blob: 0aa4203e7954076e56f2b80ba876ebda4181ec62 [file] [log] [blame]
Austin Schuh2a3e0632018-02-19 16:24:49 -08001#include <inttypes.h>
2#include <stdio.h>
3#include <string.h>
4#include <unistd.h>
5
6#include <array>
7#include <chrono>
8#include <cmath>
9#include <functional>
10#include <mutex>
11#include <thread>
12
13#include "AnalogInput.h"
14#include "Counter.h"
15#include "DigitalGlitchFilter.h"
16#include "DriverStation.h"
17#include "Encoder.h"
18#include "Relay.h"
19#include "Servo.h"
20#include "VictorSP.h"
21#undef ERROR
22
23#include "aos/common/commonmath.h"
24#include "aos/common/logging/logging.h"
25#include "aos/common/logging/queue_logging.h"
26#include "aos/common/messages/robot_state.q.h"
27#include "aos/common/stl_mutex.h"
28#include "aos/common/time.h"
29#include "aos/common/util/compiler_memory_barrier.h"
30#include "aos/common/util/log_interval.h"
31#include "aos/common/util/phased_loop.h"
32#include "aos/common/util/wrapping_counter.h"
33#include "aos/linux_code/init.h"
34
35#include "frc971/autonomous/auto.q.h"
36#include "frc971/control_loops/control_loops.q.h"
37#include "frc971/control_loops/drivetrain/drivetrain.q.h"
38#include "frc971/wpilib/ADIS16448.h"
39#include "frc971/wpilib/buffered_pcm.h"
40#include "frc971/wpilib/buffered_solenoid.h"
41#include "frc971/wpilib/dma.h"
42#include "frc971/wpilib/dma_edge_counting.h"
43#include "frc971/wpilib/encoder_and_potentiometer.h"
44#include "frc971/wpilib/interrupt_edge_counting.h"
45#include "frc971/wpilib/joystick_sender.h"
46#include "frc971/wpilib/logging.q.h"
47#include "frc971/wpilib/loop_output_handler.h"
48#include "frc971/wpilib/pdp_fetcher.h"
49#include "frc971/wpilib/wpilib_interface.h"
50#include "frc971/wpilib/wpilib_robot_base.h"
51#include "y2018/constants.h"
52#include "y2018/control_loops/superstructure/superstructure.q.h"
53
54#ifndef M_PI
55#define M_PI 3.14159265358979323846
56#endif
57
58using ::frc971::control_loops::drivetrain_queue;
59using ::y2018::control_loops::superstructure_queue;
60using ::y2018::constants::Values;
61using ::aos::monotonic_clock;
62namespace chrono = ::std::chrono;
63
64namespace y2018 {
65namespace wpilib {
66namespace {
67
68constexpr double kMaxBringupPower = 12.0;
69
70// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
71// DMA stuff and then removing the * 2.0 in *_translate.
72// The low bit is direction.
73
74// TODO(brian): Replace this with ::std::make_unique once all our toolchains
75// have support.
76
77template <class T, class... U>
78std::unique_ptr<T> make_unique(U &&... u) {
79 return std::unique_ptr<T>(new T(std::forward<U>(u)...));
80}
81
82// TODO(brian): Use ::std::max instead once we have C++14 so that can be
83// constexpr.
84
85template <typename T>
86constexpr T max(T a, T b) {
87 return (a > b) ? a : b;
88}
89
90template <typename T, typename... Rest>
91constexpr T max(T a, T b, T c, Rest... rest) {
92 return max(max(a, b), c, rest...);
93}
94
95double drivetrain_translate(int32_t in) {
96 return static_cast<double>(in) /
97 Values::kDrivetrainEncoderCountsPerRevolution() *
98 Values::kDrivetrainEncoderRatio() * control_loops::drivetrain::kWheelRadius;
99}
100
101double drivetrain_velocity_translate(double in) {
102 return (1.0 / in) / Values::kDrivetrainCyclesPerRevolution() *
103 Values::kDrivetrainEncoderRatio() * control_loops::drivetrain::kWheelRadius;
104}
105
106double proximal_pot_translate(double voltage) {
107 return voltage * Values::kProximalPotRatio() *
108 (3.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
109}
110
111double distal_pot_translate(double voltage) {
112 return voltage * Values::kDistalPotRatio() *
113 (10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
114}
115
116double intake_pot_translate(double voltage) {
117 return voltage * Values::kIntakeMotorPotRatio() *
118 (10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
119}
120
121double intake_spring_translate(double voltage) {
122 return voltage * Values::kIntakeSpringRatio() * (2 * M_PI /*radians*/) /
123 (5.0 /*volts*/);
124}
125
126// TODO() figure out differnce between max and min voltages on shifter pots.
