Austin Schuh | bb1338c | 2024-06-15 19:31:16 -0700 | [diff] [blame^] | 1 | /* mpz_bin_ui(RESULT, N, K) -- Set RESULT to N over K. |
| 2 | |
| 3 | Copyright 1998-2002, 2012, 2013, 2015, 2017-2018 Free Software Foundation, Inc. |
| 4 | |
| 5 | This file is part of the GNU MP Library. |
| 6 | |
| 7 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 8 | it under the terms of either: |
| 9 | |
| 10 | * the GNU Lesser General Public License as published by the Free |
| 11 | Software Foundation; either version 3 of the License, or (at your |
| 12 | option) any later version. |
| 13 | |
| 14 | or |
| 15 | |
| 16 | * the GNU General Public License as published by the Free Software |
| 17 | Foundation; either version 2 of the License, or (at your option) any |
| 18 | later version. |
| 19 | |
| 20 | or both in parallel, as here. |
| 21 | |
| 22 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 23 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 24 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 25 | for more details. |
| 26 | |
| 27 | You should have received copies of the GNU General Public License and the |
| 28 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 29 | see https://www.gnu.org/licenses/. */ |
| 30 | |
| 31 | #include "gmp-impl.h" |
| 32 | |
| 33 | /* How many special cases? Minimum is 2: 0 and 1; |
| 34 | * also 3 {0,1,2} and 5 {0,1,2,3,4} are implemented. |
| 35 | */ |
| 36 | #define APARTAJ_KALKULOJ 2 |
| 37 | |
| 38 | /* Whether to use (1) or not (0) the function mpz_bin_uiui whenever |
| 39 | * the operands fit. |
| 40 | */ |
| 41 | #define UZU_BIN_UIUI 0 |
| 42 | |
| 43 | /* Whether to use a shortcut to precompute the product of four |
| 44 | * elements (1), or precompute only the product of a couple (0). |
| 45 | * |
| 46 | * In both cases the precomputed product is then updated with some |
| 47 | * linear operations to obtain the product of the next four (1) |
| 48 | * [or two (0)] operands. |
| 49 | */ |
| 50 | #define KVAROPE 1 |
| 51 | |
| 52 | static void |
| 53 | posmpz_init (mpz_ptr r) |
| 54 | { |
| 55 | mp_ptr rp; |
| 56 | ASSERT (SIZ (r) > 0); |
| 57 | rp = SIZ (r) + MPZ_REALLOC (r, SIZ (r) + 2); |
| 58 | *rp = 0; |
| 59 | *++rp = 0; |
| 60 | } |
| 61 | |
| 62 | /* Equivalent to mpz_add_ui (r, r, in), but faster when |
| 63 | 0 < SIZ (r) < ALLOC (r) and limbs above SIZ (r) contain 0. */ |
| 64 | static void |
| 65 | posmpz_inc_ui (mpz_ptr r, unsigned long in) |
| 66 | { |
| 67 | #if BITS_PER_ULONG > GMP_NUMB_BITS |
| 68 | mpz_add_ui (r, r, in); |
| 69 | #else |
| 70 | ASSERT (SIZ (r) > 0); |
| 71 | MPN_INCR_U (PTR (r), SIZ (r) + 1, in); |
| 72 | SIZ (r) += (PTR (r)[SIZ (r)] != 0); |
| 73 | #endif |
| 74 | } |
| 75 | |
| 76 | /* Equivalent to mpz_sub_ui (r, r, in), but faster when |
| 77 | 0 < SIZ (r) and we know in advance that the result is positive. */ |
| 78 | static void |
| 79 | posmpz_dec_ui (mpz_ptr r, unsigned long in) |
