Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM) |
| 2 | * .. Scalar Arguments .. |
| 3 | INTEGER INCX,INCY,N |
| 4 | * .. |
| 5 | * .. Array Arguments .. |
| 6 | REAL SPARAM(5),SX(*),SY(*) |
| 7 | * .. |
| 8 | * |
| 9 | * Purpose |
| 10 | * ======= |
| 11 | * |
| 12 | * APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX |
| 13 | * |
| 14 | * (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN |
| 15 | * (DX**T) |
| 16 | * |
| 17 | * SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE |
| 18 | * LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. |
| 19 | * WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. |
| 20 | * |
| 21 | * SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 |
| 22 | * |
| 23 | * (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) |
| 24 | * H=( ) ( ) ( ) ( ) |
| 25 | * (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). |
| 26 | * SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. |
| 27 | * |
| 28 | * |
| 29 | * Arguments |
| 30 | * ========= |
| 31 | * |
| 32 | * N (input) INTEGER |
| 33 | * number of elements in input vector(s) |
| 34 | * |
| 35 | * SX (input/output) REAL array, dimension N |
| 36 | * double precision vector with N elements |
| 37 | * |
| 38 | * INCX (input) INTEGER |
| 39 | * storage spacing between elements of SX |
| 40 | * |
| 41 | * SY (input/output) REAL array, dimension N |
| 42 | * double precision vector with N elements |
| 43 | * |
| 44 | * INCY (input) INTEGER |
| 45 | * storage spacing between elements of SY |
| 46 | * |
| 47 | * SPARAM (input/output) REAL array, dimension 5 |
| 48 | * SPARAM(1)=SFLAG |
| 49 | * SPARAM(2)=SH11 |
| 50 | * SPARAM(3)=SH21 |
| 51 | * SPARAM(4)=SH12 |
| 52 | * SPARAM(5)=SH22 |
| 53 | * |
| 54 | * ===================================================================== |
| 55 | * |
| 56 | * .. Local Scalars .. |
| 57 | REAL SFLAG,SH11,SH12,SH21,SH22,TWO,W,Z,ZERO |
| 58 | INTEGER I,KX,KY,NSTEPS |
| 59 | * .. |
| 60 | * .. Data statements .. |
| 61 | DATA ZERO,TWO/0.E0,2.E0/ |
| 62 | * .. |
| 63 | * |
| 64 | SFLAG = SPARAM(1) |
| 65 | IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) GO TO 140 |
| 66 | IF (.NOT. (INCX.EQ.INCY.AND.INCX.GT.0)) GO TO 70 |
| 67 | * |
| 68 | NSTEPS = N*INCX |
| 69 | IF (SFLAG) 50,10,30 |
| 70 | 10 CONTINUE |
| 71 | SH12 = SPARAM(4) |
| 72 | SH21 = SPARAM(3) |
| 73 | DO 20 I = 1,NSTEPS,INCX |
| 74 | W = SX(I) |
| 75 | Z = SY(I) |
| 76 | SX(I) = W + Z*SH12 |
| 77 | SY(I) = W*SH21 + Z |
| 78 | 20 CONTINUE |
| 79 | GO TO 140 |
| 80 | 30 CONTINUE |
| 81 | SH11 = SPARAM(2) |
| 82 | SH22 = SPARAM(5) |
| 83 | DO 40 I = 1,NSTEPS,INCX |
| 84 | W = SX(I) |
| 85 | Z = SY(I) |
| 86 | SX(I) = W*SH11 + Z |
| 87 | SY(I) = -W + SH22*Z |
| 88 | 40 CONTINUE |
| 89 | GO TO 140 |
| 90 | 50 CONTINUE |
| 91 | SH11 = SPARAM(2) |
| 92 | SH12 = SPARAM(4) |
| 93 | SH21 = SPARAM(3) |
| 94 | SH22 = SPARAM(5) |
| 95 | DO 60 I = 1,NSTEPS,INCX |
| 96 | W = SX(I) |
| 97 | Z = SY(I) |
| 98 | SX(I) = W*SH11 + Z*SH12 |
| 99 | SY(I) = W*SH21 + Z*SH22 |
| 100 | 60 CONTINUE |
| 101 | GO TO 140 |
| 102 | 70 CONTINUE |
| 103 | KX = 1 |
| 104 | KY = 1 |
| 105 | IF (INCX.LT.0) KX = 1 + (1-N)*INCX |
| 106 | IF (INCY.LT.0) KY = 1 + (1-N)*INCY |
| 107 | * |
| 108 | IF (SFLAG) 120,80,100 |
| 109 | 80 CONTINUE |
| 110 | SH12 = SPARAM(4) |
| 111 | SH21 = SPARAM(3) |
| 112 | DO 90 I = 1,N |
| 113 | W = SX(KX) |
| 114 | Z = SY(KY) |
| 115 | SX(KX) = W + Z*SH12 |
| 116 | SY(KY) = W*SH21 + Z |
| 117 | KX = KX + INCX |
| 118 | KY = KY + INCY |
| 119 | 90 CONTINUE |
| 120 | GO TO 140 |
| 121 | 100 CONTINUE |
| 122 | SH11 = SPARAM(2) |
| 123 | SH22 = SPARAM(5) |
| 124 | DO 110 I = 1,N |
| 125 | W = SX(KX) |
| 126 | Z = SY(KY) |
| 127 | SX(KX) = W*SH11 + Z |
| 128 | SY(KY) = -W + SH22*Z |
| 129 | KX = KX + INCX |
| 130 | KY = KY + INCY |
| 131 | 110 CONTINUE |
| 132 | GO TO 140 |
| 133 | 120 CONTINUE |
| 134 | SH11 = SPARAM(2) |
| 135 | SH12 = SPARAM(4) |
| 136 | SH21 = SPARAM(3) |
| 137 | SH22 = SPARAM(5) |
| 138 | DO 130 I = 1,N |
| 139 | W = SX(KX) |
| 140 | Z = SY(KY) |
| 141 | SX(KX) = W*SH11 + Z*SH12 |
| 142 | SY(KY) = W*SH21 + Z*SH22 |
| 143 | KX = KX + INCX |
| 144 | KY = KY + INCY |
| 145 | 130 CONTINUE |
| 146 | 140 CONTINUE |
| 147 | RETURN |
| 148 | END |