Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | SUBROUTINE SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY) |
| 2 | * .. Scalar Arguments .. |
| 3 | REAL ALPHA,BETA |
| 4 | INTEGER INCX,INCY,N |
| 5 | CHARACTER UPLO |
| 6 | * .. |
| 7 | * .. Array Arguments .. |
| 8 | REAL AP(*),X(*),Y(*) |
| 9 | * .. |
| 10 | * |
| 11 | * Purpose |
| 12 | * ======= |
| 13 | * |
| 14 | * SSPMV performs the matrix-vector operation |
| 15 | * |
| 16 | * y := alpha*A*x + beta*y, |
| 17 | * |
| 18 | * where alpha and beta are scalars, x and y are n element vectors and |
| 19 | * A is an n by n symmetric matrix, supplied in packed form. |
| 20 | * |
| 21 | * Arguments |
| 22 | * ========== |
| 23 | * |
| 24 | * UPLO - CHARACTER*1. |
| 25 | * On entry, UPLO specifies whether the upper or lower |
| 26 | * triangular part of the matrix A is supplied in the packed |
| 27 | * array AP as follows: |
| 28 | * |
| 29 | * UPLO = 'U' or 'u' The upper triangular part of A is |
| 30 | * supplied in AP. |
| 31 | * |
| 32 | * UPLO = 'L' or 'l' The lower triangular part of A is |
| 33 | * supplied in AP. |
| 34 | * |
| 35 | * Unchanged on exit. |
| 36 | * |
| 37 | * N - INTEGER. |
| 38 | * On entry, N specifies the order of the matrix A. |
| 39 | * N must be at least zero. |
| 40 | * Unchanged on exit. |
| 41 | * |
| 42 | * ALPHA - REAL . |
| 43 | * On entry, ALPHA specifies the scalar alpha. |
| 44 | * Unchanged on exit. |
| 45 | * |
| 46 | * AP - REAL array of DIMENSION at least |
| 47 | * ( ( n*( n + 1 ) )/2 ). |
| 48 | * Before entry with UPLO = 'U' or 'u', the array AP must |
| 49 | * contain the upper triangular part of the symmetric matrix |
| 50 | * packed sequentially, column by column, so that AP( 1 ) |
| 51 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
| 52 | * and a( 2, 2 ) respectively, and so on. |
| 53 | * Before entry with UPLO = 'L' or 'l', the array AP must |
| 54 | * contain the lower triangular part of the symmetric matrix |
| 55 | * packed sequentially, column by column, so that AP( 1 ) |
| 56 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
| 57 | * and a( 3, 1 ) respectively, and so on. |
| 58 | * Unchanged on exit. |
| 59 | * |
| 60 | * X - REAL array of dimension at least |
| 61 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
| 62 | * Before entry, the incremented array X must contain the n |
| 63 | * element vector x. |
| 64 | * Unchanged on exit. |
| 65 | * |
| 66 | * INCX - INTEGER. |
| 67 | * On entry, INCX specifies the increment for the elements of |
| 68 | * X. INCX must not be zero. |
| 69 | * Unchanged on exit. |
| 70 | * |
| 71 | * BETA - REAL . |
| 72 | * On entry, BETA specifies the scalar beta. When BETA is |
| 73 | * supplied as zero then Y need not be set on input. |
| 74 | * Unchanged on exit. |
| 75 | * |
| 76 | * Y - REAL array of dimension at least |
| 77 | * ( 1 + ( n - 1 )*abs( INCY ) ). |
| 78 | * Before entry, the incremented array Y must contain the n |
| 79 | * element vector y. On exit, Y is overwritten by the updated |
| 80 | * vector y. |
| 81 | * |
| 82 | * INCY - INTEGER. |
| 83 | * On entry, INCY specifies the increment for the elements of |
| 84 | * Y. INCY must not be zero. |
| 85 | * Unchanged on exit. |
| 86 | * |
| 87 | * Further Details |
| 88 | * =============== |
| 89 | * |
| 90 | * Level 2 Blas routine. |
| 91 | * |
| 92 | * -- Written on 22-October-1986. |
| 93 | * Jack Dongarra, Argonne National Lab. |
| 94 | * Jeremy Du Croz, Nag Central Office. |
| 95 | * Sven Hammarling, Nag Central Office. |
| 96 | * Richard Hanson, Sandia National Labs. |
| 97 | * |
| 98 | * ===================================================================== |
| 99 | * |
| 100 | * .. Parameters .. |
| 101 | REAL ONE,ZERO |
| 102 | PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) |
| 103 | * .. |
| 104 | * .. Local Scalars .. |
| 105 | REAL TEMP1,TEMP2 |
| 106 | INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY |
| 107 | * .. |
| 108 | * .. External Functions .. |
| 109 | LOGICAL LSAME |
| 110 | EXTERNAL LSAME |