| 80 | { |
| 81 | #if BITS_PER_ULONG > GMP_NUMB_BITS |
| 82 | mpz_sub_ui (r, r, in); |
| 83 | #else |
| 84 | ASSERT (mpz_cmp_ui (r, in) >= 0); |
| 85 | MPN_DECR_U (PTR (r), SIZ (r), in); |
| 86 | SIZ (r) -= (PTR (r)[SIZ (r)-1] == 0); |
| 87 | #endif |
| 88 | } |
| 89 | |
| 90 | /* Equivalent to mpz_tdiv_q_2exp (r, r, 1), but faster when |
| 91 | 0 < SIZ (r) and we know in advance that the result is positive. */ |
| 92 | static void |
| 93 | posmpz_rsh1 (mpz_ptr r) |
| 94 | { |
| 95 | mp_ptr rp; |
| 96 | mp_size_t rn; |
| 97 | |
| 98 | rn = SIZ (r); |
| 99 | rp = PTR (r); |
| 100 | ASSERT (rn > 0); |
| 101 | mpn_rshift (rp, rp, rn, 1); |
| 102 | SIZ (r) -= rp[rn - 1] == 0; |
| 103 | } |
| 104 | |
| 105 | /* Computes r = n(n+(2*k-1))/2 |
| 106 | It uses a sqare instead of a product, computing |
| 107 | r = ((n+k-1)^2 + n - (k-1)^2)/2 |
| 108 | As a side effect, sets t = n+k-1 |
| 109 | */ |
| 110 | static void |
| 111 | mpz_hmul_nbnpk (mpz_ptr r, mpz_srcptr n, unsigned long int k, mpz_ptr t) |
| 112 | { |
| 113 | ASSERT (k > 0 && SIZ(n) > 0); |
| 114 | --k; |
| 115 | mpz_add_ui (t, n, k); |
| 116 | mpz_mul (r, t, t); |
| 117 | mpz_add (r, r, n); |
| 118 | posmpz_rsh1 (r); |
| 119 | if (LIKELY (k <= (1UL << (BITS_PER_ULONG / 2)))) |
| 120 | posmpz_dec_ui (r, (k + (k & 1))*(k >> 1)); |
| 121 | else |
| 122 | { |
| 123 | mpz_t tmp; |
| 124 | mpz_init_set_ui (tmp, (k + (k & 1))); |
| 125 | mpz_mul_ui (tmp, tmp, k >> 1); |
| 126 | mpz_sub (r, r, tmp); |
| 127 | mpz_clear (tmp); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | #if KVAROPE |
| 132 | static void |
| 133 | rek_raising_fac4 (mpz_ptr r, mpz_ptr p, mpz_ptr P, unsigned long int k, unsigned long int lk, mpz_ptr t) |
| 134 | { |
| 135 | if (k - lk < 5) |
| 136 | { |
| 137 | do { |
| 138 | posmpz_inc_ui (p, 4*k+2); |
| 139 | mpz_addmul_ui (P, p, 4*k); |
| 140 | posmpz_dec_ui (P, k); |
| 141 | mpz_mul (r, r, P); |
| 142 | } while (--k > lk); |
| 143 | } |
| 144 | else |
| 145 | { |
| 146 | mpz_t lt; |
| 147 | unsigned long int m; |
| 148 | |
| 149 | m = ((k + lk) >> 1) + 1; |
| 150 | rek_raising_fac4 (r, p, P, k, m, t); |
| 151 | |
| 152 | posmpz_inc_ui (p, 4*m+2); |
| 153 | mpz_addmul_ui (P, p, 4*m); |
| 154 | posmpz_dec_ui (P, m); |
| 155 | if (t == NULL) |
| 156 | { |
| 157 | mpz_init_set (lt, P); |
| 158 | t = lt; |
| 159 | } |
| 160 | else |
| 161 | { |
| 162 | ALLOC (lt) = 0; |
| 163 | mpz_set (t, P); |
| 164 | } |
| 165 | rek_raising_fac4 (t, p, P, m - 1, lk, NULL); |
| 166 | |
| 167 | mpz_mul (r, r, t); |
| 168 | mpz_clear (lt); |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | /* Computes (n+1)(n+2)...(n+k)/2^(k/2 +k/4) using the helper function |
| 173 | rek_raising_fac4, and exploiting an idea inspired by a piece of |
| 174 | code that Fredrik Johansson wrote and by a comment by Niels Möller. |
| 175 | |
| 176 | Assume k = 4i then compute: |
| 177 | p = (n+1)(n+4i)/2 - i |
| 178 | (n+1+1)(n+4i)/2 = p + i + (n+4i)/2 |
