Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1 | // clang-format off |
| 2 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
| 3 | // |
| 4 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| 5 | // |
| 6 | // By downloading, copying, installing or using the software you agree to this license. |
| 7 | // If you do not agree to this license, do not download, install, |
| 8 | // copy or use the software. |
| 9 | // |
| 10 | // |
| 11 | // License Agreement |
| 12 | // For Open Source Computer Vision Library |
| 13 | // |
| 14 | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
| 15 | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
| 16 | // Third party copyrights are property of their respective owners. |
| 17 | // |
| 18 | // Redistribution and use in source and binary forms, with or without modification, |
| 19 | // are permitted provided that the following conditions are met: |
| 20 | // |
| 21 | // * Redistribution's of source code must retain the above copyright notice, |
| 22 | // this list of conditions and the following disclaimer. |
| 23 | // |
| 24 | // * Redistribution's in binary form must reproduce the above copyright notice, |
| 25 | // this list of conditions and the following disclaimer in the documentation |
| 26 | // and/or other materials provided with the distribution. |
| 27 | // |
| 28 | // * The name of the copyright holders may not be used to endorse or promote products |
| 29 | // derived from this software without specific prior written permission. |
| 30 | // |
| 31 | // This software is provided by the copyright holders and contributors "as is" and |
| 32 | // any express or implied warranties, including, but not limited to, the implied |
| 33 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| 34 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
| 35 | // indirect, incidental, special, exemplary, or consequential damages |
| 36 | // (including, but not limited to, procurement of substitute goods or services; |
| 37 | // loss of use, data, or profits; or business interruption) however caused |
| 38 | // and on any theory of liability, whether in contract, strict liability, |
| 39 | // or tort (including negligence or otherwise) arising in any way out of |
| 40 | // the use of this software, even if advised of the possibility of such damage. |
| 41 | // |
| 42 | //M*/ |
| 43 | |
| 44 | /**********************************************************************************************\ |
| 45 | Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/ |
| 46 | Below is the original copyright. |
| 47 | |
| 48 | // Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu> |
| 49 | // All rights reserved. |
| 50 | |
| 51 | // The following patent has been issued for methods embodied in this |
| 52 | // software: "Method and apparatus for identifying scale invariant features |
| 53 | // in an image and use of same for locating an object in an image," David |
| 54 | // G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application |
| 55 | // filed March 8, 1999. Asignee: The University of British Columbia. For |
| 56 | // further details, contact David Lowe (lowe@cs.ubc.ca) or the |
| 57 | // University-Industry Liaison Office of the University of British |
| 58 | // Columbia. |
| 59 | |
| 60 | // Note that restrictions imposed by this patent (and possibly others) |
| 61 | // exist independently of and may be in conflict with the freedoms granted |
| 62 | // in this license, which refers to copyright of the program, not patents |
| 63 | // for any methods that it implements. Both copyright and patent law must |
| 64 | // be obeyed to legally use and redistribute this program and it is not the |
| 65 | // purpose of this license to induce you to infringe any patents or other |
| 66 | // property right claims or to contest validity of any such claims. If you |
| 67 | // redistribute or use the program, then this license merely protects you |
| 68 | // from committing copyright infringement. It does not protect you from |
| 69 | // committing patent infringement. So, before you do anything with this |
| 70 | // program, make sure that you have permission to do so not merely in terms |
| 71 | // of copyright, but also in terms of patent law. |
| 72 | |
| 73 | // Please note that this license is not to be understood as a guarantee |
| 74 | // either. If you use the program according to this license, but in |
| 75 | // conflict with patent law, it does not mean that the licensor will refund |
| 76 | // you for any losses that you incur if you are sued for your patent |
| 77 | // infringement. |
| 78 | |
| 79 | // Redistribution and use in source and binary forms, with or without |
| 80 | // modification, are permitted provided that the following conditions are |
| 81 | // met: |
| 82 | // * Redistributions of source code must retain the above copyright and |
| 83 | // patent notices, this list of conditions and the following |
| 84 | // disclaimer. |
| 85 | // * Redistributions in binary form must reproduce the above copyright |
| 86 | // notice, this list of conditions and the following disclaimer in |
| 87 | // the documentation and/or other materials provided with the |
| 88 | // distribution. |
| 89 | // * Neither the name of Oregon State University nor the names of its |
| 90 | // contributors may be used to endorse or promote products derived |
| 91 | // from this software without specific prior written permission. |
| 92 | |
| 93 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| 94 | // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 95 | // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| 96 | // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 97 | // HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 98 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 99 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 100 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 101 | // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 102 | // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 103 | // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 104 | \**********************************************************************************************/ |
| 105 | // clang-format on |
| 106 | |
| 107 | #include "y2020/vision/sift/sift971.h" |
| 108 | |
| 109 | #include <iostream> |
| 110 | #include <mutex> |
| 111 | #include <stdarg.h> |
| 112 | #include <opencv2/core/hal/hal.hpp> |
| 113 | #include <opencv2/imgproc.hpp> |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 114 | #include "glog/logging.h" |
| 115 | |
| 116 | #include "y2020/vision/sift/fast_gaussian.h" |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 117 | |
| 118 | using namespace cv; |
| 119 | |
| 120 | namespace frc971 { |
| 121 | namespace vision { |
| 122 | namespace { |
| 123 | |
| 124 | #define USE_AVX2 0 |
| 125 | |
| 126 | /******************************* Defs and macros *****************************/ |
| 127 | |
| 128 | // default width of descriptor histogram array |
| 129 | static const int SIFT_DESCR_WIDTH = 4; |
| 130 | |
| 131 | // default number of bins per histogram in descriptor array |
| 132 | static const int SIFT_DESCR_HIST_BINS = 8; |
| 133 | |
| 134 | // assumed gaussian blur for input image |