127// Returns value from 0.0 to 1.0, with 0.0 being close to low gear so it can be
128// passed drectly into the drivetrain position queue.
129double drivetrain_shifter_pot_translate(double voltage) {
130 return voltage / (Values::kDrivetrainShifterPotMaxVoltage() -
131 Values::kDrivetrainShifterPotMinVoltage());
132}
133
134constexpr double kMaxFastEncoderPulsesPerSecond =
135 max(Values::kMaxDrivetrainEncoderPulsesPerSecond(),
136 Values::kMaxIntakeMotorEncoderPulsesPerSecond());
137static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
138 "fast encoders are too fast");
139
140constexpr double kMaxMediumEncoderPulsesPerSecond =
141 max(Values::kMaxProximalEncoderPulsesPerSecond(),
142 Values::kMaxDistalEncoderPulsesPerSecond());
143static_assert(kMaxMediumEncoderPulsesPerSecond <= 400000,
144 "medium encoders are too fast");
145
146// Class to send position messages with sensor readings to our loops.
147class SensorReader {
148 public:
149 SensorReader() {
150 // Set to filter out anything shorter than 1/4 of the minimum pulse width
151 // we should ever see.
152 fast_encoder_filter_.SetPeriodNanoSeconds(
153 static_cast<int>(1 / 4.0 /* built-in tolerance */ /
154 kMaxFastEncoderPulsesPerSecond * 1e9 +
155 0.5));
156 medium_encoder_filter_.SetPeriodNanoSeconds(
157 static_cast<int>(1 / 4.0 /* built-in tolerance */ /
158 kMaxMediumEncoderPulsesPerSecond * 1e9 +
159 0.5));
160 hall_filter_.SetPeriodNanoSeconds(100000);
161 }
162
163 // Left drivetrain side.
164 void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
165 fast_encoder_filter_.Add(encoder.get());
166 drivetrain_left_encoder_ = ::std::move(encoder);
167 }
168
169 void set_left_drivetrain_shifter_potentiometer(
170 ::std::unique_ptr<AnalogInput> potentiometer) {
171 left_drivetrain_shifter_ = ::std::move(potentiometer);
172 }
173
174 // Right drivetrain side.
175 void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
176 fast_encoder_filter_.Add(encoder.get());
177 drivetrain_right_encoder_ = ::std::move(encoder);
178 }
179
180 void set_right_drivetrain_shifter_potentiometer(
181 ::std::unique_ptr<AnalogInput> potentiometer) {
182 right_drivetrain_shifter_ = ::std::move(potentiometer);
183 }
184
185 // Proximal joint.
186 void set_proximal_encoder(::std::unique_ptr<Encoder> encoder) {
187 medium_encoder_filter_.Add(encoder.get());
188 proximal_encoder_.set_encoder(::std::move(encoder));
189 }
190
191 void set_proximal_absolute_pwm(::std::unique_ptr<DigitalInput> absolute_pwm) {
192 proximal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
193 }
194
195 void set_proximal_potentiometer(
196 ::std::unique_ptr<AnalogInput> potentiometer) {
197 proximal_encoder_.set_potentiometer(::std::move(potentiometer));
198 }
199
200 // Distal joint.
201 void set_distal_encoder(::std::unique_ptr<Encoder> encoder) {
202 medium_encoder_filter_.Add(encoder.get());
203 distal_encoder_.set_encoder(::std::move(encoder));
204 }
205
206 void set_distal_absolute_pwm(::std::unique_ptr<DigitalInput> absolute_pwm) {
207 fast_encoder_filter_.Add(absolute_pwm.get());
208 distal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
209 }
210
211 void set_distal_potentiometer(::std::unique_ptr<AnalogInput> potentiometer) {
212 distal_encoder_.set_potentiometer(::std::move(potentiometer));
213 }
214
215 // Left intake side.