| 179 | (n+1+1)(n+4i-1)/2 = p + i + ((n+4i)-(n+1+1))/2 = p + i + (n-n+4i-2)/2 = p + 3i-1 |
| 180 | P = (p + i)*(p+3i-1)/2 = (n+1)(n+2)(n+4i-1)(n+4i)/8 |
| 181 | n' = n + 2 |
| 182 | i' = i - 1 |
| 183 | (n'-1)(n')(n'+4i'+1)(n'+4i'+2)/8 = P |
| 184 | (n'-1)(n'+4i'+2)/2 - i' - 1 = p |
| 185 | (n'-1+2)(n'+4i'+2)/2 - i' - 1 = p + (n'+4i'+2) |
| 186 | (n'-1+2)(n'+4i'+2-2)/2 - i' - 1 = p + (n'+4i'+2) - (n'-1+2) = p + 4i' + 1 |
| 187 | (n'-1+2)(n'+4i'+2-2)/2 - i' = p + 4i' + 2 |
| 188 | p' = p + 4i' + 2 = (n'+1)(n'+4i')/2 - i' |
| 189 | p' - 4i' - 2 = p |
| 190 | (p' - 4i' - 2 + i)*(p' - 4i' - 2+3i-1)/2 = P |
| 191 | (p' - 4i' - 2 + i' + 1)*(p' - 4i' - 2 + 3i' + 3 - 1)/2 = P |
| 192 | (p' - 3i' - 1)*(p' - i')/2 = P |
| 193 | (p' - 3i' - 1 + 4i' + 1)*(p' - i' + 4i' - 1)/2 = P + (4i' + 1)*(p' - i')/2 + (p' - 3i' - 1 + 4i' + 1)*(4i' - 1)/2 |
| 194 | (p' + i')*(p' + 3i' - 1)/2 = P + (4i')*(p' + p')/2 + (p' - i' - (p' + i'))/2 |
| 195 | (p' + i')*(p' + 3i' - 1)/2 = P + 4i'p' + (p' - i' - p' - i')/2 |
| 196 | (p' + i')*(p' + 3i' - 1)/2 = P + 4i'p' - i' |
| 197 | P' = P + 4i'p' - i' |
| 198 | |
| 199 | And compute the product P * P' * P" ... |
| 200 | */ |
| 201 | |
| 202 | static void |
| 203 | mpz_raising_fac4 (mpz_ptr r, mpz_ptr n, unsigned long int k, mpz_ptr t, mpz_ptr p) |
| 204 | { |
| 205 | ASSERT ((k >= APARTAJ_KALKULOJ) && (APARTAJ_KALKULOJ > 0)); |
| 206 | posmpz_init (n); |
| 207 | posmpz_inc_ui (n, 1); |
| 208 | SIZ (r) = 0; |
| 209 | if (k & 1) |
| 210 | { |
| 211 | mpz_set (r, n); |
| 212 | posmpz_inc_ui (n, 1); |
| 213 | } |
| 214 | k >>= 1; |
| 215 | if (APARTAJ_KALKULOJ < 2 && k == 0) |
| 216 | return; |
| 217 | |
| 218 | mpz_hmul_nbnpk (p, n, k, t); |
| 219 | posmpz_init (p); |
| 220 | |
| 221 | if (k & 1) |
| 222 | { |
| 223 | if (SIZ (r)) |
| 224 | mpz_mul (r, r, p); |
| 225 | else |
| 226 | mpz_set (r, p); |
| 227 | posmpz_inc_ui (p, k - 1); |
| 228 | } |
| 229 | k >>= 1; |
| 230 | if (APARTAJ_KALKULOJ < 4 && k == 0) |
| 231 | return; |
| 232 | |
| 233 | mpz_hmul_nbnpk (t, p, k, n); |
| 234 | if (SIZ (r)) |
| 235 | mpz_mul (r, r, t); |
| 236 | else |
| 237 | mpz_set (r, t); |
| 238 | |
| 239 | if (APARTAJ_KALKULOJ > 8 || k > 1) |
| 240 | { |
| 241 | posmpz_dec_ui (p, k); |
| 242 | rek_raising_fac4 (r, p, t, k - 1, 0, n); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | #else /* KVAROPE */ |
| 247 | |
| 248 | static void |
| 249 | rek_raising_fac (mpz_ptr r, mpz_ptr n, unsigned long int k, unsigned long int lk, mpz_ptr t1, mpz_ptr t2) |
| 250 | { |
| 251 | /* Should the threshold depend on SIZ (n) ? */ |
| 252 | if (k - lk < 10) |
| 253 | { |
| 254 | do { |
| 255 | posmpz_inc_ui (n, k); |
| 256 | mpz_mul (r, r, n); |
| 257 | --k; |
| 258 | } while (k > lk); |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | mpz_t t3; |
| 263 | unsigned long int m; |
| 264 | |
| 265 | m = ((k + lk) >> 1) + 1; |
| 266 | rek_raising_fac (r, n, k, m, t1, t2); |
