Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | /* dspmv.f -- translated by f2c (version 20100827). |
| 2 | You must link the resulting object file with libf2c: |
| 3 | on Microsoft Windows system, link with libf2c.lib; |
| 4 | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| 5 | or, if you install libf2c.a in a standard place, with -lf2c -lm |
| 6 | -- in that order, at the end of the command line, as in |
| 7 | cc *.o -lf2c -lm |
| 8 | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| 9 | |
| 10 | http://www.netlib.org/f2c/libf2c.zip |
| 11 | */ |
| 12 | |
| 13 | #include "datatypes.h" |
| 14 | |
| 15 | /* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha, |
| 16 | doublereal *ap, doublereal *x, integer *incx, doublereal *beta, |
| 17 | doublereal *y, integer *incy, ftnlen uplo_len) |
| 18 | { |
| 19 | /* System generated locals */ |
| 20 | integer i__1, i__2; |
| 21 | |
| 22 | /* Local variables */ |
| 23 | integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; |
| 24 | doublereal temp1, temp2; |
| 25 | extern logical lsame_(char *, char *, ftnlen, ftnlen); |
| 26 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
| 27 | |
| 28 | /* .. Scalar Arguments .. */ |
| 29 | /* .. */ |
| 30 | /* .. Array Arguments .. */ |
| 31 | /* .. */ |
| 32 | |
| 33 | /* Purpose */ |
| 34 | /* ======= */ |
| 35 | |
| 36 | /* DSPMV performs the matrix-vector operation */ |
| 37 | |
| 38 | /* y := alpha*A*x + beta*y, */ |
| 39 | |
| 40 | /* where alpha and beta are scalars, x and y are n element vectors and */ |
| 41 | /* A is an n by n symmetric matrix, supplied in packed form. */ |
| 42 | |
| 43 | /* Arguments */ |
| 44 | /* ========== */ |
| 45 | |
| 46 | /* UPLO - CHARACTER*1. */ |
| 47 | /* On entry, UPLO specifies whether the upper or lower */ |
| 48 | /* triangular part of the matrix A is supplied in the packed */ |
| 49 | /* array AP as follows: */ |
| 50 | |
| 51 | /* UPLO = 'U' or 'u' The upper triangular part of A is */ |
| 52 | /* supplied in AP. */ |
| 53 | |
| 54 | /* UPLO = 'L' or 'l' The lower triangular part of A is */ |
| 55 | /* supplied in AP. */ |
| 56 | |
| 57 | /* Unchanged on exit. */ |
| 58 | |
| 59 | /* N - INTEGER. */ |
| 60 | /* On entry, N specifies the order of the matrix A. */ |
| 61 | /* N must be at least zero. */ |
| 62 | /* Unchanged on exit. */ |
| 63 | |
| 64 | /* ALPHA - DOUBLE PRECISION. */ |
| 65 | /* On entry, ALPHA specifies the scalar alpha. */ |
| 66 | /* Unchanged on exit. */ |
| 67 | |
| 68 | /* AP - DOUBLE PRECISION array of DIMENSION at least */ |
| 69 | /* ( ( n*( n + 1 ) )/2 ). */ |
| 70 | /* Before entry with UPLO = 'U' or 'u', the array AP must */ |
| 71 | /* contain the upper triangular part of the symmetric matrix */ |
| 72 | /* packed sequentially, column by column, so that AP( 1 ) */ |
| 73 | /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ |
| 74 | /* and a( 2, 2 ) respectively, and so on. */ |
| 75 | /* Before entry with UPLO = 'L' or 'l', the array AP must */ |
| 76 | /* contain the lower triangular part of the symmetric matrix */ |
| 77 | /* packed sequentially, column by column, so that AP( 1 ) */ |
| 78 | /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ |
| 79 | /* and a( 3, 1 ) respectively, and so on. */ |
| 80 | /* Unchanged on exit. */ |
| 81 | |
