blob: a47a491fdd8f7528295b97b4edb114a9f9798a9e [file] [log] [blame]
James Kuszmaulbdc6a792023-08-12 16:29:38 -07001#include "frc971/zeroing/continuous_absolute_encoder.h"
2
3#include <cmath>
4#include <numeric>
5
6#include "glog/logging.h"
7
8#include "aos/containers/error_list.h"
9#include "frc971/zeroing/wrap.h"
10
11namespace frc971 {
12namespace zeroing {
13
14ContinuousAbsoluteEncoderZeroingEstimator::
15 ContinuousAbsoluteEncoderZeroingEstimator(
16 const constants::ContinuousAbsoluteEncoderZeroingConstants &constants)
17 : constants_(constants), move_detector_(constants_.moving_buffer_size) {
18 relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size);
19 Reset();
20}
21
22void ContinuousAbsoluteEncoderZeroingEstimator::Reset() {
23 zeroed_ = false;
24 error_ = false;
25 first_offset_ = 0.0;
26 offset_ = 0.0;
27 samples_idx_ = 0;
28 position_ = 0.0;
29 nan_samples_ = 0;
30 relative_to_absolute_offset_samples_.clear();
31 move_detector_.Reset();
32}
33
34// The math here is a bit backwards, but I think it'll be less error prone that
35// way and more similar to the version with a pot as well.
36//
37// We start by unwrapping the absolute encoder using the relative encoder. This
38// puts us in a non-wrapping space and lets us average a bit easier. From
39// there, we can compute an offset and wrap ourselves back such that we stay
40// close to the middle value.
41//
42// To guard against the robot moving while updating estimates, buffer a number
43// of samples and check that the buffered samples are not different than the
44// zeroing threshold. At any point that the samples differ too much, do not
45// update estimates based on those samples.
46void ContinuousAbsoluteEncoderZeroingEstimator::UpdateEstimate(
47 const AbsolutePosition &info) {
48 // Check for Abs Encoder NaN value that would mess up the rest of the zeroing
49 // code below. NaN values are given when the Absolute Encoder is disconnected.
50 if (::std::isnan(info.absolute_encoder())) {
51 if (zeroed_) {
52 VLOG(1) << "NAN on absolute encoder.";
53 errors_.Set(ZeroingError::LOST_ABSOLUTE_ENCODER);
54 error_ = true;
55 } else {
56 ++nan_samples_;
57 VLOG(1) << "NAN on absolute encoder while zeroing " << nan_samples_;
58 if (nan_samples_ >= constants_.average_filter_size) {
59 errors_.Set(ZeroingError::LOST_ABSOLUTE_ENCODER);
60 error_ = true;
61 zeroed_ = true;
62 }
63 }
64 // Throw some dummy values in for now.
65 filtered_absolute_encoder_ = info.absolute_encoder();
66 position_ = offset_ + info.encoder();
67 return;
68 }
69
70 const bool moving = move_detector_.Update(info, constants_.moving_buffer_size,
71 constants_.zeroing_threshold);
72
73 if (!moving) {
74 const PositionStruct &sample = move_detector_.GetSample();
75
76 // adjusted_* numbers are nominally in the desired output frame.
77 const double adjusted_absolute_encoder =
78 sample.absolute_encoder - constants_.measured_absolute_position;
79
80 // Note: If are are near the breakpoint of the absolute encoder, this number
81 // will be jitter between numbers that are ~one_revolution_distance apart.
82 // For that reason, we rewrap it so that we are not near that boundary.
83 const double relative_to_absolute_offset =
84 adjusted_absolute_encoder - sample.encoder;
85
86 // To avoid the aforementioned jitter, choose a base value to use for
87 // wrapping. When we have no prior samples, just use the current offset.
88 // Otherwise, we use an arbitrary prior offset (the stored offsets will all
89 // already be wrapped).
90 const double relative_to_absolute_offset_wrap_base =
91 relative_to_absolute_offset_samples_.size() == 0
92 ? relative_to_absolute_offset
93 : relative_to_absolute_offset_samples_[0];
94
95 const double relative_to_absolute_offset_wrapped =
96 UnWrap(relative_to_absolute_offset_wrap_base,
97 relative_to_absolute_offset, constants_.one_revolution_distance);
98
99 const size_t relative_to_absolute_offset_samples_size =
100 relative_to_absolute_offset_samples_.size();
101 if (relative_to_absolute_offset_samples_size <
102 constants_.average_filter_size) {
103 relative_to_absolute_offset_samples_.push_back(
104 relative_to_absolute_offset_wrapped);
105 } else {
106 relative_to_absolute_offset_samples_[samples_idx_] =
107 relative_to_absolute_offset_wrapped;
108 }
109 samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size;
110
111 // Compute the average offset between the absolute encoder and relative
112 // encoder. Because we just pushed a value, the size() will never be zero.
113 offset_ =
114 ::std::accumulate(relative_to_absolute_offset_samples_.begin(),
115 relative_to_absolute_offset_samples_.end(), 0.0) /
116 relative_to_absolute_offset_samples_.size();
117
118 // To provide a value that can be used to estimate the
119 // measured_absolute_position when zeroing, we just need to output the
120 // current absolute encoder value. We could make use of the averaging
121 // implicit in offset_ to reduce the noise on this slightly.
122 filtered_absolute_encoder_ = sample.absolute_encoder;
123
124 if (offset_ready()) {
125 if (!zeroed_) {
126 first_offset_ = offset_;
127 }
128
129 if (::std::abs(first_offset_ - offset_) >
130 constants_.allowable_encoder_error *
131 constants_.one_revolution_distance) {
132 VLOG(1) << "Offset moved too far. Initial: " << first_offset_
133 << ", current " << offset_ << ", allowable change: "
134 << constants_.allowable_encoder_error *
135 constants_.one_revolution_distance;
136 errors_.Set(ZeroingError::OFFSET_MOVED_TOO_FAR);
137 error_ = true;
138 }
139
140 zeroed_ = true;
141 }
142 }
143
144 // Update the position. Wrap it to reflect the fact that we do not have
145 // sufficient information to disambiguate which revolution we are on (also,
146 // since this value is primarily meant for debugging, this makes it easier to
147 // see that the device is actually at zero without having to divide by 2 *
148 // pi).
149 position_ =
150 Wrap(0.0, offset_ + info.encoder(), constants_.one_revolution_distance);
151}
152
153flatbuffers::Offset<ContinuousAbsoluteEncoderZeroingEstimator::State>
154ContinuousAbsoluteEncoderZeroingEstimator::GetEstimatorState(
155 flatbuffers::FlatBufferBuilder *fbb) const {
156 flatbuffers::Offset<flatbuffers::Vector<ZeroingError>> errors_offset =
157 errors_.ToFlatbuffer(fbb);
158
159 State::Builder builder(*fbb);
160 builder.add_error(error_);
161 builder.add_zeroed(zeroed_);
162 builder.add_position(position_);
163 builder.add_absolute_position(filtered_absolute_encoder_);
164 builder.add_errors(errors_offset);
165 return builder.Finish();
166}
167
168} // namespace zeroing
169} // namespace frc971