| 267 | |
| 268 | posmpz_inc_ui (n, m); |
| 269 | if (t1 == NULL) |
| 270 | { |
| 271 | mpz_init_set (t3, n); |
| 272 | t1 = t3; |
| 273 | } |
| 274 | else |
| 275 | { |
| 276 | ALLOC (t3) = 0; |
| 277 | mpz_set (t1, n); |
| 278 | } |
| 279 | rek_raising_fac (t1, n, m - 1, lk, t2, NULL); |
| 280 | |
| 281 | mpz_mul (r, r, t1); |
| 282 | mpz_clear (t3); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /* Computes (n+1)(n+2)...(n+k)/2^(k/2) using the helper function |
| 287 | rek_raising_fac, and exploiting an idea inspired by a piece of |
| 288 | code that Fredrik Johansson wrote. |
| 289 | |
| 290 | Force an even k = 2i then compute: |
| 291 | p = (n+1)(n+2i)/2 |
| 292 | i' = i - 1 |
| 293 | p == (n+1)(n+2i'+2)/2 |
| 294 | p' = p + i' == (n+2)(n+2i'+1)/2 |
| 295 | n' = n + 1 |
| 296 | p'== (n'+1)(n'+2i')/2 == (n+1 +1)(n+2i -1)/2 |
| 297 | |
| 298 | And compute the product p * p' * p" ... |
| 299 | */ |
| 300 | |
| 301 | static void |
| 302 | mpz_raising_fac (mpz_ptr r, mpz_ptr n, unsigned long int k, mpz_ptr t, mpz_ptr p) |
| 303 | { |
| 304 | unsigned long int hk; |
| 305 | ASSERT ((k >= APARTAJ_KALKULOJ) && (APARTAJ_KALKULOJ > 1)); |
| 306 | mpz_add_ui (n, n, 1); |
| 307 | hk = k >> 1; |
| 308 | mpz_hmul_nbnpk (p, n, hk, t); |
| 309 | |
| 310 | if ((k & 1) != 0) |
| 311 | { |
| 312 | mpz_add_ui (t, t, hk + 1); |
| 313 | mpz_mul (r, t, p); |
| 314 | } |
| 315 | else |
| 316 | { |
| 317 | mpz_set (r, p); |
| 318 | } |
| 319 | |
| 320 | if ((APARTAJ_KALKULOJ > 3) || (hk > 1)) |
| 321 | { |
| 322 | posmpz_init (p); |
| 323 | rek_raising_fac (r, p, hk - 1, 0, t, n); |
| 324 | } |
| 325 | } |
| 326 | #endif /* KVAROPE */ |
| 327 | |
| 328 | /* This is a poor implementation. Look at bin_uiui.c for improvement ideas. |
| 329 | In fact consider calling mpz_bin_uiui() when the arguments fit, leaving |
| 330 | the code here only for big n. |
| 331 | |
| 332 | The identity bin(n,k) = (-1)^k * bin(-n+k-1,k) can be found in Knuth vol |
| 333 | 1 section 1.2.6 part G. */ |
| 334 | |
| 335 | void |
| 336 | mpz_bin_ui (mpz_ptr r, mpz_srcptr n, unsigned long int k) |
| 337 | { |
| 338 | mpz_t ni; |
| 339 | mp_size_t negate; |
| 340 | |
| 341 | if (SIZ (n) < 0) |
| 342 | { |
| 343 | /* bin(n,k) = (-1)^k * bin(-n+k-1,k), and set ni = -n+k-1 - k = -n-1 */ |
| 344 | mpz_init (ni); |
| 345 | mpz_add_ui (ni, n, 1L); |
| 346 | mpz_neg (ni, ni); |
| 347 | negate = (k & 1); /* (-1)^k */ |
| 348 | } |
| 349 | else |
| 350 | { |
| 351 | /* bin(n,k) == 0 if k>n |
| 352 | (no test for this under the n<0 case, since -n+k-1 >= k there) */ |
| 353 | if (mpz_cmp_ui (n, k) < 0) |
| 354 | { |
| 355 | SIZ (r) = 0; |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | /* set ni = n-k */ |
| 360 | mpz_init (ni); |
| 361 | mpz_sub_ui (ni, n, k); |
| 362 | negate = 0; |
| 363 | } |
| 364 | |
| 365 | /* Now wanting bin(ni+k,k), with ni positive, and "negate" is the sign (0 |
| 366 | for positive, 1 for negative). */ |