216 void set_left_intake_encoder(::std::unique_ptr<Encoder> encoder) {
217 fast_encoder_filter_.Add(encoder.get());
218 left_intake_encoder_.set_encoder(::std::move(encoder));
219 }
220
221 void set_left_intake_absolute_pwm(
222 ::std::unique_ptr<DigitalInput> absolute_pwm) {
223 fast_encoder_filter_.Add(absolute_pwm.get());
224 left_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
225 }
226
227 void set_left_intake_potentiometer(
228 ::std::unique_ptr<AnalogInput> potentiometer) {
229 left_intake_encoder_.set_potentiometer(::std::move(potentiometer));
230 }
231
232 void set_left_intake_spring_angle(::std::unique_ptr<AnalogInput> encoder) {
233 left_intake_spring_angle_ = ::std::move(encoder);
234 }
235
236 void set_left_intake_cube_detector(::std::unique_ptr<DigitalInput> input) {
237 left_intake_cube_detector_ = ::std::move(input);
238 }
239
240 // Right intake side.
241 void set_right_intake_encoder(::std::unique_ptr<Encoder> encoder) {
242 fast_encoder_filter_.Add(encoder.get());
243 right_intake_encoder_.set_encoder(::std::move(encoder));
244 }
245
246 void set_right_intake_absolute_pwm(
247 ::std::unique_ptr<DigitalInput> absolute_pwm) {
248 fast_encoder_filter_.Add(absolute_pwm.get());
249 right_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
250 }
251
252 void set_right_intake_potentiometer(
253 ::std::unique_ptr<AnalogInput> potentiometer) {
254 right_intake_encoder_.set_potentiometer(::std::move(potentiometer));
255 }
256
257 void set_right_intake_spring_angle(::std::unique_ptr<AnalogInput> encoder) {
258 right_intake_spring_angle_ = ::std::move(encoder);
259 }
260
261 void set_right_intake_cube_detector(::std::unique_ptr<DigitalInput> input) {
262 right_intake_cube_detector_ = ::std::move(input);
263 }
264
265 // Auto mode switches.
266 void set_autonomous_mode(int i, ::std::unique_ptr<DigitalInput> sensor) {
267 autonomous_modes_.at(i) = ::std::move(sensor);
268 }
269
270 void set_pwm_trigger(::std::unique_ptr<DigitalInput> pwm_trigger) {
271 medium_encoder_filter_.Add(pwm_trigger.get());
272 pwm_trigger_ = ::std::move(pwm_trigger);
273 }
274
275 // All of the DMA-related set_* calls must be made before this, and it
276 // doesn't hurt to do all of them.
277 void set_dma(::std::unique_ptr<DMA> dma) {
278 dma_synchronizer_.reset(
279 new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
280 }
281
282 void RunPWMDetecter() {
283 ::aos::SetCurrentThreadRealtimePriority(41);
284
285 pwm_trigger_->RequestInterrupts();
286 // Rising edge only.
287 pwm_trigger_->SetUpSourceEdge(true, false);
288
289 monotonic_clock::time_point last_posedge_monotonic =
290 monotonic_clock::min_time;
291
292 while (run_) {
293 auto ret = pwm_trigger_->WaitForInterrupt(1.0, true);
294 if (ret == InterruptableSensorBase::WaitResult::kRisingEdge) {
295 // Grab all the clocks.
296 const double pwm_fpga_time = pwm_trigger_->ReadRisingTimestamp();
297
298 aos_compiler_memory_barrier();
299 const double fpga_time_before = GetFPGATime() * 1e-6;
300 aos_compiler_memory_barrier();
301 const monotonic_clock::time_point monotonic_now =
302 monotonic_clock::now();
303 aos_compiler_memory_barrier();
304 const double fpga_time_after = GetFPGATime() * 1e-6;
305 aos_compiler_memory_barrier();
306
307 const double fpga_offset =
308 (fpga_time_after + fpga_time_before) / 2.0 - pwm_fpga_time;
309
310 // Compute when the edge was.
311 const monotonic_clock::time_point monotonic_edge =
312 monotonic_now - chrono::duration_cast<chrono::nanoseconds>(
313 chrono::duration<double>(fpga_offset));
314
315 LOG(DEBUG, "Got PWM pulse %f spread, %f offset, %lld trigger\n",
316 fpga_time_after - fpga_time_before, fpga_offset,
317 monotonic_edge.time_since_epoch().count());
318
319 // Compute bounds on the timestep and sampling times.