| 135 | static const float SIFT_INIT_SIGMA = 0.5f; |
| 136 | |
| 137 | // width of border in which to ignore keypoints |
| 138 | static const int SIFT_IMG_BORDER = 5; |
| 139 | |
| 140 | // maximum steps of keypoint interpolation before failure |
| 141 | static const int SIFT_MAX_INTERP_STEPS = 5; |
| 142 | |
| 143 | // default number of bins in histogram for orientation assignment |
| 144 | static const int SIFT_ORI_HIST_BINS = 36; |
| 145 | |
| 146 | // determines gaussian sigma for orientation assignment |
| 147 | static const float SIFT_ORI_SIG_FCTR = 1.5f; |
| 148 | |
| 149 | // determines the radius of the region used in orientation assignment |
| 150 | static const float SIFT_ORI_RADIUS = 3 * SIFT_ORI_SIG_FCTR; |
| 151 | |
| 152 | // orientation magnitude relative to max that results in new feature |
| 153 | static const float SIFT_ORI_PEAK_RATIO = 0.8f; |
| 154 | |
| 155 | // determines the size of a single descriptor orientation histogram |
| 156 | static const float SIFT_DESCR_SCL_FCTR = 3.f; |
| 157 | |
| 158 | // threshold on magnitude of elements of descriptor vector |
| 159 | static const float SIFT_DESCR_MAG_THR = 0.2f; |
| 160 | |
| 161 | // factor used to convert floating-point descriptor to unsigned char |
| 162 | static const float SIFT_INT_DESCR_FCTR = 512.f; |
| 163 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 164 | #define DoG_TYPE_SHORT 1 |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 165 | #if DoG_TYPE_SHORT |
| 166 | // intermediate type used for DoG pyramids |
| 167 | typedef short sift_wt; |
| 168 | static const int SIFT_FIXPT_SCALE = 48; |
| 169 | #else |
| 170 | // intermediate type used for DoG pyramids |
| 171 | typedef float sift_wt; |
| 172 | static const int SIFT_FIXPT_SCALE = 1; |
| 173 | #endif |
| 174 | |
| 175 | static inline void unpackOctave(const KeyPoint &kpt, int &octave, int &layer, |
| 176 | float &scale) { |
| 177 | octave = kpt.octave & 255; |
| 178 | layer = (kpt.octave >> 8) & 255; |
| 179 | octave = octave < 128 ? octave : (-128 | octave); |
| 180 | scale = octave >= 0 ? 1.f / (1 << octave) : (float)(1 << -octave); |
| 181 | } |
| 182 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 183 | constexpr bool kLogTiming = false; |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 184 | |
| 185 | } // namespace |
| 186 | |
| 187 | void SIFT971_Impl::buildGaussianPyramid(const Mat &base, std::vector<Mat> &pyr, |
| 188 | int nOctaves) const { |
| 189 | std::vector<double> sig(nOctaveLayers + 3); |
| 190 | pyr.resize(nOctaves * (nOctaveLayers + 3)); |
| 191 | |
| 192 | // precompute Gaussian sigmas using the following formula: |
| 193 | // \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2 |
| 194 | sig[0] = sigma; |
| 195 | double k = std::pow(2., 1. / nOctaveLayers); |
| 196 | for (int i = 1; i < nOctaveLayers + 3; i++) { |
| 197 | double sig_prev = std::pow(k, (double)(i - 1)) * sigma; |
| 198 | double sig_total = sig_prev * k; |
| 199 | sig[i] = std::sqrt(sig_total * sig_total - sig_prev * sig_prev); |
| 200 | } |
| 201 | |
| 202 | for (int o = 0; o < nOctaves; o++) { |
| 203 | for (int i = 0; i < nOctaveLayers + 3; i++) { |
| 204 | Mat &dst = pyr[o * (nOctaveLayers + 3) + i]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 205 | if (o == 0 && i == 0) { |
| 206 | dst = base; |
| 207 | } else if (i == 0) { |
| 208 | // base of new octave is halved image from end of previous octave |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 209 | const Mat &src = pyr[(o - 1) * (nOctaveLayers + 3) + nOctaveLayers]; |
| 210 | resize(src, dst, Size(src.cols / 2, src.rows / 2), 0, 0, INTER_NEAREST); |
| 211 | } else { |
| 212 | const Mat &src = pyr[o * (nOctaveLayers + 3) + i - 1]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 213 | if (use_fast_gaussian_pyramid_) { |
| 214 | FastGaussian(src, &dst, sig[i]); |
| 215 | } else { |
| 216 | GaussianBlur(src, dst, Size(), sig[i], sig[i]); |
| 217 | } |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 218 | } |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | namespace { |
| 224 | |
| 225 | class buildDoGPyramidComputer : public ParallelLoopBody { |
| 226 | public: |
| 227 | buildDoGPyramidComputer(int _nOctaveLayers, const std::vector<Mat> &_gpyr, |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 228 | std::vector<Mat> &_dogpyr, |
| 229 | bool use_fast_subtract_dogpyr) |
| 230 | : nOctaveLayers(_nOctaveLayers), |
| 231 | gpyr(_gpyr), |
| 232 | dogpyr(_dogpyr), |
| 233 | use_fast_subtract_dogpyr_(use_fast_subtract_dogpyr) {} |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 234 | |
| 235 | void operator()(const cv::Range &range) const override { |
| 236 | const int begin = range.start; |
| 237 | const int end = range.end; |
| 238 | |
| 239 | for (int a = begin; a < end; a++) { |
| 240 | const int o = a / (nOctaveLayers + 2); |
| 241 | const int i = a % (nOctaveLayers + 2); |
| 242 | |
| 243 | const Mat &src1 = gpyr[o * (nOctaveLayers + 3) + i]; |
| 244 | const Mat &src2 = gpyr[o * (nOctaveLayers + 3) + i + 1]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 245 | CHECK_EQ(a, o * (nOctaveLayers + 2) + i); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 246 | Mat &dst = dogpyr[o * (nOctaveLayers + 2) + i]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 247 | if (use_fast_subtract_dogpyr_) { |
| 248 | FastSubtract(src2, src1, &dst); |
| 249 | } else { |
| 250 | subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type); |
| 251 | } |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 252 | } |
| 253 | } |
| 254 | |
| 255 | private: |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 256 | const int nOctaveLayers; |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 257 | const std::vector<Mat> &gpyr; |
| 258 | std::vector<Mat> &dogpyr; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 259 | const bool use_fast_subtract_dogpyr_; |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 260 | }; |
| 261 | |
| 262 | } // namespace |
| 263 | |
| 264 | void SIFT971_Impl::buildDoGPyramid(const std::vector<Mat> &gpyr, |
| 265 | std::vector<Mat> &dogpyr) const { |
| 266 | int nOctaves = (int)gpyr.size() / (nOctaveLayers + 3); |
| 267 | dogpyr.resize(nOctaves * (nOctaveLayers + 2)); |
| 268 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 269 | #if 0 |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 270 | parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 271 | buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr, use_fast_subtract_dogpyr_)); |
| 272 | #else |
| 273 | buildDoGPyramidComputer( |
| 274 | nOctaveLayers, gpyr, dogpyr, |
| 275 | use_fast_subtract_dogpyr_)(Range(0, nOctaves * (nOctaveLayers + 2))); |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | // base is the image to start with. |
| 280 | // gpyr is the pyramid of gaussian blurs. This is both an output and a place |
| 281 | // where we store intermediates. |
| 282 | // dogpyr is the pyramid of gaussian differences which we fill out. |
| 283 | // number_octaves is the number of octaves to calculate. |
| 284 | void SIFT971_Impl::buildGaussianAndDifferencePyramid( |
| 285 | const cv::Mat &base, std::vector<cv::Mat> &gpyr, |
| 286 | std::vector<cv::Mat> &dogpyr, int number_octaves) const { |
