Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | |
| 2 | //g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1 |
| 3 | |
| 4 | #define SCALAR double |
| 5 | |
| 6 | #include <iostream> |
| 7 | #include <algorithm> |
| 8 | #include "BenchTimer.h" |
| 9 | #include "BenchSparseUtil.h" |
| 10 | |
| 11 | #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE); |
| 12 | |
| 13 | // #ifdef MKL |
| 14 | // |
| 15 | // #include "mkl_types.h" |
| 16 | // #include "mkl_spblas.h" |
| 17 | // |
| 18 | // template<typename Lhs,typename Rhs,typename Res> |
| 19 | // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) |
| 20 | // { |
| 21 | // char n = 'N'; |
| 22 | // float alpha = 1; |
| 23 | // char matdescra[6]; |
| 24 | // matdescra[0] = 'G'; |
| 25 | // matdescra[1] = 0; |
| 26 | // matdescra[2] = 0; |
| 27 | // matdescra[3] = 'C'; |
| 28 | // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, |
| 29 | // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), |
| 30 | // pntre, b, &ldb, &beta, c, &ldc); |
| 31 | // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, |
| 32 | // // lhs._valuePtr(), lhs.rows(), DST, dst_stride); |
| 33 | // } |
| 34 | // |
| 35 | // #endif |
| 36 | |
| 37 | int main(int argc, char *argv[]) |
| 38 | { |
| 39 | int size = 10000; |
| 40 | int rows = size; |
| 41 | int cols = size; |
| 42 | int nnzPerCol = 40; |
| 43 | int tries = 2; |
| 44 | int repeats = 2; |
| 45 | |
| 46 | bool need_help = false; |
| 47 | for(int i = 1; i < argc; i++) |
| 48 | { |
| 49 | if(argv[i][0] == 'r') |
| 50 | { |
| 51 | rows = atoi(argv[i]+1); |
| 52 | } |
| 53 | else if(argv[i][0] == 'c') |
| 54 | { |
| 55 | cols = atoi(argv[i]+1); |
| 56 | } |
| 57 | else if(argv[i][0] == 'n') |
| 58 | { |
| 59 | nnzPerCol = atoi(argv[i]+1); |
| 60 | } |
| 61 | else if(argv[i][0] == 't') |
| 62 | { |
| 63 | tries = atoi(argv[i]+1); |
| 64 | } |
| 65 | else if(argv[i][0] == 'p') |
| 66 | { |
| 67 | repeats = atoi(argv[i]+1); |
| 68 | } |
| 69 | else |
| 70 | { |
| 71 | need_help = true; |
| 72 | } |
| 73 | } |
| 74 | if(need_help) |
| 75 | { |
| 76 | std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; |
| 77 | return 1; |
| 78 | } |
| 79 | |
| 80 | std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n"; |
| 81 | |
| 82 | EigenSparseMatrix sm(rows,cols); |
| 83 | DenseVector dv(cols), res(rows); |
| 84 | dv.setRandom(); |
| 85 | |
| 86 | BenchTimer t; |
| 87 | while (nnzPerCol>=4) |
| 88 | { |
| 89 | std::cout << "nnz: " << nnzPerCol << "\n"; |
| 90 | sm.setZero(); |
| 91 | fillMatrix2(nnzPerCol, rows, cols, sm); |
| 92 | |
| 93 | // dense matrices |
| 94 | #ifdef DENSEMATRIX |
| 95 | { |
| 96 | DenseMatrix dm(rows,cols), (rows,cols); |
| 97 | eiToDense(sm, dm); |
| 98 | |
| 99 | SPMV_BENCH(res = dm * sm); |
| 100 | std::cout << "Dense " << t.value()/repeats << "\t"; |
| 101 | |
| 102 | SPMV_BENCH(res = dm.transpose() * sm); |
| 103 | std::cout << t.value()/repeats << endl; |
| 104 | } |
| 105 | #endif |
| 106 | |
| 107 | // eigen sparse matrices |
| 108 | { |
| 109 | SPMV_BENCH(res.noalias() += sm * dv; ) |
| 110 | std::cout << "Eigen " << t.value()/repeats << "\t"; |
| 111 | |
| 112 | SPMV_BENCH(res.noalias() += sm.transpose() * dv; ) |
| 113 | std::cout << t.value()/repeats << endl; |
| 114 | } |
| 115 | |
| 116 | // CSparse |
| 117 | #ifdef CSPARSE |
| 118 | { |
| 119 | std::cout << "CSparse \n"; |
| 120 | cs *csm; |
| 121 | eiToCSparse(sm, csm); |
| 122 | |
| 123 | // BENCH(); |
| 124 | // timer.stop(); |
