blob: d9db67755352cd0b45c899bef5953c47cdf27df4 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001namespace Eigen {
2
3/** \eigenManualPage TopicLinearAlgebraDecompositions Catalogue of dense decompositions
4
5This page presents a catalogue of the dense matrix decompositions offered by Eigen.
6For an introduction on linear solvers and decompositions, check this \link TutorialLinearAlgebra page \endlink.
Austin Schuh189376f2018-12-20 22:11:15 +11007To get an overview of the true relative speed of the different decompositions, check this \link DenseDecompositionBenchmark benchmark \endlink.
Brian Silverman72890c22015-09-19 14:37:37 -04008
9\section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
10
11<table class="manual-vl">
12 <tr>
13 <th class="meta"></th>
14 <th class="meta" colspan="5">Generic information, not Eigen-specific</th>
15 <th class="meta" colspan="3">Eigen-specific</th>
16 </tr>
17
18 <tr>
19 <th>Decomposition</th>
20 <th>Requirements on the matrix</th>
21 <th>Speed</th>
22 <th>Algorithm reliability and accuracy</th>
23 <th>Rank-revealing</th>
24 <th>Allows to compute (besides linear solving)</th>
25 <th>Linear solver provided by Eigen</th>
26 <th>Maturity of Eigen's implementation</th>
27 <th>Optimizations</th>
28 </tr>
29
30 <tr>
31 <td>PartialPivLU</td>
32 <td>Invertible</td>
33 <td>Fast</td>
34 <td>Depends on condition number</td>
35 <td>-</td>
36 <td>-</td>
37 <td>Yes</td>
38 <td>Excellent</td>
39 <td>Blocking, Implicit MT</td>
40 </tr>
41
42 <tr class="alt">
43 <td>FullPivLU</td>
44 <td>-</td>
45 <td>Slow</td>
46 <td>Proven</td>
47 <td>Yes</td>
48 <td>-</td>
49 <td>Yes</td>
50 <td>Excellent</td>
51 <td>-</td>
52 </tr>
53
54 <tr>
55 <td>HouseholderQR</td>
56 <td>-</td>
57 <td>Fast</td>
58 <td>Depends on condition number</td>
59 <td>-</td>
60 <td>Orthogonalization</td>
61 <td>Yes</td>
62 <td>Excellent</td>
63 <td>Blocking</td>
64 </tr>
65
66 <tr class="alt">
67 <td>ColPivHouseholderQR</td>
68 <td>-</td>
69 <td>Fast</td>
70 <td>Good</td>
71 <td>Yes</td>
72 <td>Orthogonalization</td>
73 <td>Yes</td>
74 <td>Excellent</td>
75 <td><em>Soon: blocking</em></td>
76 </tr>
77
78 <tr>
79 <td>FullPivHouseholderQR</td>
80 <td>-</td>
81 <td>Slow</td>
82 <td>Proven</td>
83 <td>Yes</td>
84 <td>Orthogonalization</td>
85 <td>Yes</td>
86 <td>Average</td>
87 <td>-</td>
88 </tr>
89
90 <tr class="alt">
91 <td>LLT</td>
92 <td>Positive definite</td>
93 <td>Very fast</td>
94 <td>Depends on condition number</td>
95 <td>-</td>
96 <td>-</td>
97 <td>Yes</td>
98 <td>Excellent</td>
99 <td>Blocking</td>
100 </tr>
101
102 <tr>
103 <td>LDLT</td>
104 <td>Positive or negative semidefinite<sup><a href="#note1">1</a></sup></td>
105 <td>Very fast</td>
106 <td>Good</td>
107 <td>-</td>
108 <td>-</td>
109 <td>Yes</td>
110 <td>Excellent</td>
111 <td><em>Soon: blocking</em></td>
112 </tr>
113
114 <tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
115
116 <tr>
Austin Schuh189376f2018-12-20 22:11:15 +1100117 <td>BDCSVD (divide \& conquer)</td>
118 <td>-</td>
119 <td>One of the fastest SVD algorithms</td>
120 <td>Excellent</td>
121 <td>Yes</td>
122 <td>Singular values/vectors, least squares</td>
123 <td>Yes (and does least squares)</td>
124 <td>Excellent</td>
125 <td>Blocked bidiagonalization</td>
126 </tr>
127
128 <tr>
Brian Silverman72890c22015-09-19 14:37:37 -0400129 <td>JacobiSVD (two-sided)</td>
130 <td>-</td>
131 <td>Slow (but fast for small matrices)</td>
Austin Schuh189376f2018-12-20 22:11:15 +1100132 <td>Proven<sup><a href="#note3">3</a></sup></td>
Brian Silverman72890c22015-09-19 14:37:37 -0400133 <td>Yes</td>
134 <td>Singular values/vectors, least squares</td>
135 <td>Yes (and does least squares)</td>
136 <td>Excellent</td>
137 <td>R-SVD</td>
138 </tr>
139
140 <tr class="alt">
141 <td>SelfAdjointEigenSolver</td>
142 <td>Self-adjoint</td>
143 <td>Fast-average<sup><a href="#note2">2</a></sup></td>
144 <td>Good</td>
145 <td>Yes</td>
146 <td>Eigenvalues/vectors</td>
147 <td>-</td>
Austin Schuh189376f2018-12-20 22:11:15 +1100148 <td>Excellent</td>
Brian Silverman72890c22015-09-19 14:37:37 -0400149 <td><em>Closed forms for 2x2 and 3x3</em></td>