| 287 | const int layers_per_octave = nOctaveLayers; |
| 288 | // We use the base (possibly after downscaling) as the first "blurred" image. |
| 289 | // Then we calculate 2 more than the number of octaves. |
| 290 | // TODO(Brian): Why are there 2 extra? |
| 291 | const int gpyr_layers_per_octave = layers_per_octave + 3; |
| 292 | // There is 1 less difference than the number of blurs. |
| 293 | const int dogpyr_layers_per_octave = gpyr_layers_per_octave - 1; |
| 294 | gpyr.resize(number_octaves * gpyr_layers_per_octave); |
| 295 | dogpyr.resize(number_octaves * dogpyr_layers_per_octave); |
| 296 | |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 297 | // Precompute Gaussian sigmas using the following formula: |
| 298 | // \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2 |
| 299 | // We need one for each of the layers in the pyramid we blur, which skips the |
| 300 | // first one because it's just the base image without any blurring. |
| 301 | std::vector<double> sig(gpyr_layers_per_octave - 1); |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 302 | double k = std::pow(2., 1. / layers_per_octave); |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 303 | for (int i = 0; i < gpyr_layers_per_octave - 1; i++) { |
| 304 | double sig_prev = std::pow<double>(k, i) * sigma; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 305 | double sig_total = sig_prev * k; |
| 306 | sig[i] = std::sqrt(sig_total * sig_total - sig_prev * sig_prev); |
| 307 | } |
| 308 | |
| 309 | for (int octave = 0; octave < number_octaves; octave++) { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 310 | const int octave_gpyr_index = octave * gpyr_layers_per_octave; |
| 311 | const int octave_dogpyr_index = octave * dogpyr_layers_per_octave; |
| 312 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 313 | // At the beginning of each octave, calculate the new base image. |
| 314 | { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 315 | Mat &dst = gpyr[octave_gpyr_index]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 316 | if (octave == 0) { |
| 317 | // For the first octave, it's just the base image. |
| 318 | dst = base; |
| 319 | } else { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 320 | // For the other octaves, OpenCV's code claims that it's a halved |
| 321 | // version of the end of the previous octave. |
| 322 | // TODO(Brian): But this isn't really the end of the previous octave? |
| 323 | // But if you use the end, it finds way fewer features? Maybe this is |
| 324 | // just a arbitrarily-ish-somewhat-blurred thing from the previous |
| 325 | // octave?? |
| 326 | const int gpyr_index = octave_gpyr_index - 3; |
| 327 | // Verify that the indexing in the original OpenCV code gives the same |
| 328 | // result. It's unclear which one makes more logical sense. |
| 329 | CHECK_EQ((octave - 1) * gpyr_layers_per_octave + layers_per_octave, |
| 330 | gpyr_index); |
| 331 | const Mat &src = gpyr[gpyr_index]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 332 | resize(src, dst, Size(src.cols / 2, src.rows / 2), 0, 0, INTER_NEAREST); |
| 333 | } |
| 334 | } |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 335 | |
| 336 | // Then, go through all the layers and calculate the appropriate |
| 337 | // differences. |
| 338 | for (int layer = 0; layer < dogpyr_layers_per_octave; layer++) { |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 339 | // The index where the current layer starts. |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 340 | const int layer_gpyr_index = octave_gpyr_index + layer; |
| 341 | const int layer_dogpyr_index = octave_dogpyr_index + layer; |
| 342 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 343 | if (use_fast_pyramid_difference_) { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 344 | const Mat &input = gpyr[layer_gpyr_index]; |
| 345 | Mat &blurred = gpyr[layer_gpyr_index + 1]; |
| 346 | Mat &difference = dogpyr[layer_dogpyr_index]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 347 | FastGaussianAndSubtract(input, &blurred, &difference, sig[layer]); |
| 348 | } else { |
| 349 | // First, calculate the new gaussian blur. |
| 350 | { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 351 | const Mat &src = gpyr[layer_gpyr_index]; |
| 352 | Mat &dst = gpyr[layer_gpyr_index + 1]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 353 | if (use_fast_gaussian_pyramid_) { |
| 354 | FastGaussian(src, &dst, sig[layer]); |
| 355 | } else { |
| 356 | GaussianBlur(src, dst, Size(), sig[layer], sig[layer]); |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | // Then, calculate the difference from the previous one. |
| 361 | { |
Brian Silverman | 97ba4b1 | 2020-02-15 23:36:36 -0800 | [diff] [blame] | 362 | const Mat &src1 = gpyr[layer_gpyr_index]; |
| 363 | const Mat &src2 = gpyr[layer_gpyr_index + 1]; |
| 364 | Mat &dst = dogpyr[layer_dogpyr_index]; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 365 | if (use_fast_subtract_dogpyr_) { |
| 366 | FastSubtract(src2, src1, &dst); |
| 367 | } else { |
| 368 | subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type); |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | } |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 374 | } |
| 375 | |
| 376 | namespace { |
| 377 | |
| 378 | // Computes a gradient orientation histogram at a specified pixel |
| 379 | static float calcOrientationHist(const Mat &img, Point pt, int radius, |
| 380 | float sigma, float *hist, int n) { |
| 381 | int i, j, k, len = (radius * 2 + 1) * (radius * 2 + 1); |
| 382 | |
| 383 | float expf_scale = -1.f / (2.f * sigma * sigma); |
| 384 | AutoBuffer<float> buf(len * 4 + n + 4); |
| 385 | float *X = buf, *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len; |
| 386 | float *temphist = W + len + 2; |
| 387 | |
| 388 | for (i = 0; i < n; i++) temphist[i] = 0.f; |
| 389 | |
| 390 | for (i = -radius, k = 0; i <= radius; i++) { |
| 391 | int y = pt.y + i; |
| 392 | if (y <= 0 || y >= img.rows - 1) continue; |
| 393 | for (j = -radius; j <= radius; j++) { |
| 394 | int x = pt.x + j; |
| 395 | if (x <= 0 || x >= img.cols - 1) continue; |
| 396 | |
| 397 | float dx = (float)(img.at<sift_wt>(y, x + 1) - img.at<sift_wt>(y, x - 1)); |
| 398 | float dy = (float)(img.at<sift_wt>(y - 1, x) - img.at<sift_wt>(y + 1, x)); |
| 399 | |
| 400 | X[k] = dx; |
| 401 | Y[k] = dy; |
| 402 | W[k] = (i * i + j * j) * expf_scale; |
| 403 | k++; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | len = k; |
| 408 | |
| 409 | // compute gradient values, orientations and the weights over the pixel |
| 410 | // neighborhood |
| 411 | cv::hal::exp32f(W, W, len); |
| 412 | cv::hal::fastAtan2(Y, X, Ori, len, true); |
| 413 | cv::hal::magnitude32f(X, Y, Mag, len); |
| 414 | |
| 415 | k = 0; |
| 416 | #if CV_AVX2 |
| 417 | if (USE_AVX2) { |
| 418 | __m256 __nd360 = _mm256_set1_ps(n / 360.f); |
| 419 | __m256i __n = _mm256_set1_epi32(n); |
| 420 | int CV_DECL_ALIGNED(32) bin_buf[8]; |
| 421 | float CV_DECL_ALIGNED(32) w_mul_mag_buf[8]; |
| 422 | for (; k <= len - 8; k += 8) { |
| 423 | __m256i __bin = |
| 424 | _mm256_cvtps_epi32(_mm256_mul_ps(__nd360, _mm256_loadu_ps(&Ori[k]))); |
| 425 | |
| 426 | __bin = _mm256_sub_epi32( |
