).NE.ZERO) THEN |
| 254 | TEMP = X(JX) |
| 255 | IX = KX |
| 256 | L = 1 - J |
| 257 | DO 70 I = MIN(N,J+K),J + 1,-1 |
| 258 | X(IX) = X(IX) + TEMP*A(L+I,J) |
| 259 | IX = IX - INCX |
| 260 | 70 CONTINUE |
| 261 | IF (NOUNIT) X(JX) = X(JX)*A(1,J) |
| 262 | END IF |
| 263 | JX = JX - INCX |
| 264 | IF ((N-J).GE.K) KX = KX - INCX |
| 265 | 80 CONTINUE |
| 266 | END IF |
| 267 | END IF |
| 268 | ELSE |
| 269 | * |
| 270 | * Form x := A'*x. |
| 271 | * |
| 272 | IF (LSAME(UPLO,'U')) THEN |
| 273 | KPLUS1 = K + 1 |
| 274 | IF (INCX.EQ.1) THEN |
| 275 | DO 100 J = N,1,-1 |
| 276 | TEMP = X(J) |
| 277 | L = KPLUS1 - J |
| 278 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
| 279 | DO 90 I = J - 1,MAX(1,J-K),-1 |
| 280 | TEMP = TEMP + A(L+I,J)*X(I) |
| 281 | 90 CONTINUE |
| 282 | X(J) = TEMP |
| 283 | 100 CONTINUE |
| 284 | ELSE |
| 285 | KX = KX + (N-1)*INCX |
| 286 | JX = KX |
| 287 | DO 120 J = N,1,-1 |
| 288 | TEMP = X(JX) |
| 289 | KX = KX - INCX |
| 290 | IX = KX |
| 291 | L = KPLUS1 - J |
| 292 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) |
| 293 | DO 110 I = J - 1,MAX(1,J-K),-1 |
| 294 | TEMP = TEMP + A(L+I,J)*X(IX) |
| 295 | IX = IX - INCX |
| 296 | 110 CONTINUE |
| 297 | X(JX) = TEMP |
| 298 | JX = JX - INCX |
| 299 | 120 CONTINUE |
| 300 | END IF |
| 301 | ELSE |
| 302 | IF (INCX.EQ.1) THEN |
| 303 | DO 140 J = 1,N |
| 304 | TEMP = X(J) |
| 305 | L = 1 - J |
| 306 | IF (NOUNIT) TEMP = TEMP*A(1,J) |
| 307 | DO 130 I = J + 1,MIN(N,J+K) |
| 308 | TEMP = TEMP + A(L+I,J)*X(I) |
| 309 | 130 CONTINUE |
| 310 | X(J) = TEMP |
| 311 | 140 CONTINUE |
| 312 | ELSE |
| 313 | JX = KX |
| 314 | DO 160 J = 1,N |
| 315 | TEMP = X(JX) |
| 316 | KX = KX + INCX |
| 317 | IX = KX |
| 318 | L = 1 - J |
| 319 | IF (NOUNIT) TEMP = TEMP*A(1,J) |
| 320 | DO 150 I = J + 1,MIN(N,J+K) |
| 321 | TEMP = TEMP + A(L+I,J)*X(IX) |
| 322 | IX = IX + INCX |
| 323 | 150 CONTINUE |
| 324 | X(JX) = TEMP |
| 325 | JX = JX + INCX |
| 326 | 160 CONTINUE |
| 327 | END IF |
| 328 | END IF |
| 329 | END IF |
| 330 | * |
| 331 | RETURN |
| 332 | * |
| 333 | * End of STBMV . |
| 334 | * |
| 335 | END |