Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame] | 1 | /* Use mpz_kronecker_ui() to calculate an estimate for the quadratic |
| 2 | class number h(d), for a given negative fundamental discriminant, using |
| 3 | Dirichlet's analytic formula. |
| 4 | |
| 5 | Copyright 1999-2002 Free Software Foundation, Inc. |
| 6 | |
| 7 | This file is part of the GNU MP Library. |
| 8 | |
| 9 | This program is free software; you can redistribute it and/or modify it |
| 10 | under the terms of the GNU General Public License as published by the Free |
| 11 | Software Foundation; either version 3 of the License, or (at your option) |
| 12 | any later version. |
| 13 | |
| 14 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 16 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 17 | more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License along with |
| 20 | this program. If not, see https://www.gnu.org/licenses/. */ |
| 21 | |
| 22 | |
| 23 | /* Usage: qcn [-p limit] <discriminant>... |
| 24 | |
| 25 | A fundamental discriminant means one of the form D or 4*D with D |
| 26 | square-free. Each argument is checked to see it's congruent to 0 or 1 |
| 27 | mod 4 (as all discriminants must be), and that it's negative, but there's |
| 28 | no check on D being square-free. |
| 29 | |
| 30 | This program is a bit of a toy, there are better methods for calculating |
| 31 | the class number and class group structure. |
| 32 | |
| 33 | Reference: |
| 34 | |
| 35 | Daniel Shanks, "Class Number, A Theory of Factorization, and Genera", |
| 36 | Proc. Symp. Pure Math., vol 20, 1970, pages 415-440. |
| 37 | |
| 38 | */ |
| 39 | |
| 40 | #include <math.h> |
| 41 | #include <stdio.h> |
| 42 | #include <stdlib.h> |
| 43 | #include <string.h> |
| 44 | |
| 45 | #include "gmp.h" |
| 46 | |
| 47 | #ifndef M_PI |
| 48 | #define M_PI 3.14159265358979323846 |
| 49 | #endif |
| 50 | |
| 51 | |
| 52 | /* A simple but slow primality test. */ |
| 53 | int |
| 54 | prime_p (unsigned long n) |
| 55 | { |
| 56 | unsigned long i, limit; |
| 57 | |
| 58 | if (n == 2) |
| 59 | return 1; |
| 60 | if (n < 2 || !(n&1)) |
| 61 | return 0; |
| 62 | |
| 63 | limit = (unsigned long) floor (sqrt ((double) n)); |
| 64 | for (i = 3; i <= limit; i+=2) |
| 65 | if ((n % i) == 0) |
| 66 | return 0; |
| 67 | |
| 68 | return 1; |
| 69 | } |
| 70 | |
| 71 | |
| 72 | /* The formula is as follows, with d < 0. |
| 73 | |
| 74 | w * sqrt(-d) inf p |
| 75 | h(d) = ------------ * product -------- |
| 76 | 2 * pi p=2 p - (d/p) |
| 77 | |
| 78 | |
| 79 | (d/p) is the Kronecker symbol and the product is over primes p. w is 6 |
| 80 | when d=-3, 4 when d=-4, or 2 otherwise. |
| 81 | |
| 82 | Calculating the product up to p=infinity would take a long time, so for |
| 83 | the estimate primes up to 132,000 are used. Shanks found this giving an |
| 84 | accuracy of about 1 part in 1000, in normal cases. */ |
| 85 | |
| 86 | unsigned long p_limit = 132000; |
| 87 | |
| 88 | double |
| 89 | qcn_estimate (mpz_t d) |
| 90 | { |
| 91 | double h; |
| 92 | unsigned long p; |
| 93 | |
| 94 | /* p=2 */ |
| 95 | h = sqrt (-mpz_get_d (d)) / M_PI |
| 96 | * 2.0 / (2.0 - mpz_kronecker_ui (d, 2)); |
| 97 | |
| 98 | if (mpz_cmp_si (d, -3) == 0) h *= 3; |
| 99 | else if (mpz_cmp_si (d, -4) == 0) h *= 2; |
| 100 | |
| 101 | for (p = 3; p <= p_limit; p += 2) |
| 102 | if (prime_p (p)) |
| 103 | h *= (double) p / (double) (p - mpz_kronecker_ui (d, p)); |
| 104 | |
| 105 | return h; |
| 106 | } |
| 107 | |
| 108 | |
| 109 | void |
| 110 | qcn_str (char *num) |
| 111 | { |
| 112 | mpz_t z; |
| 113 | |
| 114 | mpz_init_set_str (z, num, 0); |
| 115 | |
| 116 | if (mpz_sgn (z) >= 0) |
| 117 | { |
| 118 | mpz_out_str (stdout, 0, z); |
| 119 | printf (" is not supported (negatives only)\n"); |
| 120 | } |
| 121 | else if (mpz_fdiv_ui (z, 4) != 0 && mpz_fdiv_ui (z, 4) != 1) |
| 122 | { |
| 123 | mpz_out_str (stdout, 0, z); |
| 124 | printf (" is not a discriminant (must == 0 or 1 mod 4)\n"); |
| 125 | } |
| 126 | else |
| 127 | { |
| 128 | printf ("h("); |
| 129 | mpz_out_str (stdout, 0, z); |
| 130 | printf (") approx %.1f\n", qcn_estimate (z)); |
| 131 | } |
| 132 | mpz_clear (z); |
| 133 | } |
| 134 | |
| 135 | |
| 136 | int |
| 137 | main (int argc, char *argv[]) |
| 138 | { |
| 139 | int i; |
| 140 | int saw_number = 0; |
| 141 | |
| 142 | for (i = 1; i < argc; i++) |
| 143 | { |
| 144 | if (strcmp (argv[i], "-p") == 0) |
| 145 | { |
| 146 | i++; |
| 147 | if (i >= argc) |
| 148 | { |
| 149 | fprintf (stderr, "Missing argument to -p\n"); |
| 150 | exit (1); |
| 151 | } |
| 152 | p_limit = atoi (argv[i]); |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | qcn_str (argv[i]); |
| 157 | saw_number = 1; |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | if (! saw_number) |
| 162 | { |
| 163 | /* some default output */ |
| 164 | qcn_str ("-85702502803"); /* is 16259 */ |
| 165 | qcn_str ("-328878692999"); /* is 1499699 */ |
| 166 | qcn_str ("-928185925902146563"); /* is 52739552 */ |
| 167 | qcn_str ("-84148631888752647283"); /* is 496652272 */ |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | return 0; |
| 172 | } |