| 82 | /* X - DOUBLE PRECISION array of dimension at least */ |
| 83 | /* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
| 84 | /* Before entry, the incremented array X must contain the n */ |
| 85 | /* element vector x. */ |
| 86 | /* Unchanged on exit. */ |
| 87 | |
| 88 | /* INCX - INTEGER. */ |
| 89 | /* On entry, INCX specifies the increment for the elements of */ |
| 90 | /* X. INCX must not be zero. */ |
| 91 | /* Unchanged on exit. */ |
| 92 | |
| 93 | /* BETA - DOUBLE PRECISION. */ |
| 94 | /* On entry, BETA specifies the scalar beta. When BETA is */ |
| 95 | /* supplied as zero then Y need not be set on input. */ |
| 96 | /* Unchanged on exit. */ |
| 97 | |
| 98 | /* Y - DOUBLE PRECISION array of dimension at least */ |
| 99 | /* ( 1 + ( n - 1 )*abs( INCY ) ). */ |
| 100 | /* Before entry, the incremented array Y must contain the n */ |
| 101 | /* element vector y. On exit, Y is overwritten by the updated */ |
| 102 | /* vector y. */ |
| 103 | |
| 104 | /* INCY - INTEGER. */ |
| 105 | /* On entry, INCY specifies the increment for the elements of */ |
| 106 | /* Y. INCY must not be zero. */ |
| 107 | /* Unchanged on exit. */ |
| 108 | |
| 109 | /* Further Details */ |
| 110 | /* =============== */ |
| 111 | |
| 112 | /* Level 2 Blas routine. */ |
| 113 | |
| 114 | /* -- Written on 22-October-1986. */ |
| 115 | /* Jack Dongarra, Argonne National Lab. */ |
| 116 | /* Jeremy Du Croz, Nag Central Office. */ |
| 117 | /* Sven Hammarling, Nag Central Office. */ |
| 118 | /* Richard Hanson, Sandia National Labs. */ |
| 119 | |
| 120 | /* ===================================================================== */ |
| 121 | |
| 122 | /* .. Parameters .. */ |
| 123 | /* .. */ |
| 124 | /* .. Local Scalars .. */ |
| 125 | /* .. */ |
| 126 | /* .. External Functions .. */ |
| 127 | /* .. */ |
| 128 | /* .. External Subroutines .. */ |
| 129 | /* .. */ |
| 130 | |
| 131 | /* Test the input parameters. */ |
| 132 | |
| 133 | /* Parameter adjustments */ |
| 134 | --y; |
| 135 | --x; |
| 136 | --ap; |
| 137 | |
| 138 | /* Function Body */ |
| 139 | info = 0; |
| 140 | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( |
| 141 | ftnlen)1, (ftnlen)1)) { |
| 142 | info = 1; |
| 143 | } else if (*n < 0) { |
| 144 | info = 2; |
| 145 | } else if (*incx == 0) { |
| 146 | info = 6; |
| 147 | } else if (*incy == 0) { |
| 148 | info = 9; |
| 149 | } |
| 150 | if (info != 0) { |
| 151 | xerbla_("DSPMV ", &info, (ftnlen)6); |
| 152 | return 0; |
| 153 | } |
| 154 | |
| 155 | /* Quick return if possible. */ |
| 156 | |
| 157 | if (*n == 0 || (*alpha == 0. && *beta == 1.)) { |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | /* Set up the start points in X and Y. */ |
| 162 | |
| 163 | if (*incx > 0) { |
| 164 | kx = 1; |
| 165 | } else { |
| 166 | kx = 1 - (*n - 1) * *incx; |
| 167 | } |
| 168 | if (*incy > 0) { |
| 169 | ky = 1; |
| 170 | } else { |
| 171 | ky = 1 - (*n - 1) * *incy; |
| 172 | } |
| 173 | |
| 174 | /* Start the operations. In this version the elements of the array AP */ |
| 175 | /* are accessed sequentially with one pass through AP. */ |
| 176 | |
| 177 | /* First form y := beta*y. */ |
| 178 | |
| 179 | if (*beta != 1.) { |
| 180 | if (*incy == 1) { |
| 181 | if (*beta == 0.) { |
| 182 | i__1 = *n; |
| 183 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 184 | y[i__] = 0.; |