| 427 | __bin, _mm256_andnot_si256(_mm256_cmpgt_epi32(__n, __bin), __n)); |
| 428 | __bin = _mm256_add_epi32( |
| 429 | __bin, _mm256_and_si256( |
| 430 | __n, _mm256_cmpgt_epi32(_mm256_setzero_si256(), __bin))); |
| 431 | |
| 432 | __m256 __w_mul_mag = |
| 433 | _mm256_mul_ps(_mm256_loadu_ps(&W[k]), _mm256_loadu_ps(&Mag[k])); |
| 434 | |
| 435 | _mm256_store_si256((__m256i *)bin_buf, __bin); |
| 436 | _mm256_store_ps(w_mul_mag_buf, __w_mul_mag); |
| 437 | |
| 438 | temphist[bin_buf[0]] += w_mul_mag_buf[0]; |
| 439 | temphist[bin_buf[1]] += w_mul_mag_buf[1]; |
| 440 | temphist[bin_buf[2]] += w_mul_mag_buf[2]; |
| 441 | temphist[bin_buf[3]] += w_mul_mag_buf[3]; |
| 442 | temphist[bin_buf[4]] += w_mul_mag_buf[4]; |
| 443 | temphist[bin_buf[5]] += w_mul_mag_buf[5]; |
| 444 | temphist[bin_buf[6]] += w_mul_mag_buf[6]; |
| 445 | temphist[bin_buf[7]] += w_mul_mag_buf[7]; |
| 446 | } |
| 447 | } |
| 448 | #endif |
| 449 | for (; k < len; k++) { |
| 450 | int bin = cvRound((n / 360.f) * Ori[k]); |
| 451 | if (bin >= n) bin -= n; |
| 452 | if (bin < 0) bin += n; |
| 453 | temphist[bin] += W[k] * Mag[k]; |
| 454 | } |
| 455 | |
| 456 | // smooth the histogram |
| 457 | temphist[-1] = temphist[n - 1]; |
| 458 | temphist[-2] = temphist[n - 2]; |
| 459 | temphist[n] = temphist[0]; |
| 460 | temphist[n + 1] = temphist[1]; |
| 461 | |
| 462 | i = 0; |
| 463 | #if CV_AVX2 |
| 464 | if (USE_AVX2) { |
| 465 | __m256 __d_1_16 = _mm256_set1_ps(1.f / 16.f); |
| 466 | __m256 __d_4_16 = _mm256_set1_ps(4.f / 16.f); |
| 467 | __m256 __d_6_16 = _mm256_set1_ps(6.f / 16.f); |
| 468 | for (; i <= n - 8; i += 8) { |
| 469 | #if CV_FMA3 |
| 470 | __m256 __hist = _mm256_fmadd_ps( |
| 471 | _mm256_add_ps(_mm256_loadu_ps(&temphist[i - 2]), |
| 472 | _mm256_loadu_ps(&temphist[i + 2])), |
| 473 | __d_1_16, |
| 474 | _mm256_fmadd_ps( |
| 475 | _mm256_add_ps(_mm256_loadu_ps(&temphist[i - 1]), |
| 476 | _mm256_loadu_ps(&temphist[i + 1])), |
| 477 | __d_4_16, |
| 478 | _mm256_mul_ps(_mm256_loadu_ps(&temphist[i]), __d_6_16))); |
| 479 | #else |
| 480 | __m256 __hist = _mm256_add_ps( |
| 481 | _mm256_mul_ps(_mm256_add_ps(_mm256_loadu_ps(&temphist[i - 2]), |
| 482 | _mm256_loadu_ps(&temphist[i + 2])), |
| 483 | __d_1_16), |
| 484 | _mm256_add_ps( |
| 485 | _mm256_mul_ps(_mm256_add_ps(_mm256_loadu_ps(&temphist[i - 1]), |
| 486 | _mm256_loadu_ps(&temphist[i + 1])), |
| 487 | __d_4_16), |
| 488 | _mm256_mul_ps(_mm256_loadu_ps(&temphist[i]), __d_6_16))); |
| 489 | #endif |
| 490 | _mm256_storeu_ps(&hist[i], __hist); |
| 491 | } |
| 492 | } |
| 493 | #endif |
| 494 | for (; i < n; i++) { |
| 495 | hist[i] = (temphist[i - 2] + temphist[i + 2]) * (1.f / 16.f) + |
| 496 | (temphist[i - 1] + temphist[i + 1]) * (4.f / 16.f) + |
| 497 | temphist[i] * (6.f / 16.f); |
| 498 | } |
| 499 | |
| 500 | float maxval = hist[0]; |
| 501 | for (i = 1; i < n; i++) maxval = std::max(maxval, hist[i]); |
| 502 | |
| 503 | return maxval; |
| 504 | } |
| 505 | |
| 506 | // |
| 507 | // Interpolates a scale-space extremum's location and scale to subpixel |
| 508 | // accuracy to form an image feature. Rejects features with low contrast. |
| 509 | // Based on Section 4 of Lowe's paper. |
| 510 | static bool adjustLocalExtrema(const std::vector<Mat> &dog_pyr, KeyPoint &kpt, |
| 511 | int octv, int &layer, int &r, int &c, |
| 512 | int nOctaveLayers, float contrastThreshold, |
| 513 | float edgeThreshold, float sigma) { |
| 514 | const float img_scale = 1.f / (255 * SIFT_FIXPT_SCALE); |
| 515 | const float deriv_scale = img_scale * 0.5f; |
| 516 | const float second_deriv_scale = img_scale; |
| 517 | const float cross_deriv_scale = img_scale * 0.25f; |
| 518 | |
| 519 | float xi = 0, xr = 0, xc = 0, contr = 0; |
| 520 | int i = 0; |
| 521 | |
| 522 | for (; i < SIFT_MAX_INTERP_STEPS; i++) { |
| 523 | int idx = octv * (nOctaveLayers + 2) + layer; |
| 524 | const Mat &img = dog_pyr[idx]; |
| 525 | const Mat &prev = dog_pyr[idx - 1]; |
| 526 | const Mat &next = dog_pyr[idx + 1]; |
| 527 | |
| 528 | Vec3f dD( |
| 529 | (img.at<sift_wt>(r, c + 1) - img.at<sift_wt>(r, c - 1)) * deriv_scale, |
| 530 | (img.at<sift_wt>(r + 1, c) - img.at<sift_wt>(r - 1, c)) * deriv_scale, |
| 531 | (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c)) * deriv_scale); |
| 532 | |
| 533 | float v2 = (float)img.at<sift_wt>(r, c) * 2; |
| 534 | float dxx = (img.at<sift_wt>(r, c + 1) + img.at<sift_wt>(r, c - 1) - v2) * |
| 535 | second_deriv_scale; |
| 536 | float dyy = (img.at<sift_wt>(r + 1, c) + img.at<sift_wt>(r - 1, c) - v2) * |
| 537 | second_deriv_scale; |
| 538 | float dss = (next.at<sift_wt>(r, c) + prev.at<sift_wt>(r, c) - v2) * |
| 539 | second_deriv_scale; |
| 540 | float dxy = |
| 541 | (img.at<sift_wt>(r + 1, c + 1) - img.at<sift_wt>(r + 1, c - 1) - |
| 542 | img.at<sift_wt>(r - 1, c + 1) + img.at<sift_wt>(r - 1, c - 1)) * |
| 543 | cross_deriv_scale; |
| 544 | float dxs = (next.at<sift_wt>(r, c + 1) - next.at<sift_wt>(r, c - 1) - |
| 545 | prev.at<sift_wt>(r, c + 1) + prev.at<sift_wt>(r, c - 1)) * |
| 546 | cross_deriv_scale; |
| 547 | float dys = (next.at<sift_wt>(r + 1, c) - next.at<sift_wt>(r - 1, c) - |
| 548 | prev.at<sift_wt>(r + 1, c) + prev.at<sift_wt>(r - 1, c)) * |
| 549 | cross_deriv_scale; |
| 550 | |
| 551 | Matx33f H(dxx, dxy, dxs, dxy, dyy, dys, dxs, dys, dss); |
| 552 | |
| 553 | Vec3f X = H.solve(dD, DECOMP_LU); |
| 554 | |
| 555 | xi = -X[2]; |
| 556 | xr = -X[1]; |
| 557 | xc = -X[0]; |
| 558 | |
| 559 | if (std::abs(xi) < 0.5f && std::abs(xr) < 0.5f && std::abs(xc) < 0.5f) |
| 560 | break; |
| 561 | |
| 562 | if (std::abs(xi) > (float)(INT_MAX / 3) || |
| 563 | std::abs(xr) > (float)(INT_MAX / 3) || |
| 564 | std::abs(xc) > (float)(INT_MAX / 3)) |
| 565 | return false; |
| 566 | |
| 567 | c += cvRound(xc); |
| 568 | r += cvRound(xr); |
| 569 | layer += cvRound(xi); |
| 570 | |
| 571 | if (layer < 1 || layer > nOctaveLayers || c < SIFT_IMG_BORDER || |
| 572 | c >= img.cols - SIFT_IMG_BORDER || r < SIFT_IMG_BORDER || |
| 573 | r >= img.rows - SIFT_IMG_BORDER) |
| 574 | return false; |
| 575 | } |
| 576 | |
| 577 | // ensure convergence of interpolation |
| 578 | if (i >= SIFT_MAX_INTERP_STEPS) return false; |
| 579 | |
| 580 | { |
| 581 | int idx = octv * (nOctaveLayers + 2) + layer; |
| 582 | const Mat &img = dog_pyr[idx]; |
| 583 | const Mat &prev = dog_pyr[idx - 1]; |
| 584 | const Mat &next = dog_pyr[idx + 1]; |
| 585 | Matx31f dD( |
| 586 | (img.at<sift_wt>(r, c + 1) - img.at<sift_wt>(r, c - 1)) * deriv_scale, |
| 587 | (img.at<sift_wt>(r + 1, c) - img.at<sift_wt>(r - 1, c)) * deriv_scale, |
| 588 | (next.at<sift_wt>(r, c) - prev.at<sift_wt>(r, c)) * deriv_scale); |
| 589 | float t = dD.dot(Matx31f(xc, xr, xi)); |
| 590 | |
| 591 | contr = img.at<sift_wt>(r, c) * img_scale + t * 0.5f; |
| 592 | if (std::abs(contr) * nOctaveLayers < contrastThreshold) return false; |
| 593 | |
| 594 | // principal curvatures are computed using the trace and det of Hessian |
| 595 | float v2 = img.at<sift_wt>(r, c) * 2.f; |
| 596 | float dxx = (img.at<sift_wt>(r, c + 1) + img.at<sift_wt>(r, c - 1) - v2) * |
| 597 | second_deriv_scale; |
| 598 | float dyy = (img.at<sift_wt>(r + 1, c) + img.at<sift_wt>(r - 1, c) - v2) * |
| 599 | second_deriv_scale; |
| 600 | float dxy = |
| 601 | (img.at<sift_wt>(r + 1, c + 1) - img.at<sift_wt>(r + 1, c - 1) - |