320 const double fpga_sample_length = fpga_time_after - fpga_time_before;
321 const chrono::nanoseconds elapsed_time =
322 monotonic_edge - last_posedge_monotonic;
323
324 last_posedge_monotonic = monotonic_edge;
325
326 // Verify that the values are sane.
327 if (fpga_sample_length > 2e-5 || fpga_sample_length < 0) {
328 continue;
329 }
330 if (fpga_offset < 0 || fpga_offset > 0.00015) {
331 continue;
332 }
333 if (elapsed_time >
334 chrono::microseconds(5050) + chrono::microseconds(4) ||
335 elapsed_time <
336 chrono::microseconds(5050) - chrono::microseconds(4)) {
337 continue;
338 }
339 // Good edge!
340 {
341 ::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
342 last_tick_time_monotonic_timepoint_ = last_posedge_monotonic;
343 last_period_ = elapsed_time;
344 }
345 } else {
346 LOG(INFO, "PWM triggered %d\n", ret);
347 }
348 }
349 pwm_trigger_->CancelInterrupts();
350 }
351
352 void operator()() {
353 ::aos::SetCurrentThreadName("SensorReader");
354
355 my_pid_ = getpid();
356 ds_ = &DriverStation::GetInstance();
357
358 dma_synchronizer_->Start();
359
360 ::aos::time::PhasedLoop phased_loop(last_period_,
361 ::std::chrono::milliseconds(3));
362 chrono::nanoseconds filtered_period = last_period_;
363
364 ::std::thread pwm_detecter_thread(
365 ::std::bind(&SensorReader::RunPWMDetecter, this));
366
367 ::aos::SetCurrentThreadRealtimePriority(40);
368 while (run_) {
369 {
370 const int iterations = phased_loop.SleepUntilNext();
371 if (iterations != 1) {
372 LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
373 }
374 }
375 RunIteration();
376
377 monotonic_clock::time_point last_tick_timepoint;
378 chrono::nanoseconds period;
379 {
380 ::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
381 last_tick_timepoint = last_tick_time_monotonic_timepoint_;
382 period = last_period_;
383 }
384
385 if (last_tick_timepoint == monotonic_clock::min_time) {
386 continue;
387 }
388 chrono::nanoseconds new_offset = phased_loop.OffsetFromIntervalAndTime(
389 period, last_tick_timepoint + chrono::microseconds(2050));
390
391 // TODO(austin): If this is the first edge in a while, skip to it (plus
392 // an offset). Otherwise, slowly drift time to line up.
393
394 phased_loop.set_interval_and_offset(period, new_offset);
395 }
396 pwm_detecter_thread.join();
397 }
398
399 void RunIteration() {
400 ::frc971::wpilib::SendRobotState(my_pid_, ds_);
401
402 const auto values = constants::GetValues();
403
404 {
405 auto drivetrain_message = drivetrain_queue.position.MakeMessage();
406 drivetrain_message->right_encoder =
407 drivetrain_translate(drivetrain_right_encoder_->GetRaw());
408 drivetrain_message->right_speed =
409 drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
410 drivetrain_message->left_shifter_position =
411 drivetrain_shifter_pot_translate(
412 left_drivetrain_shifter_->GetVoltage());
413
414 drivetrain_message->left_encoder =
415 -drivetrain_translate(drivetrain_left_encoder_->GetRaw());
416 drivetrain_message->left_speed =
417 drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
418 drivetrain_message->right_shifter_position =
419 drivetrain_shifter_pot_translate(
420 right_drivetrain_shifter_->GetVoltage());
421
422 drivetrain_message.Send();
423 }
424
425 dma_synchronizer_->RunIteration();
426
427 {
428 auto superstructure_message = superstructure_queue.position.MakeMessage();
429
430 CopyPosition(proximal_encoder_, &superstructure_message->arm.proximal,
431 Values::kProximalEncoderCountsPerRevolution(),
432 Values::kProximalEncoderRatio(), proximal_pot_translate,
433 false, values.proximal.pot_offset);
434
435 CopyPosition(distal_encoder_, &superstructure_message->arm.distal,
436 Values::kDistalEncoderCountsPerRevolution(),
437 Values::kDistalEncoderRatio(), distal_pot_translate, false,
438 values.distal.pot_offset);