150 </tr>
151
152 <tr>
153 <td>ComplexEigenSolver</td>
154 <td>Square</td>
155 <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
156 <td>Depends on condition number</td>
157 <td>Yes</td>
158 <td>Eigenvalues/vectors</td>
159 <td>-</td>
160 <td>Average</td>
161 <td>-</td>
162 </tr>
163
164 <tr class="alt">
165 <td>EigenSolver</td>
166 <td>Square and real</td>
167 <td>Average-slow<sup><a href="#note2">2</a></sup></td>
168 <td>Depends on condition number</td>
169 <td>Yes</td>
170 <td>Eigenvalues/vectors</td>
171 <td>-</td>
172 <td>Average</td>
173 <td>-</td>
174 </tr>
175
176 <tr>
177 <td>GeneralizedSelfAdjointEigenSolver</td>
178 <td>Square</td>
179 <td>Fast-average<sup><a href="#note2">2</a></sup></td>
180 <td>Depends on condition number</td>
181 <td>-</td>
182 <td>Generalized eigenvalues/vectors</td>
183 <td>-</td>
184 <td>Good</td>
185 <td>-</td>
186 </tr>
187
188 <tr><th class="inter" colspan="9">\n Helper decompositions</th></tr>
189
190 <tr>
191 <td>RealSchur</td>
192 <td>Square and real</td>
193 <td>Average-slow<sup><a href="#note2">2</a></sup></td>
194 <td>Depends on condition number</td>
195 <td>Yes</td>
196 <td>-</td>
197 <td>-</td>
198 <td>Average</td>
199 <td>-</td>
200 </tr>
201
202 <tr class="alt">
203 <td>ComplexSchur</td>
204 <td>Square</td>
205 <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
206 <td>Depends on condition number</td>
207 <td>Yes</td>
208 <td>-</td>
209 <td>-</td>
210 <td>Average</td>
211 <td>-</td>
212 </tr>
213
214 <tr class="alt">
215 <td>Tridiagonalization</td>
216 <td>Self-adjoint</td>
217 <td>Fast</td>
218 <td>Good</td>
219 <td>-</td>
220 <td>-</td>
221 <td>-</td>
222 <td>Good</td>
223 <td><em>Soon: blocking</em></td>
224 </tr>
225
226 <tr>
227 <td>HessenbergDecomposition</td>
228 <td>Square</td>
229 <td>Average</td>
230 <td>Good</td>
231 <td>-</td>
232 <td>-</td>
233 <td>-</td>
234 <td>Good</td>
235 <td><em>Soon: blocking</em></td>
236 </tr>
237
238</table>
239
240\b Notes:
241<ul>
242<li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
243<li><a name="note2">\b 2: </a>Eigenvalues, SVD and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
244<li><a name="note3">\b 3: </a>Our JacobiSVD is two-sided, making for proven and optimal precision for square matrices. For non-square matrices, we have to use a QR preconditioner first. The default choice, ColPivHouseholderQR, is already very reliable, but if you want it to be proven, use FullPivHouseholderQR instead.
245</ul>
246
247\section TopicLinAlgTerminology Terminology
248
249<dl>
250 <dt><b>Selfadjoint</b></dt>
251 <dd>For a real matrix, selfadjoint is a synonym for symmetric. For a complex matrix, selfadjoint is a synonym for \em hermitian.
252 More generally, a matrix \f$ A \f$ is selfadjoint if and only if it is equal to its adjoint \f$ A^* \f$. The adjoint is also called the \em conjugate \em transpose. </dd>
253 <dt><b>Positive/negative definite</b></dt>
254 <dd>A selfadjoint matrix \f$ A \f$ is positive definite if \f$ v^* A v > 0 \f$ for any non zero vector \f$ v \f$.
255 In the same vein, it is negative definite if \f$ v^* A v < 0 \f$ for any non zero vector \f$ v \f$ </dd>
256 <dt><b>Positive/negative semidefinite</b></dt>
257 <dd>A selfadjoint matrix \f$ A \f$ is positive semi-definite if \f$ v^* A v \ge 0 \f$ for any non zero vector \f$ v \f$.
258 In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
259
260 <dt><b>Blocking</b></dt>
261 <dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
262 <dt><b>Implicit Multi Threading (MT)</b></dt>
263 <dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product rountines.</dd>
264 <dt><b>Explicit Multi Threading (MT)</b></dt>
Austin Schuh189376f2018-12-20 22:11:15 +1100265 <dd>Means the algorithm is explicitly parallelized to take advantage of multicore processors via OpenMP.</dd>
Brian Silverman72890c22015-09-19 14:37:37 -0400266 <dt><b>Meta-unroller</b></dt>
267 <dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
268 <dt><b></b></dt>
269 <dd></dd>
270</dl>
271
Austin Schuh189376f2018-12-20 22:11:15 +1100272
Brian Silverman72890c22015-09-19 14:37:37 -0400273*/
274
275}