| 602 | img.at<sift_wt>(r - 1, c + 1) + img.at<sift_wt>(r - 1, c - 1)) * |
| 603 | cross_deriv_scale; |
| 604 | float tr = dxx + dyy; |
| 605 | float det = dxx * dyy - dxy * dxy; |
| 606 | |
| 607 | if (det <= 0 || tr * tr * edgeThreshold >= |
| 608 | (edgeThreshold + 1) * (edgeThreshold + 1) * det) |
| 609 | return false; |
| 610 | } |
| 611 | |
| 612 | kpt.pt.x = (c + xc) * (1 << octv); |
| 613 | kpt.pt.y = (r + xr) * (1 << octv); |
| 614 | kpt.octave = octv + (layer << 8) + (cvRound((xi + 0.5) * 255) << 16); |
| 615 | kpt.size = sigma * powf(2.f, (layer + xi) / nOctaveLayers) * (1 << octv) * 2; |
| 616 | kpt.response = std::abs(contr); |
| 617 | |
| 618 | return true; |
| 619 | } |
| 620 | |
| 621 | template <typename T> |
| 622 | class PerThreadAccumulator { |
| 623 | public: |
| 624 | void Add(std::vector<T> &&data) { |
| 625 | std::unique_lock locker(mutex_); |
| 626 | result_.emplace_back(data); |
| 627 | } |
| 628 | |
| 629 | std::vector<std::vector<T>> move_result() { return std::move(result_); } |
| 630 | |
| 631 | private: |
| 632 | // Should we do something more intelligent with per-thread std::vector that we |
| 633 | // merge at the end? |
| 634 | std::vector<std::vector<T>> result_; |
| 635 | std::mutex mutex_; |
| 636 | }; |
| 637 | |
| 638 | class findScaleSpaceExtremaComputer : public ParallelLoopBody { |
| 639 | public: |
| 640 | findScaleSpaceExtremaComputer( |
| 641 | int _o, int _i, int _threshold, int _idx, int _step, int _cols, |
| 642 | int _nOctaveLayers, double _contrastThreshold, double _edgeThreshold, |
| 643 | double _sigma, const std::vector<Mat> &_gauss_pyr, |
| 644 | const std::vector<Mat> &_dog_pyr, |
| 645 | PerThreadAccumulator<KeyPoint> &_tls_kpts_struct) |
| 646 | |
| 647 | : o(_o), |
| 648 | i(_i), |
| 649 | threshold(_threshold), |
| 650 | idx(_idx), |
| 651 | step(_step), |
| 652 | cols(_cols), |
| 653 | nOctaveLayers(_nOctaveLayers), |
| 654 | contrastThreshold(_contrastThreshold), |
| 655 | edgeThreshold(_edgeThreshold), |
| 656 | sigma(_sigma), |
| 657 | gauss_pyr(_gauss_pyr), |
| 658 | dog_pyr(_dog_pyr), |
| 659 | tls_kpts_struct(_tls_kpts_struct) {} |
| 660 | void operator()(const cv::Range &range) const override { |
| 661 | const int begin = range.start; |
| 662 | const int end = range.end; |
| 663 | |
| 664 | static const int n = SIFT_ORI_HIST_BINS; |
| 665 | float hist[n]; |
| 666 | |
| 667 | const Mat &img = dog_pyr[idx]; |
| 668 | const Mat &prev = dog_pyr[idx - 1]; |
| 669 | const Mat &next = dog_pyr[idx + 1]; |
| 670 | |
| 671 | std::vector<KeyPoint> tls_kpts; |
| 672 | |
| 673 | KeyPoint kpt; |
| 674 | for (int r = begin; r < end; r++) { |
| 675 | const sift_wt *currptr = img.ptr<sift_wt>(r); |
| 676 | const sift_wt *prevptr = prev.ptr<sift_wt>(r); |
| 677 | const sift_wt *nextptr = next.ptr<sift_wt>(r); |
| 678 | |
| 679 | for (int c = SIFT_IMG_BORDER; c < cols - SIFT_IMG_BORDER; c++) { |
| 680 | sift_wt val = currptr[c]; |
| 681 | |
| 682 | // find local extrema with pixel accuracy |
| 683 | if (std::abs(val) > threshold && |
| 684 | ((val > 0 && val >= currptr[c - 1] && val >= currptr[c + 1] && |
| 685 | val >= currptr[c - step - 1] && val >= currptr[c - step] && |
| 686 | val >= currptr[c - step + 1] && val >= currptr[c + step - 1] && |
| 687 | val >= currptr[c + step] && val >= currptr[c + step + 1] && |
| 688 | val >= nextptr[c] && val >= nextptr[c - 1] && |
| 689 | val >= nextptr[c + 1] && val >= nextptr[c - step - 1] && |
| 690 | val >= nextptr[c - step] && val >= nextptr[c - step + 1] && |
| 691 | val >= nextptr[c + step - 1] && val >= nextptr[c + step] && |
| 692 | val >= nextptr[c + step + 1] && val >= prevptr[c] && |
| 693 | val >= prevptr[c - 1] && val >= prevptr[c + 1] && |
| 694 | val >= prevptr[c - step - 1] && val >= prevptr[c - step] && |
| 695 | val >= prevptr[c - step + 1] && val >= prevptr[c + step - 1] && |
| 696 | val >= prevptr[c + step] && val >= prevptr[c + step + 1]) || |
| 697 | (val < 0 && val <= currptr[c - 1] && val <= currptr[c + 1] && |
| 698 | val <= currptr[c - step - 1] && val <= currptr[c - step] && |
| 699 | val <= currptr[c - step + 1] && val <= currptr[c + step - 1] && |
| 700 | val <= currptr[c + step] && val <= currptr[c + step + 1] && |
| 701 | val <= nextptr[c] && val <= nextptr[c - 1] && |
| 702 | val <= nextptr[c + 1] && val <= nextptr[c - step - 1] && |
| 703 | val <= nextptr[c - step] && val <= nextptr[c - step + 1] && |
| 704 | val <= nextptr[c + step - 1] && val <= nextptr[c + step] && |
| 705 | val <= nextptr[c + step + 1] && val <= prevptr[c] && |
| 706 | val <= prevptr[c - 1] && val <= prevptr[c + 1] && |
| 707 | val <= prevptr[c - step - 1] && val <= prevptr[c - step] && |
| 708 | val <= prevptr[c - step + 1] && val <= prevptr[c + step - 1] && |
| 709 | val <= prevptr[c + step] && val <= prevptr[c + step + 1]))) { |
| 710 | int r1 = r, c1 = c, layer = i; |
| 711 | if (!adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1, nOctaveLayers, |
| 712 | (float)contrastThreshold, |
| 713 | (float)edgeThreshold, (float)sigma)) |
| 714 | continue; |
| 715 | float scl_octv = kpt.size * 0.5f / (1 << o); |
| 716 | float omax = calcOrientationHist( |
| 717 | gauss_pyr[o * (nOctaveLayers + 3) + layer], Point(c1, r1), |
| 718 | cvRound(SIFT_ORI_RADIUS * scl_octv), SIFT_ORI_SIG_FCTR * scl_octv, |
| 719 | hist, n); |
| 720 | float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO); |
| 721 | for (int j = 0; j < n; j++) { |
| 722 | int l = j > 0 ? j - 1 : n - 1; |
| 723 | int r2 = j < n - 1 ? j + 1 : 0; |
| 724 | |
| 725 | if (hist[j] > hist[l] && hist[j] > hist[r2] && hist[j] >= mag_thr) { |
| 726 | float bin = j + 0.5f * (hist[l] - hist[r2]) / |
| 727 | (hist[l] - 2 * hist[j] + hist[r2]); |
| 728 | bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin; |
| 729 | kpt.angle = 360.f - (float)((360.f / n) * bin); |
| 730 | if (std::abs(kpt.angle - 360.f) < FLT_EPSILON) kpt.angle = 0.f; |
| 731 | { tls_kpts.push_back(kpt); } |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | tls_kpts_struct.Add(std::move(tls_kpts)); |
| 739 | } |
| 740 | |
| 741 | private: |
| 742 | int o, i; |
| 743 | int threshold; |
| 744 | int idx, step, cols; |
| 745 | int nOctaveLayers; |
| 746 | double contrastThreshold; |
| 747 | double edgeThreshold; |
| 748 | double sigma; |
| 749 | const std::vector<Mat> &gauss_pyr; |
| 750 | const std::vector<Mat> &dog_pyr; |
| 751 | PerThreadAccumulator<KeyPoint> &tls_kpts_struct; |
| 752 | }; |
| 753 | |
| 754 | } // namespace |
| 755 | |
| 756 | // |
| 757 | // Detects features at extrema in DoG scale space. Bad features are discarded |
| 758 | // based on contrast and ratio of principal curvatures. |
| 759 | void SIFT971_Impl::findScaleSpaceExtrema( |
| 760 | const std::vector<Mat> &gauss_pyr, const std::vector<Mat> &dog_pyr, |
| 761 | std::vector<KeyPoint> &keypoints) const { |
| 762 | const int nOctaves = (int)gauss_pyr.size() / (nOctaveLayers + 3); |
| 763 | const int threshold = |
| 764 | cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE); |
| 765 | |
| 766 | keypoints.clear(); |
| 767 | PerThreadAccumulator<KeyPoint> tls_kpts_struct; |
| 768 | |
| 769 | for (int o = 0; o < nOctaves; o++) |
| 770 | for (int i = 1; i <= nOctaveLayers; i++) { |
| 771 | const int idx = o * (nOctaveLayers + 2) + i; |