439
440 CopyPosition(left_intake_encoder_,
441 &superstructure_message->intake.left.motor_position,
442 Values::kIntakeMotorEncoderCountsPerRevolution(),
443 Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
444 false, values.intake.left_pot_offset);
445
446 CopyPosition(right_intake_encoder_,
447 &superstructure_message->intake.right.motor_position,
448 Values::kIntakeMotorEncoderCountsPerRevolution(),
449 Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
450 false, values.intake.right_pot_offset);
451
452 superstructure_message->intake.left.spring_angle =
453 intake_spring_translate(left_intake_spring_angle_->GetVoltage());
454 superstructure_message->intake.left.beam_break =
455 left_intake_cube_detector_->Get();
456
457 superstructure_message->intake.right.spring_angle =
458 intake_spring_translate(right_intake_spring_angle_->GetVoltage());
459 superstructure_message->intake.right.beam_break =
460 right_intake_cube_detector_->Get();
461
462 superstructure_message.Send();
463 }
464
465 {
466 auto auto_mode_message = ::frc971::autonomous::auto_mode.MakeMessage();
467 auto_mode_message->mode = 0;
468 for (size_t i = 0; i < autonomous_modes_.size(); ++i) {
469 if (autonomous_modes_[i] && autonomous_modes_[i]->Get()) {
470 auto_mode_message->mode |= 1 << i;
471 }
472 }
473 LOG_STRUCT(DEBUG, "auto mode", *auto_mode_message);
474 auto_mode_message.Send();
475 }
476 }
477
478 void Quit() { run_ = false; }
479
480 private:
481 double encoder_translate(int32_t value, double counts_per_revolution,
482 double ratio) {
483 return static_cast<double>(value) / counts_per_revolution * ratio *
484 (2.0 * M_PI);
485 }
486
487 void CopyPosition(
488 const ::frc971::wpilib::AbsoluteEncoderAndPotentiometer &encoder,
489 ::frc971::PotAndAbsolutePosition *position,
490 double encoder_counts_per_revolution, double encoder_ratio,
491 ::std::function<double(double)> potentiometer_translate, bool reverse,
492 double pot_offset) {
493 const double multiplier = reverse ? -1.0 : 1.0;
494 position->pot = multiplier * potentiometer_translate(
495 encoder.ReadPotentiometerVoltage()) +
496 pot_offset;
497 position->encoder =
498 multiplier * encoder_translate(encoder.ReadRelativeEncoder(),
499 encoder_counts_per_revolution,
500 encoder_ratio);
501
502 position->absolute_encoder =
503 (reverse ? (1.0 - encoder.ReadAbsoluteEncoder())
504 : encoder.ReadAbsoluteEncoder()) *
505 encoder_ratio * (2.0 * M_PI);
506 }
507
508 int32_t my_pid_;
509 DriverStation *ds_;
510
511 // Mutex to manage access to the period and tick time variables.
512 ::aos::stl_mutex tick_time_mutex_;
513 monotonic_clock::time_point last_tick_time_monotonic_timepoint_ =
514 monotonic_clock::min_time;
515 chrono::nanoseconds last_period_ = chrono::microseconds(5050);
516
517 ::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
518
519 DigitalGlitchFilter fast_encoder_filter_, medium_encoder_filter_,
520 hall_filter_;
521
522 ::std::unique_ptr<Encoder> drivetrain_left_encoder_,
523 drivetrain_right_encoder_;
524
525 ::std::unique_ptr<AnalogInput> left_drivetrain_shifter_,
526 right_drivetrain_shifter_;
527
528 ::frc971::wpilib::AbsoluteEncoderAndPotentiometer proximal_encoder_,
529 distal_encoder_;
530
531 ::frc971::wpilib::AbsoluteEncoderAndPotentiometer left_intake_encoder_,
532 right_intake_encoder_;
533
534 ::std::unique_ptr<AnalogInput> left_intake_spring_angle_,
535 right_intake_spring_angle_;
536 ::std::unique_ptr<DigitalInput> left_intake_cube_detector_,
537 right_intake_cube_detector_;
538
539 ::std::unique_ptr<DigitalInput> pwm_trigger_;
540
541 ::std::array<::std::unique_ptr<DigitalInput>, 4> autonomous_modes_;
542
543 ::std::atomic<bool> run_{true};
544};
545
546class SolenoidWriter {
547 public:
548 SolenoidWriter(::frc971::wpilib::BufferedPcm *pcm)
549 : pcm_(pcm),