| 111 | * .. |
| 112 | * .. External Subroutines .. |
| 113 | EXTERNAL XERBLA |
| 114 | * .. |
| 115 | * |
| 116 | * Test the input parameters. |
| 117 | * |
| 118 | INFO = 0 |
| 119 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
| 120 | INFO = 1 |
| 121 | ELSE IF (N.LT.0) THEN |
| 122 | INFO = 2 |
| 123 | ELSE IF (INCX.EQ.0) THEN |
| 124 | INFO = 6 |
| 125 | ELSE IF (INCY.EQ.0) THEN |
| 126 | INFO = 9 |
| 127 | END IF |
| 128 | IF (INFO.NE.0) THEN |
| 129 | CALL XERBLA('SSPMV ',INFO) |
| 130 | RETURN |
| 131 | END IF |
| 132 | * |
| 133 | * Quick return if possible. |
| 134 | * |
| 135 | IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
| 136 | * |
| 137 | * Set up the start points in X and Y. |
| 138 | * |
| 139 | IF (INCX.GT.0) THEN |
| 140 | KX = 1 |
| 141 | ELSE |
| 142 | KX = 1 - (N-1)*INCX |
| 143 | END IF |
| 144 | IF (INCY.GT.0) THEN |
| 145 | KY = 1 |
| 146 | ELSE |
| 147 | KY = 1 - (N-1)*INCY |
| 148 | END IF |
| 149 | * |
| 150 | * Start the operations. In this version the elements of the array AP |
| 151 | * are accessed sequentially with one pass through AP. |
| 152 | * |
| 153 | * First form y := beta*y. |
| 154 | * |
| 155 | IF (BETA.NE.ONE) THEN |
| 156 | IF (INCY.EQ.1) THEN |
| 157 | IF (BETA.EQ.ZERO) THEN |
| 158 | DO 10 I = 1,N |
| 159 | Y(I) = ZERO |
| 160 | 10 CONTINUE |
| 161 | ELSE |
| 162 | DO 20 I = 1,N |
| 163 | Y(I) = BETA*Y(I) |
| 164 | 20 CONTINUE |
| 165 | END IF |
| 166 | ELSE |
| 167 | IY = KY |
| 168 | IF (BETA.EQ.ZERO) THEN |
| 169 | DO 30 I = 1,N |
| 170 | Y(IY) = ZERO |
| 171 | IY = IY + INCY |
| 172 | 30 CONTINUE |
| 173 | ELSE |
| 174 | DO 40 I = 1,N |
| 175 | Y(IY) = BETA*Y(IY) |
| 176 | IY = IY + INCY |
| 177 | 40 CONTINUE |
| 178 | END IF |
| 179 | END IF |
| 180 | END IF |
| 181 | IF (ALPHA.EQ.ZERO) RETURN |
| 182 | KK = 1 |
| 183 | IF (LSAME(UPLO,'U')) THEN |
| 184 | * |
| 185 | * Form y when AP contains the upper triangle. |
| 186 | * |
| 187 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
| 188 | DO 60 J = 1,N |
| 189 | TEMP1 = ALPHA*X(J) |
| 190 | TEMP2 = ZERO |
| 191 | K = KK |
| 192 | DO 50 I = 1,J - 1 |
| 193 | Y(I) = Y(I) + TEMP1*AP(K) |
| 194 | TEMP2 = TEMP2 + AP(K)*X(I) |
| 195 | K = K + 1 |
| 196 | 50 CONTINUE |
| 197 | Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 |
| 198 | KK = KK + J |
| 199 | 60 CONTINUE |
| 200 | ELSE |
| 201 | JX = KX |
| 202 | JY = KY |
| 203 | DO 80 J = 1,N |
| 204 | TEMP1 = ALPHA*X(JX) |
| 205 | TEMP2 = ZERO |
| 206 | IX = KX |
| 207 | IY = KY |
| 208 | DO 70 K = KK,KK + J - 2 |
| 209 | Y(IY) = Y(IY) + TEMP1*AP(K) |
| 210 | TEMP2 = TEMP2 + AP(K)*X(IX) |
| 211 | IX = IX + INCX |
| 212 | IY = IY + INCY |
| 213 | 70 CONTINUE |
| 214 | Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2 |
| 215 | JX = JX + INCX |
| 216 | JY = JY + INCY |
| 217 | KK = KK + J |
| 218 | 80 CONTINUE |
| 219 | END IF |
| 220 | ELSE |
| 221 | * |
| 222 | * Form y when AP contains the lower triangle. |
| 223 | * |
| 224 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
| 225 | DO 100 J = 1,N |
| 226 | TEMP1 = ALPHA*X(J) |
| 227 | TEMP2 = ZERO |
| 228 | Y(J) = Y(J) + TEMP1*AP(KK) |
| 229 | K = KK + 1 |
| 230 | DO 90 I = J + 1,N |
| 231 | Y(I) = Y(I) + TEMP1*AP(K) |
| 232 | TEMP2 = TEMP2 + AP(K)*X(I) |
| 233 | K = K + 1 |
| 234 | 90 CONTINUE |
| 235 | Y(J) = Y(J) + ALPHA*TEMP2 |
| 236 | KK = KK + (N-J+1) |
| 237 | 100 CONTINUE |
| 238 | ELSE |
| 239 | JX = KX |
| 240 | JY = KY |
| 241 | DO 120 J = 1,N |
| 242 | TEMP1 = ALPHA*X(JX) |
| 243 | TEMP2 = ZERO |
| 244 | Y(JY) = Y(JY) + TEMP1*AP(KK) |
| 245 | IX = JX |
| 246 | IY = JY |
| 247 | DO 110 K = KK + 1,KK + N - J |
| 248 | IX = IX + INCX |
| 249 | IY = IY + INCY |
| 250 | Y(IY) = Y(IY) + TEMP1*AP(K) |
| 251 | TEMP2 = TEMP2 + AP(K)*X(IX) |
| 252 | 110 CONTINUE |
| 253 | Y(JY) = Y(JY) + ALPHA*TEMP2 |
| 254 | JX = JX + INCX |
| 255 | JY = JY + INCY |
| 256 | KK = KK + (N-J+1) |
| 257 | 120 CONTINUE |
| 258 | END IF |
| 259 | END IF |
| 260 | * |
| 261 | RETURN |
| 262 | * |
| 263 | * End of SSPMV . |
| 264 | * |
| 265 | END |