| 772 | const Mat &img = dog_pyr[idx]; |
| 773 | const int step = (int)img.step1(); |
| 774 | const int rows = img.rows, cols = img.cols; |
| 775 | |
| 776 | parallel_for_(Range(SIFT_IMG_BORDER, rows - SIFT_IMG_BORDER), |
| 777 | findScaleSpaceExtremaComputer( |
| 778 | o, i, threshold, idx, step, cols, nOctaveLayers, |
| 779 | contrastThreshold, edgeThreshold, sigma, gauss_pyr, |
| 780 | dog_pyr, tls_kpts_struct)); |
| 781 | } |
| 782 | |
| 783 | const std::vector<std::vector<KeyPoint>> kpt_vecs = |
| 784 | tls_kpts_struct.move_result(); |
| 785 | for (size_t i = 0; i < kpt_vecs.size(); ++i) { |
| 786 | keypoints.insert(keypoints.end(), kpt_vecs[i].begin(), kpt_vecs[i].end()); |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | namespace { |
| 791 | |
| 792 | static void calcSIFTDescriptor(const Mat &img, Point2f ptf, float ori, |
| 793 | float scl, int d, int n, float *dst) { |
| 794 | Point pt(cvRound(ptf.x), cvRound(ptf.y)); |
| 795 | float cos_t = cosf(ori * (float)(CV_PI / 180)); |
| 796 | float sin_t = sinf(ori * (float)(CV_PI / 180)); |
| 797 | float bins_per_rad = n / 360.f; |
| 798 | float exp_scale = -1.f / (d * d * 0.5f); |
| 799 | float hist_width = SIFT_DESCR_SCL_FCTR * scl; |
| 800 | int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f); |
| 801 | // Clip the radius to the diagonal of the image to avoid autobuffer too large |
| 802 | // exception |
| 803 | radius = std::min(radius, (int)sqrt(((double)img.cols) * img.cols + |
| 804 | ((double)img.rows) * img.rows)); |
| 805 | cos_t /= hist_width; |
| 806 | sin_t /= hist_width; |
| 807 | |
| 808 | int i, j, k, len = (radius * 2 + 1) * (radius * 2 + 1), |
| 809 | histlen = (d + 2) * (d + 2) * (n + 2); |
| 810 | int rows = img.rows, cols = img.cols; |
| 811 | |
| 812 | AutoBuffer<float> buf(len * 6 + histlen); |
| 813 | float *X = buf, *Y = X + len, *Mag = Y, *Ori = Mag + len, *W = Ori + len; |
| 814 | float *RBin = W + len, *CBin = RBin + len, *hist = CBin + len; |
| 815 | |
| 816 | for (i = 0; i < d + 2; i++) { |
| 817 | for (j = 0; j < d + 2; j++) |
| 818 | for (k = 0; k < n + 2; k++) hist[(i * (d + 2) + j) * (n + 2) + k] = 0.; |
| 819 | } |
| 820 | |
| 821 | for (i = -radius, k = 0; i <= radius; i++) |
| 822 | for (j = -radius; j <= radius; j++) { |
| 823 | // Calculate sample's histogram array coords rotated relative to ori. |
| 824 | // Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e. |
| 825 | // r_rot = 1.5) have full weight placed in row 1 after interpolation. |
| 826 | float c_rot = j * cos_t - i * sin_t; |
| 827 | float r_rot = j * sin_t + i * cos_t; |
| 828 | float rbin = r_rot + d / 2 - 0.5f; |
| 829 | float cbin = c_rot + d / 2 - 0.5f; |
| 830 | int r = pt.y + i, c = pt.x + j; |
| 831 | |
| 832 | if (rbin > -1 && rbin < d && cbin > -1 && cbin < d && r > 0 && |
| 833 | r < rows - 1 && c > 0 && c < cols - 1) { |
| 834 | float dx = |
| 835 | (float)(img.at<sift_wt>(r, c + 1) - img.at<sift_wt>(r, c - 1)); |
| 836 | float dy = |
| 837 | (float)(img.at<sift_wt>(r - 1, c) - img.at<sift_wt>(r + 1, c)); |
| 838 | X[k] = dx; |
| 839 | Y[k] = dy; |
| 840 | RBin[k] = rbin; |
| 841 | CBin[k] = cbin; |
| 842 | W[k] = (c_rot * c_rot + r_rot * r_rot) * exp_scale; |
| 843 | k++; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | len = k; |
| 848 | cv::hal::fastAtan2(Y, X, Ori, len, true); |
| 849 | cv::hal::magnitude32f(X, Y, Mag, len); |
| 850 | cv::hal::exp32f(W, W, len); |
| 851 | |
| 852 | k = 0; |
| 853 | #if CV_AVX2 |
| 854 | if (USE_AVX2) { |
| 855 | int CV_DECL_ALIGNED(32) idx_buf[8]; |
| 856 | float CV_DECL_ALIGNED(32) rco_buf[64]; |
| 857 | const __m256 __ori = _mm256_set1_ps(ori); |
| 858 | const __m256 __bins_per_rad = _mm256_set1_ps(bins_per_rad); |
| 859 | const __m256i __n = _mm256_set1_epi32(n); |
| 860 | for (; k <= len - 8; k += 8) { |
| 861 | __m256 __rbin = _mm256_loadu_ps(&RBin[k]); |
| 862 | __m256 __cbin = _mm256_loadu_ps(&CBin[k]); |
| 863 | __m256 __obin = _mm256_mul_ps( |
| 864 | _mm256_sub_ps(_mm256_loadu_ps(&Ori[k]), __ori), __bins_per_rad); |
| 865 | __m256 __mag = |
| 866 | _mm256_mul_ps(_mm256_loadu_ps(&Mag[k]), _mm256_loadu_ps(&W[k])); |
| 867 | |
| 868 | __m256 __r0 = _mm256_floor_ps(__rbin); |
| 869 | __rbin = _mm256_sub_ps(__rbin, __r0); |
| 870 | __m256 __c0 = _mm256_floor_ps(__cbin); |
| 871 | __cbin = _mm256_sub_ps(__cbin, __c0); |
| 872 | __m256 __o0 = _mm256_floor_ps(__obin); |
| 873 | __obin = _mm256_sub_ps(__obin, __o0); |
| 874 | |
| 875 | __m256i __o0i = _mm256_cvtps_epi32(__o0); |
| 876 | __o0i = _mm256_add_epi32( |
| 877 | __o0i, _mm256_and_si256( |
| 878 | __n, _mm256_cmpgt_epi32(_mm256_setzero_si256(), __o0i))); |
| 879 | __o0i = _mm256_sub_epi32( |
| 880 | __o0i, _mm256_andnot_si256(_mm256_cmpgt_epi32(__n, __o0i), __n)); |
| 881 | |
| 882 | __m256 __v_r1 = _mm256_mul_ps(__mag, __rbin); |
| 883 | __m256 __v_r0 = _mm256_sub_ps(__mag, __v_r1); |
| 884 | |
| 885 | __m256 __v_rc11 = _mm256_mul_ps(__v_r1, __cbin); |
| 886 | __m256 __v_rc10 = _mm256_sub_ps(__v_r1, __v_rc11); |
| 887 | |
| 888 | __m256 __v_rc01 = _mm256_mul_ps(__v_r0, __cbin); |
| 889 | __m256 __v_rc00 = _mm256_sub_ps(__v_r0, __v_rc01); |
| 890 | |
| 891 | __m256 __v_rco111 = _mm256_mul_ps(__v_rc11, __obin); |
| 892 | __m256 __v_rco110 = _mm256_sub_ps(__v_rc11, __v_rco111); |
| 893 | |
| 894 | __m256 __v_rco101 = _mm256_mul_ps(__v_rc10, __obin); |
| 895 | __m256 __v_rco100 = _mm256_sub_ps(__v_rc10, __v_rco101); |
| 896 | |
| 897 | __m256 __v_rco011 = _mm256_mul_ps(__v_rc01, __obin); |
| 898 | __m256 __v_rco010 = _mm256_sub_ps(__v_rc01, __v_rco011); |
| 899 | |
| 900 | __m256 __v_rco001 = _mm256_mul_ps(__v_rc00, __obin); |
| 901 | __m256 __v_rco000 = _mm256_sub_ps(__v_rc00, __v_rco001); |
| 902 | |
| 903 | __m256i __one = _mm256_set1_epi32(1); |
| 904 | __m256i __idx = _mm256_add_epi32( |
| 905 | _mm256_mullo_epi32( |
| 906 | _mm256_add_epi32( |
| 907 | _mm256_mullo_epi32( |
| 908 | _mm256_add_epi32(_mm256_cvtps_epi32(__r0), __one), |
| 909 | _mm256_set1_epi32(d + 2)), |
| 910 | _mm256_add_epi32(_mm256_cvtps_epi32(__c0), __one)), |
| 911 | _mm256_set1_epi32(n + 2)), |
| 912 | __o0i); |
| 913 | |
| 914 | _mm256_store_si256((__m256i *)idx_buf, __idx); |
| 915 | |
| 916 | _mm256_store_ps(&(rco_buf[0]), __v_rco000); |
| 917 | _mm256_store_ps(&(rco_buf[8]), __v_rco001); |
| 918 | _mm256_store_ps(&(rco_buf[16]), __v_rco010); |
| 919 | _mm256_store_ps(&(rco_buf[24]), __v_rco011); |
| 920 | _mm256_store_ps(&(rco_buf[32]), __v_rco100); |
| 921 | _mm256_store_ps(&(rco_buf[40]), __v_rco101); |
| 922 | _mm256_store_ps(&(rco_buf[48]), __v_rco110); |
| 923 | _mm256_store_ps(&(rco_buf[56]), __v_rco111); |
| 924 | #define HIST_SUM_HELPER(id) \ |
| 925 | hist[idx_buf[(id)]] += rco_buf[(id)]; \ |
| 926 | hist[idx_buf[(id)] + 1] += rco_buf[8 + (id)]; \ |
| 927 | hist[idx_buf[(id)] + (n + 2)] += rco_buf[16 + (id)]; \ |
| 928 | hist[idx_buf[(id)] + (n + 3)] += rco_buf[24 + (id)]; \ |
| 929 | hist[idx_buf[(id)] + (d + 2) * (n + 2)] += rco_buf[32 + (id)]; \ |
| 930 | hist[idx_buf[(id)] + (d + 2) * (n + 2) + 1] += rco_buf[40 + (id)]; \ |
| 931 | hist[idx_buf[(id)] + (d + 3) * (n + 2)] += rco_buf[48 + (id)]; \ |
| 932 | hist[idx_buf[(id)] + (d + 3) * (n + 2) + 1] += rco_buf[56 + (id)]; |
| 933 | |
| 934 | HIST_SUM_HELPER(0); |
| 935 | HIST_SUM_HELPER(1); |
| 936 | HIST_SUM_HELPER(2); |