550 drivetrain_(".frc971.control_loops.drivetrain_queue.output"),
551 superstructure_(".y2018.control_loops.superstructure_queue.output") {}
552
553 // left drive
554 // right drive
555 //
556 // claw
557 // arm brakes
558 // hook release
559 // fork release
560 void set_left_drivetrain_shifter(
561 ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
562 left_drivetrain_shifter_ = ::std::move(s);
563 }
564 void set_right_drivetrain_shifter(
565 ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
566 right_drivetrain_shifter_ = ::std::move(s);
567 }
568
569 void set_claw(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
570 claw_ = ::std::move(s);
571 }
572
573 void set_arm_brakes(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
574 arm_brakes_ = ::std::move(s);
575 }
576
577 void set_hook(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
578 hook_ = ::std::move(s);
579 }
580
581 void set_forks(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
582 forks_ = ::std::move(s);
583 }
584
585 void operator()() {
586 ::aos::SetCurrentThreadName("Solenoids");
587 ::aos::SetCurrentThreadRealtimePriority(27);
588
589 ::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
590 ::std::chrono::milliseconds(1));
591
592 while (run_) {
593 {
594 const int iterations = phased_loop.SleepUntilNext();
595 if (iterations != 1) {
596 LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
597 }
598 }
599
600 {
601 drivetrain_.FetchLatest();
602 if (drivetrain_.get()) {
603 LOG_STRUCT(DEBUG, "solenoids", *drivetrain_);
604 left_drivetrain_shifter_->Set(!drivetrain_->left_high);
605 right_drivetrain_shifter_->Set(!drivetrain_->right_high);
606 }
607 }
608
609 {
610 superstructure_.FetchLatest();
611 if (superstructure_.get()) {
612 LOG_STRUCT(DEBUG, "solenoids", *superstructure_);
613
614 claw_->Set(superstructure_->claw_grabbed);
615 arm_brakes_->Set(superstructure_->release_arm_brake);
616 hook_->Set(superstructure_->hook_release);
617 forks_->Set(superstructure_->forks_release);
618 }
619 }
620
621 {
622 ::frc971::wpilib::PneumaticsToLog to_log;
623
624 pcm_->Flush();
625 to_log.read_solenoids = pcm_->GetAll();
626 LOG_STRUCT(DEBUG, "pneumatics info", to_log);
627 }
628 }
629 }
630
631 void Quit() { run_ = false; }
632
633 private:
634 ::frc971::wpilib::BufferedPcm *pcm_;
635
636 ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid>
637 left_drivetrain_shifter_, right_drivetrain_shifter_, claw_, arm_brakes_,
638 hook_, forks_;
639
640 ::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output> drivetrain_;
641 ::aos::Queue<::y2018::control_loops::SuperstructureQueue::Output>
642 superstructure_;
643
644 ::std::atomic<bool> run_{true};
645};
646
647class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
648 public:
649 void set_drivetrain_left_victor(::std::unique_ptr<::frc::VictorSP> t) {
650 drivetrain_left_victor_ = ::std::move(t);
651 }
652
653 void set_drivetrain_right_victor(::std::unique_ptr<::frc::VictorSP> t) {
654 drivetrain_right_victor_ = ::std::move(t);
655 }
656
657 private:
658 virtual void Read() override {
659 ::frc971::control_loops::drivetrain_queue.output.FetchAnother();
660 }
661
662 virtual void Write() override {
663 auto &queue = ::frc971::control_loops::drivetrain_queue.output;
664 LOG_STRUCT(DEBUG, "will output", *queue);
665 drivetrain_left_victor_->SetSpeed(-queue->left_voltage / 12.0);
666 drivetrain_right_victor_->SetSpeed(queue->right_voltage / 12.0);
667 }
668
669 virtual void Stop() override {
670 LOG(WARNING, "drivetrain output too old\n");
671 drivetrain_left_victor_->SetDisabled();
672 drivetrain_right_victor_->SetDisabled();
673 }
674
675 ::std::unique_ptr<::frc::VictorSP> drivetrain_left_victor_,
676 drivetrain_right_victor_;
677};
678
679class SuperstructureWriter : public ::frc971::wpilib::LoopOutputHandler {