| 185 | /* L10: */ |
| 186 | } |
| 187 | } else { |
| 188 | i__1 = *n; |
| 189 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 190 | y[i__] = *beta * y[i__]; |
| 191 | /* L20: */ |
| 192 | } |
| 193 | } |
| 194 | } else { |
| 195 | iy = ky; |
| 196 | if (*beta == 0.) { |
| 197 | i__1 = *n; |
| 198 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 199 | y[iy] = 0.; |
| 200 | iy += *incy; |
| 201 | /* L30: */ |
| 202 | } |
| 203 | } else { |
| 204 | i__1 = *n; |
| 205 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 206 | y[iy] = *beta * y[iy]; |
| 207 | iy += *incy; |
| 208 | /* L40: */ |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | if (*alpha == 0.) { |
| 214 | return 0; |
| 215 | } |
| 216 | kk = 1; |
| 217 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 218 | |
| 219 | /* Form y when AP contains the upper triangle. */ |
| 220 | |
| 221 | if (*incx == 1 && *incy == 1) { |
| 222 | i__1 = *n; |
| 223 | for (j = 1; j <= i__1; ++j) { |
| 224 | temp1 = *alpha * x[j]; |
| 225 | temp2 = 0.; |
| 226 | k = kk; |
| 227 | i__2 = j - 1; |
| 228 | for (i__ = 1; i__ <= i__2; ++i__) { |
| 229 | y[i__] += temp1 * ap[k]; |
| 230 | temp2 += ap[k] * x[i__]; |
| 231 | ++k; |
| 232 | /* L50: */ |
| 233 | } |
| 234 | y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2; |
| 235 | kk += j; |
| 236 | /* L60: */ |
| 237 | } |
| 238 | } else { |
| 239 | jx = kx; |
| 240 | jy = ky; |
| 241 | i__1 = *n; |
| 242 | for (j = 1; j <= i__1; ++j) { |
| 243 | temp1 = *alpha * x[jx]; |
| 244 | temp2 = 0.; |
| 245 | ix = kx; |
| 246 | iy = ky; |
| 247 | i__2 = kk + j - 2; |
| 248 | for (k = kk; k <= i__2; ++k) { |
| 249 | y[iy] += temp1 * ap[k]; |
| 250 | temp2 += ap[k] * x[ix]; |
| 251 | ix += *incx; |
| 252 | iy += *incy; |
| 253 | /* L70: */ |
| 254 | } |
| 255 | y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2; |
| 256 | jx += *incx; |
| 257 | jy += *incy; |
| 258 | kk += j; |
| 259 | /* L80: */ |
| 260 | } |
| 261 | } |
| 262 | } else { |
| 263 | |
| 264 | /* Form y when AP contains the lower triangle. */ |
| 265 | |
| 266 | if (*incx == 1 && *incy == 1) { |
| 267 | i__1 = *n; |
| 268 | for (j = 1; j <= i__1; ++j) { |
| 269 | temp1 = *alpha * x[j]; |
| 270 | temp2 = 0.; |
| 271 | y[j] += temp1 * ap[kk]; |
| 272 | k = kk + 1; |
| 273 | i__2 = *n; |
| 274 | for (i__ = j + 1; i__ <= i__2; ++i__) { |
| 275 | y[i__] += temp1 * ap[k]; |
| 276 | temp2 += ap[k] * x[i__]; |
| 277 | ++k; |
| 278 | /* L90: */ |
| 279 | } |
| 280 | y[j] += *alpha * temp2; |
| 281 | kk += *n - j + 1; |
| 282 | /* L100: */ |
| 283 | } |
| 284 | } else { |
| 285 | jx = kx; |
| 286 | jy = ky; |
| 287 | i__1 = *n; |
| 288 | for (j = 1; j <= i__1; ++j) { |
| 289 | temp1 = *alpha * x[jx]; |
| 290 | temp2 = 0.; |
| 291 | y[jy] += temp1 * ap[kk]; |
| 292 | ix = jx; |
| 293 | iy = jy; |
| 294 | i__2 = kk + *n - j; |
| 295 | for (k = kk + 1; k <= i__2; ++k) { |
| 296 | ix += *incx; |
| 297 | iy += *incy; |
| 298 | y[iy] += temp1 * ap[k]; |
| 299 | temp2 += ap[k] * x[ix]; |
| 300 | /* L110: */ |
| 301 | } |
| 302 | y[jy] += *alpha * temp2; |
| 303 | jx += *incx; |
| 304 | jy += *incy; |
| 305 | kk += *n - j + 1; |
| 306 | /* L120: */ |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | return 0; |
| 312 | |
| 313 | /* End of DSPMV . */ |
| 314 | |
| 315 | } /* dspmv_ */ |
| 316 | |