brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 1 | #ifndef FRC971_CONTROL_LOOPS_STATEFEEDBACKLOOP_H_ |
| 2 | #define FRC971_CONTROL_LOOPS_STATEFEEDBACKLOOP_H_ |
| 3 | |
| 4 | // wikipedia article is <http://en.wikipedia.org/wiki/State_observer> |
| 5 | |
| 6 | #include "Eigen/Dense" |
| 7 | |
| 8 | template <int number_of_states, int number_of_outputs> |
| 9 | class StateFeedbackPlant { |
| 10 | public: |
| 11 | Eigen::Matrix<double, number_of_states, 1> X; |
| 12 | Eigen::Matrix<double, number_of_outputs, 1> Y; |
| 13 | Eigen::Matrix<double, number_of_outputs, 1> U; |
| 14 | Eigen::Matrix<double, number_of_outputs, 1> U_max; |
| 15 | Eigen::Matrix<double, number_of_outputs, 1> U_min; |
| 16 | Eigen::Matrix<double, number_of_states, number_of_states> A; |
| 17 | Eigen::Matrix<double, number_of_states, number_of_outputs> B; |
| 18 | Eigen::Matrix<double, number_of_outputs, number_of_states> C; |
| 19 | Eigen::Matrix<double, number_of_outputs, number_of_outputs> D; |
| 20 | // TODO(aschuh): These following 2 lines are here because MATRIX_INIT |
| 21 | // assumes that you have a controller as well as a plant. |
| 22 | Eigen::Matrix<double, number_of_states, number_of_outputs> L; |
| 23 | Eigen::Matrix<double, number_of_outputs, number_of_states> K; |
| 24 | |
| 25 | StateFeedbackPlant() { |
| 26 | X.setZero(); |
| 27 | Y.setZero(); |
| 28 | U.setZero(); |
| 29 | } |
| 30 | |
| 31 | virtual ~StateFeedbackPlant() {} |
| 32 | |
| 33 | // If U is outside the hardware range, limit it before the plant tries to use |
| 34 | // it. |
| 35 | virtual void CapU() { |
| 36 | for (int i = 0; i < number_of_outputs; ++i) { |
| 37 | if (U[i] > U_max[i]) { |
| 38 | U[i] = U_max[i]; |
| 39 | } else if (U[i] < U_min[i]) { |
| 40 | U[i] = U_min[i]; |
| 41 | } |
| 42 | } |
| 43 | } |
| 44 | // Computes the new X and Y given the control input. |
| 45 | void Update() { |
| 46 | CapU(); |
| 47 | X = A * X + B * U; |
| 48 | Y = C * X + D * U; |
| 49 | } |
| 50 | |
| 51 | protected: |
| 52 | // these are accessible from non-templated subclasses |
| 53 | static const int number_of_states_var = number_of_states; |
| 54 | static const int number_of_outputs_var = number_of_outputs; |
| 55 | }; |
| 56 | |
| 57 | template <int number_of_states, int number_of_outputs> |
| 58 | class StateFeedbackLoop { |
| 59 | public: |
| 60 | Eigen::Matrix<double, number_of_states, 1> X; |
| 61 | Eigen::Matrix<double, number_of_states, 1> X_hat; |
| 62 | Eigen::Matrix<double, number_of_outputs, 1> Y; |
| 63 | Eigen::Matrix<double, number_of_states, 1> R; |
| 64 | Eigen::Matrix<double, number_of_outputs, 1> U; |
| 65 | Eigen::Matrix<double, number_of_outputs, 1> U_max; |
| 66 | Eigen::Matrix<double, number_of_outputs, 1> U_min; |
| 67 | Eigen::Matrix<double, number_of_outputs, 1> U_ff; |
| 68 | Eigen::Matrix<double, number_of_states, number_of_states> A; |
| 69 | Eigen::Matrix<double, number_of_states, number_of_outputs> B; |
| 70 | // K in wikipedia article |
| 71 | Eigen::Matrix<double, number_of_outputs, number_of_states> C; |
| 72 | Eigen::Matrix<double, number_of_outputs, number_of_outputs> D; |
| 73 | // B in wikipedia article |
| 74 | Eigen::Matrix<double, number_of_states, number_of_outputs> L; |
| 75 | // C in wikipedia article |
| 76 | Eigen::Matrix<double, number_of_outputs, number_of_states> K; |
| 77 | |
| 78 | StateFeedbackLoop() { |
| 79 | // You have to initialize all the matrices to 0 or else all their elements |
| 80 | // are undefined. |
| 81 | X.setZero(); |
| 82 | X_hat.setZero(); |
| 83 | Y.setZero(); |
| 84 | R.setZero(); |
| 85 | U.setZero(); |
| 86 | U_ff.setZero(); |
| 87 | } |
| 88 | virtual ~StateFeedbackLoop() {} |
| 89 | |
| 90 | virtual void FeedForward() { |
| 91 | for (int i = 0; i < number_of_outputs; ++i) { |
| 92 | U_ff[i] = 0.0; |
| 93 | } |
| 94 | } |
| 95 | // If U is outside the hardware range, limit it before it |
| 96 | // gets added to the observer. |
| 97 | virtual void CapU() { |
| 98 | for (int i = 0; i < number_of_outputs; ++i) { |
| 99 | if (U[i] > U_max[i]) { |
| 100 | U[i] = U_max[i]; |
| 101 | } else if (U[i] < U_min[i]) { |
| 102 | U[i] = U_min[i]; |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | // update_observer is whether or not to use the values in Y. |
| 107 | // stop_motors is whether or not to output all 0s. |
| 108 | void Update(bool update_observer, bool stop_motors) { |
| 109 | if (stop_motors) { |
| 110 | for (int i = 0; i < number_of_outputs; ++i) { |
| 111 | U[i] = 0.0; |
| 112 | } |
| 113 | } else { |
| 114 | // new power = constant * (goal - current prediction) |
| 115 | U.noalias() = K * (R - X_hat); |
| 116 | CapU(); |
| 117 | } |
| 118 | |
| 119 | if (update_observer) { |
| 120 | X_hat = (A - L * C) * X_hat + L * Y + B * U; |
| 121 | } else { |
| 122 | X_hat = A * X_hat + B * U; |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | protected: |
| 127 | // these are accessible from non-templated subclasses |
| 128 | static const int number_of_states_var = number_of_states; |
| 129 | static const int number_of_outputs_var = number_of_outputs; |
| 130 | }; |
| 131 | #endif // FRC971_CONTROL_LOOPS_STATEFEEDBACKLOOP_H_ |