680 public:
681 void set_proximal_victor(::std::unique_ptr<::frc::VictorSP> t) {
682 proximal_victor_ = ::std::move(t);
683 }
684 void set_distal_victor(::std::unique_ptr<::frc::VictorSP> t) {
685 distal_victor_ = ::std::move(t);
686 }
687
688 void set_left_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
689 left_intake_elastic_victor_ = ::std::move(t);
690 }
691 void set_right_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
692 right_intake_elastic_victor_ = ::std::move(t);
693 }
694
695 void set_left_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
696 left_intake_rollers_victor_ = ::std::move(t);
697 }
698
699 void set_right_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
700 right_intake_rollers_victor_ = ::std::move(t);
701 }
702
703 private:
704 virtual void Read() override {
705 ::y2018::control_loops::superstructure_queue.output.FetchAnother();
706 }
707
708 virtual void Write() override {
709 auto &queue = ::y2018::control_loops::superstructure_queue.output;
710 LOG_STRUCT(DEBUG, "will output", *queue);
711
712 left_intake_elastic_victor_->SetSpeed(
713 ::aos::Clip(queue->intake.left.voltage_elastic, -kMaxBringupPower,
714 kMaxBringupPower) /
715 12.0);
716
717 right_intake_elastic_victor_->SetSpeed(
718 ::aos::Clip(queue->intake.right.voltage_elastic, -kMaxBringupPower,
719 kMaxBringupPower) /
720 12.0);
721
722 left_intake_rollers_victor_->SetSpeed(
723 ::aos::Clip(queue->intake.right.voltage_rollers, -kMaxBringupPower,
724 kMaxBringupPower) /
725 12.0);
726
727 right_intake_rollers_victor_->SetSpeed(
728 ::aos::Clip(queue->intake.right.voltage_rollers, -kMaxBringupPower,
729 kMaxBringupPower) /
730 12.0);
731
732 proximal_victor_->SetSpeed(::aos::Clip(queue->voltage_proximal,
733 -kMaxBringupPower,
734 kMaxBringupPower) /
735 12.0);
736
737 distal_victor_->SetSpeed(::aos::Clip(queue->voltage_distal,
738 -kMaxBringupPower, kMaxBringupPower) /
739 12.0);
740 }
741
742 virtual void Stop() override {
743 LOG(WARNING, "Superstructure output too old.\n");
744
745 left_intake_rollers_victor_->SetDisabled();
746 right_intake_rollers_victor_->SetDisabled();
747 left_intake_elastic_victor_->SetDisabled();
748 right_intake_elastic_victor_->SetDisabled();
749
750 proximal_victor_->SetDisabled();
751 distal_victor_->SetDisabled();
752 }
753
754 ::std::unique_ptr<::frc::VictorSP> left_intake_rollers_victor_,
755 right_intake_rollers_victor_, left_intake_elastic_victor_,
756 right_intake_elastic_victor_, proximal_victor_, distal_victor_;
757};
758
759class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
760 public:
761 ::std::unique_ptr<Encoder> make_encoder(int index) {
762 return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
763 Encoder::k4X);
764 }
765
766 void Run() override {
767 ::aos::InitNRT();
768 ::aos::SetCurrentThreadName("StartCompetition");
769
770 ::frc971::wpilib::JoystickSender joystick_sender;
771 ::std::thread joystick_thread(::std::ref(joystick_sender));
772
773 ::frc971::wpilib::PDPFetcher pdp_fetcher;
774 ::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
775 SensorReader reader;
776
777 // TODO(Sabina): Update port numbers(Sensors and Victors)
778 reader.set_drivetrain_left_encoder(make_encoder(0));
779 reader.set_drivetrain_right_encoder(make_encoder(1));
780
781 reader.set_proximal_encoder(make_encoder(2));
782 reader.set_proximal_absolute_pwm(make_unique<DigitalInput>(2));
783 reader.set_proximal_potentiometer(make_unique<AnalogInput>(2));
784
785 reader.set_distal_encoder(make_encoder(3));
786 reader.set_distal_absolute_pwm(make_unique<DigitalInput>(3));
787 reader.set_distal_potentiometer(make_unique<AnalogInput>(3));
788
789 reader.set_right_intake_encoder(make_encoder(4));
790 reader.set_right_intake_absolute_pwm(make_unique<DigitalInput>(4));