| 367 | |
| 368 | /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller. In this case it's |
| 369 | whether ni+k-k < k meaning ni<k, and if so change to denominator ni+k-k |
| 370 | = ni, and new ni of ni+k-ni = k. */ |
| 371 | if (mpz_cmp_ui (ni, k) < 0) |
| 372 | { |
| 373 | unsigned long tmp; |
| 374 | tmp = k; |
| 375 | k = mpz_get_ui (ni); |
| 376 | mpz_set_ui (ni, tmp); |
| 377 | } |
| 378 | |
| 379 | if (k < APARTAJ_KALKULOJ) |
| 380 | { |
| 381 | if (k == 0) |
| 382 | { |
| 383 | SIZ (r) = 1; |
| 384 | MPZ_NEWALLOC (r, 1)[0] = 1; |
| 385 | } |
| 386 | #if APARTAJ_KALKULOJ > 2 |
| 387 | else if (k == 2) |
| 388 | { |
| 389 | mpz_add_ui (ni, ni, 1); |
| 390 | mpz_mul (r, ni, ni); |
| 391 | mpz_add (r, r, ni); |
| 392 | posmpz_rsh1 (r); |
| 393 | } |
| 394 | #endif |
| 395 | #if APARTAJ_KALKULOJ > 3 |
| 396 | else if (k > 2) |
| 397 | { /* k = 3, 4 */ |
| 398 | mpz_add_ui (ni, ni, 2); /* n+1 */ |
| 399 | mpz_mul (r, ni, ni); /* (n+1)^2 */ |
| 400 | mpz_sub_ui (r, r, 1); /* (n+1)^2-1 */ |
| 401 | if (k == 3) |
| 402 | { |
| 403 | mpz_mul (r, r, ni); /* ((n+1)^2-1)(n+1) = n(n+1)(n+2) */ |
| 404 | /* mpz_divexact_ui (r, r, 6); /\* 6=3<<1; div_by3 ? *\/ */ |
| 405 | mpn_pi1_bdiv_q_1 (PTR(r), PTR(r), SIZ(r), 3, GMP_NUMB_MASK/3*2+1, 1); |
| 406 | MPN_NORMALIZE_NOT_ZERO (PTR(r), SIZ(r)); |
| 407 | } |
| 408 | else /* k = 4 */ |
| 409 | { |
| 410 | mpz_add (ni, ni, r); /* (n+1)^2+n */ |
| 411 | mpz_mul (r, ni, ni); /* ((n+1)^2+n)^2 */ |
| 412 | mpz_sub_ui (r, r, 1); /* ((n+1)^2+n)^2-1 = n(n+1)(n+2)(n+3) */ |
| 413 | /* mpz_divexact_ui (r, r, 24); /\* 24=3<<3; div_by3 ? *\/ */ |
| 414 | mpn_pi1_bdiv_q_1 (PTR(r), PTR(r), SIZ(r), 3, GMP_NUMB_MASK/3*2+1, 3); |
| 415 | MPN_NORMALIZE_NOT_ZERO (PTR(r), SIZ(r)); |
| 416 | } |
| 417 | } |
| 418 | #endif |
| 419 | else |
| 420 | { /* k = 1 */ |
| 421 | mpz_add_ui (r, ni, 1); |
| 422 | } |
| 423 | } |
| 424 | #if UZU_BIN_UIUI |
| 425 | else if (mpz_cmp_ui (ni, ULONG_MAX - k) <= 0) |
| 426 | { |
| 427 | mpz_bin_uiui (r, mpz_get_ui (ni) + k, k); |
| 428 | } |
| 429 | #endif |
| 430 | else |
| 431 | { |
| 432 | mp_limb_t count; |
| 433 | mpz_t num, den; |
| 434 | |
| 435 | mpz_init (num); |
| 436 | mpz_init (den); |
| 437 | |
| 438 | #if KVAROPE |
| 439 | mpz_raising_fac4 (num, ni, k, den, r); |
| 440 | popc_limb (count, k); |
| 441 | ASSERT (k - (k >> 1) - (k >> 2) - count >= 0); |
| 442 | mpz_tdiv_q_2exp (num, num, k - (k >> 1) - (k >> 2) - count); |
| 443 | #else |
| 444 | mpz_raising_fac (num, ni, k, den, r); |
| 445 | popc_limb (count, k); |
| 446 | ASSERT (k - (k >> 1) - count >= 0); |
| 447 | mpz_tdiv_q_2exp (num, num, k - (k >> 1) - count); |
| 448 | #endif |
| 449 | |
| 450 | mpz_oddfac_1(den, k, 0); |
| 451 | |
| 452 | mpz_divexact(r, num, den); |
| 453 | mpz_clear (num); |
| 454 | mpz_clear (den); |
| 455 | } |
| 456 | mpz_clear (ni); |
| 457 | |
| 458 | SIZ(r) = (SIZ(r) ^ -negate) + negate; |
| 459 | } |