| 125 | // std::cout << " a * b:\t" << timer.value() << endl; |
| 126 | |
| 127 | // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); |
| 128 | // std::cout << " a * b:\t" << timer.value() << endl; |
| 129 | } |
| 130 | #endif |
| 131 | |
| 132 | #ifdef OSKI |
| 133 | { |
| 134 | oski_matrix_t om; |
| 135 | oski_vecview_t ov, ores; |
| 136 | oski_Init(); |
| 137 | om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols, |
| 138 | SHARE_INPUTMAT, 1, INDEX_ZERO_BASED); |
| 139 | ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT); |
| 140 | ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT); |
| 141 | |
| 142 | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); |
| 143 | std::cout << "OSKI " << t.value()/repeats << "\t"; |
| 144 | |
| 145 | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); |
| 146 | std::cout << t.value()/repeats << "\n"; |
| 147 | |
| 148 | // tune |
| 149 | t.reset(); |
| 150 | t.start(); |
| 151 | oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY); |
| 152 | oski_TuneMat(om); |
| 153 | t.stop(); |
| 154 | double tuning = t.value(); |
| 155 | |
| 156 | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) ); |
| 157 | std::cout << "OSKI tuned " << t.value()/repeats << "\t"; |
| 158 | |
| 159 | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) ); |
| 160 | std::cout << t.value()/repeats << "\t(" << tuning << ")\n"; |
| 161 | |
| 162 | |
| 163 | oski_DestroyMat(om); |
| 164 | oski_DestroyVecView(ov); |
| 165 | oski_DestroyVecView(ores); |
| 166 | oski_Close(); |
| 167 | } |
| 168 | #endif |
| 169 | |
| 170 | #ifndef NOUBLAS |
| 171 | { |
| 172 | using namespace boost::numeric; |
| 173 | UblasMatrix um(rows,cols); |
| 174 | eiToUblas(sm, um); |
| 175 | |
| 176 | boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows); |
| 177 | Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv; |
| 178 | Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res; |
| 179 | |
| 180 | SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true)); |
| 181 | std::cout << "ublas " << t.value()/repeats << "\t"; |
| 182 | |
| 183 | SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true)); |
| 184 | std::cout << t.value()/repeats << endl; |
| 185 | } |
| 186 | #endif |
| 187 | |
| 188 | // GMM++ |
| 189 | #ifndef NOGMM |
| 190 | { |
| 191 | GmmSparse gm(rows,cols); |
| 192 | eiToGmm(sm, gm); |
| 193 | |
| 194 | std::vector<Scalar> gv(cols), gres(rows); |
| 195 | Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv; |
| 196 | Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res; |
| 197 | |
| 198 | SPMV_BENCH(gmm::mult(gm, gv, gres)); |
| 199 | std::cout << "GMM++ " << t.value()/repeats << "\t"; |
| 200 | |
| 201 | SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres)); |
| 202 | std::cout << t.value()/repeats << endl; |
| 203 | } |
| 204 | #endif |
| 205 | |
| 206 | // MTL4 |
| 207 | #ifndef NOMTL |
| 208 | { |
| 209 | MtlSparse mm(rows,cols); |
| 210 | eiToMtl(sm, mm); |
| 211 | mtl::dense_vector<Scalar> mv(cols, 1.0); |
| 212 | mtl::dense_vector<Scalar> mres(rows, 1.0); |
| 213 | |
| 214 | SPMV_BENCH(mres = mm * mv); |
| 215 | std::cout << "MTL4 " << t.value()/repeats << "\t"; |
| 216 | |
| 217 | SPMV_BENCH(mres = trans(mm) * mv); |
| 218 | std::cout << t.value()/repeats << endl; |
| 219 | } |
| 220 | #endif |
| 221 | |
| 222 | std::cout << "\n"; |
| 223 | |
| 224 | if(nnzPerCol==1) |
| 225 | break; |
| 226 | nnzPerCol -= nnzPerCol/2; |
| 227 | } |
| 228 | |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | |
| 233 | |