| 937 | HIST_SUM_HELPER(3); |
| 938 | HIST_SUM_HELPER(4); |
| 939 | HIST_SUM_HELPER(5); |
| 940 | HIST_SUM_HELPER(6); |
| 941 | HIST_SUM_HELPER(7); |
| 942 | |
| 943 | #undef HIST_SUM_HELPER |
| 944 | } |
| 945 | } |
| 946 | #endif |
| 947 | for (; k < len; k++) { |
| 948 | float rbin = RBin[k], cbin = CBin[k]; |
| 949 | float obin = (Ori[k] - ori) * bins_per_rad; |
| 950 | float mag = Mag[k] * W[k]; |
| 951 | |
| 952 | int r0 = cvFloor(rbin); |
| 953 | int c0 = cvFloor(cbin); |
| 954 | int o0 = cvFloor(obin); |
| 955 | rbin -= r0; |
| 956 | cbin -= c0; |
| 957 | obin -= o0; |
| 958 | |
| 959 | if (o0 < 0) o0 += n; |
| 960 | if (o0 >= n) o0 -= n; |
| 961 | |
| 962 | // histogram update using tri-linear interpolation |
| 963 | float v_r1 = mag * rbin, v_r0 = mag - v_r1; |
| 964 | float v_rc11 = v_r1 * cbin, v_rc10 = v_r1 - v_rc11; |
| 965 | float v_rc01 = v_r0 * cbin, v_rc00 = v_r0 - v_rc01; |
| 966 | float v_rco111 = v_rc11 * obin, v_rco110 = v_rc11 - v_rco111; |
| 967 | float v_rco101 = v_rc10 * obin, v_rco100 = v_rc10 - v_rco101; |
| 968 | float v_rco011 = v_rc01 * obin, v_rco010 = v_rc01 - v_rco011; |
| 969 | float v_rco001 = v_rc00 * obin, v_rco000 = v_rc00 - v_rco001; |
| 970 | |
| 971 | int idx = ((r0 + 1) * (d + 2) + c0 + 1) * (n + 2) + o0; |
| 972 | hist[idx] += v_rco000; |
| 973 | hist[idx + 1] += v_rco001; |
| 974 | hist[idx + (n + 2)] += v_rco010; |
| 975 | hist[idx + (n + 3)] += v_rco011; |
| 976 | hist[idx + (d + 2) * (n + 2)] += v_rco100; |
| 977 | hist[idx + (d + 2) * (n + 2) + 1] += v_rco101; |
| 978 | hist[idx + (d + 3) * (n + 2)] += v_rco110; |
| 979 | hist[idx + (d + 3) * (n + 2) + 1] += v_rco111; |
| 980 | } |
| 981 | |
| 982 | // finalize histogram, since the orientation histograms are circular |
| 983 | for (i = 0; i < d; i++) |
| 984 | for (j = 0; j < d; j++) { |
| 985 | int idx = ((i + 1) * (d + 2) + (j + 1)) * (n + 2); |
| 986 | hist[idx] += hist[idx + n]; |
| 987 | hist[idx + 1] += hist[idx + n + 1]; |
| 988 | for (k = 0; k < n; k++) dst[(i * d + j) * n + k] = hist[idx + k]; |
| 989 | } |
| 990 | // copy histogram to the descriptor, |
| 991 | // apply hysteresis thresholding |
| 992 | // and scale the result, so that it can be easily converted |
| 993 | // to byte array |
| 994 | float nrm2 = 0; |
| 995 | len = d * d * n; |
| 996 | k = 0; |
| 997 | #if CV_AVX2 |
| 998 | if (USE_AVX2) { |
| 999 | float CV_DECL_ALIGNED(32) nrm2_buf[8]; |
| 1000 | __m256 __nrm2 = _mm256_setzero_ps(); |
| 1001 | __m256 __dst; |
| 1002 | for (; k <= len - 8; k += 8) { |
| 1003 | __dst = _mm256_loadu_ps(&dst[k]); |
| 1004 | #if CV_FMA3 |
| 1005 | __nrm2 = _mm256_fmadd_ps(__dst, __dst, __nrm2); |
| 1006 | #else |
| 1007 | __nrm2 = _mm256_add_ps(__nrm2, _mm256_mul_ps(__dst, __dst)); |
| 1008 | #endif |
| 1009 | } |
| 1010 | _mm256_store_ps(nrm2_buf, __nrm2); |
| 1011 | nrm2 = nrm2_buf[0] + nrm2_buf[1] + nrm2_buf[2] + nrm2_buf[3] + nrm2_buf[4] + |
| 1012 | nrm2_buf[5] + nrm2_buf[6] + nrm2_buf[7]; |
| 1013 | } |
| 1014 | #endif |
| 1015 | for (; k < len; k++) nrm2 += dst[k] * dst[k]; |
| 1016 | |
| 1017 | float thr = std::sqrt(nrm2) * SIFT_DESCR_MAG_THR; |
| 1018 | |
| 1019 | i = 0, nrm2 = 0; |
| 1020 | #if 0 // CV_AVX2 |
| 1021 | // This code cannot be enabled because it sums nrm2 in a different order, |
| 1022 | // thus producing slightly different results |
| 1023 | if( USE_AVX2 ) |
| 1024 | { |
| 1025 | float CV_DECL_ALIGNED(32) nrm2_buf[8]; |
| 1026 | __m256 __dst; |
| 1027 | __m256 __nrm2 = _mm256_setzero_ps(); |
| 1028 | __m256 __thr = _mm256_set1_ps(thr); |
| 1029 | for( ; i <= len - 8; i += 8 ) |
| 1030 | { |
| 1031 | __dst = _mm256_loadu_ps(&dst[i]); |
| 1032 | __dst = _mm256_min_ps(__dst, __thr); |
| 1033 | _mm256_storeu_ps(&dst[i], __dst); |
| 1034 | #if CV_FMA3 |
| 1035 | __nrm2 = _mm256_fmadd_ps(__dst, __dst, __nrm2); |
| 1036 | #else |
| 1037 | __nrm2 = _mm256_add_ps(__nrm2, _mm256_mul_ps(__dst, __dst)); |
| 1038 | #endif |
| 1039 | } |
| 1040 | _mm256_store_ps(nrm2_buf, __nrm2); |
| 1041 | nrm2 = nrm2_buf[0] + nrm2_buf[1] + nrm2_buf[2] + nrm2_buf[3] + |
| 1042 | nrm2_buf[4] + nrm2_buf[5] + nrm2_buf[6] + nrm2_buf[7]; |
| 1043 | } |
| 1044 | #endif |
| 1045 | for (; i < len; i++) { |
| 1046 | float val = std::min(dst[i], thr); |
| 1047 | dst[i] = val; |
| 1048 | nrm2 += val * val; |
| 1049 | } |
| 1050 | nrm2 = SIFT_INT_DESCR_FCTR / std::max(std::sqrt(nrm2), FLT_EPSILON); |
| 1051 | |
| 1052 | #if 1 |
| 1053 | k = 0; |
| 1054 | #if CV_AVX2 |
| 1055 | if (USE_AVX2) { |
| 1056 | __m256 __dst; |
| 1057 | __m256 __min = _mm256_setzero_ps(); |
| 1058 | __m256 __max = _mm256_set1_ps(255.0f); // max of uchar |
| 1059 | __m256 __nrm2 = _mm256_set1_ps(nrm2); |
| 1060 | for (k = 0; k <= len - 8; k += 8) { |
| 1061 | __dst = _mm256_loadu_ps(&dst[k]); |
| 1062 | __dst = _mm256_min_ps( |
| 1063 | _mm256_max_ps( |
| 1064 | _mm256_round_ps(_mm256_mul_ps(__dst, __nrm2), |
| 1065 | _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC), |
| 1066 | __min), |
| 1067 | __max); |
| 1068 | _mm256_storeu_ps(&dst[k], __dst); |
| 1069 | } |
| 1070 | } |
| 1071 | #endif |
| 1072 | for (; k < len; k++) { |
| 1073 | dst[k] = saturate_cast<uchar>(dst[k] * nrm2); |
| 1074 | } |
| 1075 | #else |
| 1076 | float nrm1 = 0; |
| 1077 | for (k = 0; k < len; k++) { |
| 1078 | dst[k] *= nrm2; |
| 1079 | nrm1 += dst[k]; |
| 1080 | } |
| 1081 | nrm1 = 1.f / std::max(nrm1, FLT_EPSILON); |
| 1082 | for (k = 0; k < len; k++) { |
| 1083 | dst[k] = std::sqrt(dst[k] * nrm1); // saturate_cast<uchar>(std::sqrt(dst[k] |
| 1084 | // * nrm1)*SIFT_INT_DESCR_FCTR); |
| 1085 | } |
| 1086 | #endif |
| 1087 | } |
| 1088 | |
| 1089 | class calcDescriptorsComputer : public ParallelLoopBody { |
| 1090 | public: |
| 1091 | calcDescriptorsComputer(const std::vector<Mat> &_gpyr, |
| 1092 | const std::vector<KeyPoint> &_keypoints, |
| 1093 | Mat &_descriptors, int _nOctaveLayers, |
| 1094 | int _firstOctave) |
| 1095 | : gpyr(_gpyr), |
| 1096 | keypoints(_keypoints), |
| 1097 | descriptors(_descriptors), |
| 1098 | nOctaveLayers(_nOctaveLayers), |
| 1099 | firstOctave(_firstOctave) {} |
| 1100 | |
| 1101 | void operator()(const cv::Range &range) const override { |
| 1102 | const int begin = range.start; |
| 1103 | const int end = range.end; |
| 1104 | |
| 1105 | static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS; |
| 1106 | |
| 1107 | for (int i = begin; i < end; i++) { |
| 1108 | KeyPoint kpt = keypoints[i]; |
| 1109 | int octave, layer; |
| 1110 | float scale; |
| 1111 | unpackOctave(kpt, octave, layer, scale); |
| 1112 | CV_Assert(octave >= firstOctave && layer <= nOctaveLayers + 2); |
| 1113 | float size = kpt.size * scale; |
| 1114 | Point2f ptf(kpt.pt.x * scale, kpt.pt.y * scale); |
| 1115 | const Mat &img = |
| 1116 | gpyr[(octave - firstOctave) * (nOctaveLayers + 3) + layer]; |
| 1117 | |
| 1118 | float angle = 360.f - kpt.angle; |
| 1119 | if (std::abs(angle - 360.f) < FLT_EPSILON) angle = 0.f; |
| 1120 | calcSIFTDescriptor(img, ptf, angle, size * 0.5f, d, n, |
| 1121 | descriptors.ptr<float>((int)i)); |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | private: |
| 1126 | const std::vector<Mat> &gpyr; |
| 1127 | const std::vector<KeyPoint> &keypoints; |
| 1128 | Mat &descriptors; |
| 1129 | int nOctaveLayers; |
| 1130 | int firstOctave; |
| 1131 | }; |