791 reader.set_right_intake_potentiometer(make_unique<AnalogInput>(4));
792 reader.set_right_intake_cube_detector(make_unique<DigitalInput>(6));
793
794 reader.set_left_intake_encoder(make_encoder(5));
795 reader.set_left_intake_absolute_pwm(make_unique<DigitalInput>(5));
796 reader.set_left_intake_potentiometer(make_unique<AnalogInput>(5));
797 reader.set_left_intake_cube_detector(make_unique<DigitalInput>(7));
798
799 reader.set_autonomous_mode(0, make_unique<DigitalInput>(9));
800 reader.set_autonomous_mode(1, make_unique<DigitalInput>(8));
801
802 reader.set_pwm_trigger(make_unique<DigitalInput>(0));
803
804 reader.set_dma(make_unique<DMA>());
805 ::std::thread reader_thread(::std::ref(reader));
806
807 auto imu_trigger = make_unique<DigitalInput>(3);
808 ::frc971::wpilib::ADIS16448 imu(SPI::Port::kOnboardCS1, imu_trigger.get());
809 imu.SetDummySPI(SPI::Port::kOnboardCS2);
810 auto imu_reset = make_unique<DigitalOutput>(6);
811 imu.set_reset(imu_reset.get());
812 ::std::thread imu_thread(::std::ref(imu));
813
814// While as of 2/9/18 the drivetrain Victors are SPX, it appears as though they
815// are identical, as far as DrivetrainWriter is concerned, to the SP variety
816// so all the Victors are written as SPs.
817
818 DrivetrainWriter drivetrain_writer;
819 drivetrain_writer.set_drivetrain_left_victor(
820 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(7)));
821 drivetrain_writer.set_drivetrain_right_victor(
822 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)));
823 ::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
824
825 SuperstructureWriter superstructure_writer;
826 superstructure_writer.set_left_intake_elastic_victor(
827 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(1)));
828 superstructure_writer.set_right_intake_elastic_victor(
829 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(4)));
830 superstructure_writer.set_right_intake_rollers_victor(
831 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(6)));
832 superstructure_writer.set_left_intake_rollers_victor(
833 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(5)));
834 superstructure_writer.set_proximal_victor(
835 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(9)));
836 superstructure_writer.set_distal_victor(
837 ::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(8)));
838
839 ::std::thread superstructure_writer_thread(
840 ::std::ref(superstructure_writer));
841
842 ::frc971::wpilib::BufferedPcm *pcm = new ::frc971::wpilib::BufferedPcm();
843 SolenoidWriter solenoid_writer(pcm);
844 solenoid_writer.set_left_drivetrain_shifter(pcm->MakeSolenoid(0));
845 solenoid_writer.set_right_drivetrain_shifter(pcm->MakeSolenoid(1));
846 solenoid_writer.set_claw(pcm->MakeSolenoid(2));
847 solenoid_writer.set_arm_brakes(pcm->MakeSolenoid(3));
848 solenoid_writer.set_hook(pcm->MakeSolenoid(4));
849 solenoid_writer.set_forks(pcm->MakeSolenoid(5));
850
851 ::std::thread solenoid_thread(::std::ref(solenoid_writer));
852
853 // Wait forever. Not much else to do...
854 while (true) {
855 const int r = select(0, nullptr, nullptr, nullptr, nullptr);
856 if (r != 0) {
857 PLOG(WARNING, "infinite select failed");
858 } else {
859 PLOG(WARNING, "infinite select succeeded??\n");
860 }
861 }
862
863 LOG(ERROR, "Exiting WPILibRobot\n");
864
865 joystick_sender.Quit();
866 joystick_thread.join();
867 pdp_fetcher.Quit();
868 pdp_fetcher_thread.join();
869 reader.Quit();
870 reader_thread.join();
871 imu.Quit();
872 imu_thread.join();
873
874 drivetrain_writer.Quit();
875 drivetrain_writer_thread.join();
876 superstructure_writer.Quit();
877 superstructure_writer_thread.join();
878
879 ::aos::Cleanup();
880 }
881};
882
883} // namespace
884} // namespace wpilib
885} // namespace y2018
886
887AOS_ROBOT_CLASS(::y2018::wpilib::WPILibRobot);