| 1132 | |
| 1133 | static void calcDescriptors(const std::vector<Mat> &gpyr, |
| 1134 | const std::vector<KeyPoint> &keypoints, |
| 1135 | Mat &descriptors, int nOctaveLayers, |
| 1136 | int firstOctave) { |
| 1137 | parallel_for_(Range(0, static_cast<int>(keypoints.size())), |
| 1138 | calcDescriptorsComputer(gpyr, keypoints, descriptors, |
| 1139 | nOctaveLayers, firstOctave)); |
| 1140 | } |
| 1141 | |
| 1142 | } // namespace |
| 1143 | |
| 1144 | ////////////////////////////////////////////////////////////////////////////////////////// |
| 1145 | |
| 1146 | SIFT971_Impl::SIFT971_Impl(int _nfeatures, int _nOctaveLayers, |
| 1147 | double _contrastThreshold, double _edgeThreshold, |
| 1148 | double _sigma) |
| 1149 | : nfeatures(_nfeatures), |
| 1150 | nOctaveLayers(_nOctaveLayers), |
| 1151 | contrastThreshold(_contrastThreshold), |
| 1152 | edgeThreshold(_edgeThreshold), |
| 1153 | sigma(_sigma) {} |
| 1154 | |
| 1155 | int SIFT971_Impl::descriptorSize() const { |
| 1156 | return SIFT_DESCR_WIDTH * SIFT_DESCR_WIDTH * SIFT_DESCR_HIST_BINS; |
| 1157 | } |
| 1158 | |
| 1159 | int SIFT971_Impl::descriptorType() const { return CV_32F; } |
| 1160 | |
| 1161 | int SIFT971_Impl::defaultNorm() const { return NORM_L2; } |
| 1162 | |
| 1163 | void SIFT971_Impl::detectAndCompute(InputArray _image, InputArray _mask, |
| 1164 | std::vector<KeyPoint> &keypoints, |
| 1165 | OutputArray _descriptors, |
| 1166 | bool useProvidedKeypoints) { |
Brian Silverman | 950bffa | 2020-02-01 16:53:49 -0800 | [diff] [blame] | 1167 | int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0; |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1168 | Mat image = _image.getMat(), mask = _mask.getMat(); |
| 1169 | |
| 1170 | if (image.empty() || image.depth() != CV_8U) |
| 1171 | CV_Error(Error::StsBadArg, |
| 1172 | "image is empty or has incorrect depth (!=CV_8U)"); |
| 1173 | |
| 1174 | if (!mask.empty() && mask.type() != CV_8UC1) |
| 1175 | CV_Error(Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)"); |
| 1176 | |
| 1177 | if (useProvidedKeypoints) { |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1178 | LOG_IF(INFO, kLogTiming); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1179 | firstOctave = 0; |
| 1180 | int maxOctave = INT_MIN; |
| 1181 | for (size_t i = 0; i < keypoints.size(); i++) { |
| 1182 | int octave, layer; |
| 1183 | float scale; |
| 1184 | unpackOctave(keypoints[i], octave, layer, scale); |
| 1185 | firstOctave = std::min(firstOctave, octave); |
| 1186 | maxOctave = std::max(maxOctave, octave); |
| 1187 | actualNLayers = std::max(actualNLayers, layer - 2); |
| 1188 | } |
| 1189 | |
| 1190 | firstOctave = std::min(firstOctave, 0); |
| 1191 | CV_Assert(firstOctave >= -1 && actualNLayers <= nOctaveLayers); |
| 1192 | actualNOctaves = maxOctave - firstOctave + 1; |
| 1193 | } |
| 1194 | |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1195 | LOG_IF(INFO, kLogTiming); |
| 1196 | Mat base = createInitialImage(image, firstOctave < 0); |
| 1197 | LOG_IF(INFO, kLogTiming); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1198 | std::vector<Mat> gpyr; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1199 | int nOctaves; |
| 1200 | if (actualNOctaves > 0) { |
| 1201 | nOctaves = actualNOctaves; |
| 1202 | } else { |
| 1203 | nOctaves = cvRound(std::log((double)std::min(base.cols, base.rows)) / |
| 1204 | std::log(2.) - |
| 1205 | 2) - |
| 1206 | firstOctave; |
| 1207 | } |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1208 | |
| 1209 | if (!useProvidedKeypoints) { |
| 1210 | std::vector<Mat> dogpyr; |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1211 | if (use_fused_pyramid_difference_) { |
| 1212 | buildGaussianAndDifferencePyramid(base, gpyr, dogpyr, nOctaves); |
| 1213 | LOG_IF(INFO, kLogTiming); |
| 1214 | } else { |
| 1215 | buildGaussianPyramid(base, gpyr, nOctaves); |
| 1216 | LOG_IF(INFO, kLogTiming); |
| 1217 | |
| 1218 | buildDoGPyramid(gpyr, dogpyr); |
| 1219 | LOG_IF(INFO, kLogTiming); |
| 1220 | } |
| 1221 | |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1222 | findScaleSpaceExtrema(gpyr, dogpyr, keypoints); |
| 1223 | // TODO(Brian): I think it can go faster by knowing they're sorted? |
| 1224 | // KeyPointsFilter::removeDuplicatedSorted( keypoints ); |
| 1225 | KeyPointsFilter::removeDuplicated(keypoints); |
| 1226 | |
| 1227 | if (nfeatures > 0) KeyPointsFilter::retainBest(keypoints, nfeatures); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1228 | |
| 1229 | if (firstOctave < 0) |
| 1230 | for (size_t i = 0; i < keypoints.size(); i++) { |
| 1231 | KeyPoint &kpt = keypoints[i]; |
| 1232 | float scale = 1.f / (float)(1 << -firstOctave); |
| 1233 | kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255); |
| 1234 | kpt.pt *= scale; |
| 1235 | kpt.size *= scale; |
| 1236 | } |
| 1237 | |
| 1238 | if (!mask.empty()) KeyPointsFilter::runByPixelsMask(keypoints, mask); |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1239 | LOG_IF(INFO, kLogTiming); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1240 | } else { |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1241 | buildGaussianPyramid(base, gpyr, nOctaves); |
| 1242 | LOG_IF(INFO, kLogTiming); |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1243 | // filter keypoints by mask |
| 1244 | // KeyPointsFilter::runByPixelsMask( keypoints, mask ); |
| 1245 | } |
| 1246 | |
| 1247 | if (_descriptors.needed()) { |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1248 | int dsize = descriptorSize(); |
| 1249 | _descriptors.create((int)keypoints.size(), dsize, CV_32F); |
| 1250 | Mat descriptors = _descriptors.getMat(); |
| 1251 | |
| 1252 | calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave); |
Brian Silverman | 3fec648 | 2020-01-19 17:56:20 -0800 | [diff] [blame] | 1253 | LOG_IF(INFO, kLogTiming); |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | Mat SIFT971_Impl::createInitialImage(const Mat &img, |
| 1258 | bool doubleImageSize) const { |
| 1259 | Mat gray, gray_fpt; |
| 1260 | if (img.channels() == 3 || img.channels() == 4) { |
| 1261 | cvtColor(img, gray, COLOR_BGR2GRAY); |
| 1262 | gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0); |
| 1263 | } else { |
| 1264 | img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0); |
| 1265 | } |
| 1266 | |
| 1267 | float sig_diff; |
| 1268 | |
| 1269 | Mat maybe_doubled; |
| 1270 | if (doubleImageSize) { |
| 1271 | sig_diff = std::sqrt( |
| 1272 | std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01)); |
| 1273 | resize(gray_fpt, maybe_doubled, Size(gray_fpt.cols * 2, gray_fpt.rows * 2), |
| 1274 | 0, 0, INTER_LINEAR); |
| 1275 | } else { |
| 1276 | sig_diff = std::sqrt( |
| 1277 | std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01)); |
| 1278 | maybe_doubled = gray_fpt; |
| 1279 | } |
| 1280 | if (use_fast_guassian_initial_) { |
| 1281 | Mat temp; |
| 1282 | FastGaussian(maybe_doubled, &temp, sig_diff); |
| 1283 | return temp; |
| 1284 | } else { |
| 1285 | GaussianBlur(maybe_doubled, maybe_doubled, Size(), sig_diff, sig_diff); |
| 1286 | return maybe_doubled; |
Brian Silverman | f119612 | 2020-01-16 00:41:54 -0800 | [diff] [blame] | 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | } // namespace vision |
| 1291 | } // namespace frc971 |