blob: c9181813f7f08b6fd3a6b6befda7d3e7d1ef3410 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 Google Inc. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "absl/random/internal/nanobenchmark.h"
16
17#include <sys/types.h>
18
19#include <algorithm> // sort
20#include <atomic>
21#include <cstddef>
22#include <cstdint>
23#include <cstdlib>
24#include <cstring> // memcpy
25#include <limits>
26#include <string>
27#include <utility>
28#include <vector>
29
Austin Schuhb4691e92020-12-31 12:37:18 -080030#include "absl/base/attributes.h"
Austin Schuh36244a12019-09-21 17:52:38 -070031#include "absl/base/internal/raw_logging.h"
32#include "absl/random/internal/platform.h"
33#include "absl/random/internal/randen_engine.h"
34
35// OS
36#if defined(_WIN32) || defined(_WIN64)
37#define ABSL_OS_WIN
38#include <windows.h> // NOLINT
39
40#elif defined(__ANDROID__)
41#define ABSL_OS_ANDROID
42
43#elif defined(__linux__)
44#define ABSL_OS_LINUX
45#include <sched.h> // NOLINT
46#include <sys/syscall.h> // NOLINT
47#endif
48
49#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN)
50#include <cpuid.h> // NOLINT
51#endif
52
53// __ppc_get_timebase_freq
54#if defined(ABSL_ARCH_PPC)
55#include <sys/platform/ppc.h> // NOLINT
56#endif
57
58// clock_gettime
59#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
60#include <time.h> // NOLINT
61#endif
62
Austin Schuh36244a12019-09-21 17:52:38 -070063// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method.
64#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
65#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
66#elif defined(_MSC_VER)
67#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
68#else
69#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE
70#endif
71
72namespace absl {
Austin Schuhb4691e92020-12-31 12:37:18 -080073ABSL_NAMESPACE_BEGIN
Austin Schuh36244a12019-09-21 17:52:38 -070074namespace random_internal_nanobenchmark {
75namespace {
76
77// For code folding.
78namespace platform {
79#if defined(ABSL_ARCH_X86_64)
80
81// TODO(janwas): Merge with the one in randen_hwaes.cc?
82void Cpuid(const uint32_t level, const uint32_t count,
83 uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) {
84#if defined(ABSL_OS_WIN)
85 int regs[4];
86 __cpuidex(regs, level, count);
87 for (int i = 0; i < 4; ++i) {
88 abcd[i] = regs[i];
89 }
90#else
91 uint32_t a, b, c, d;
92 __cpuid_count(level, count, a, b, c, d);
93 abcd[0] = a;
94 abcd[1] = b;
95 abcd[2] = c;
96 abcd[3] = d;
97#endif
98}
99
100std::string BrandString() {
101 char brand_string[49];
102 uint32_t abcd[4];
103
Austin Schuhb4691e92020-12-31 12:37:18 -0800104 // Check if brand string is supported (it is on all reasonable Intel/AMD)
Austin Schuh36244a12019-09-21 17:52:38 -0700105 Cpuid(0x80000000U, 0, abcd);
106 if (abcd[0] < 0x80000004U) {
107 return std::string();
108 }
109
110 for (int i = 0; i < 3; ++i) {
111 Cpuid(0x80000002U + i, 0, abcd);
112 memcpy(brand_string + i * 16, &abcd, sizeof(abcd));
113 }
114 brand_string[48] = 0;
115 return brand_string;
116}
117
118// Returns the frequency quoted inside the brand string. This does not
119// account for throttling nor Turbo Boost.
120double NominalClockRate() {
121 const std::string& brand_string = BrandString();
122 // Brand strings include the maximum configured frequency. These prefixes are
123 // defined by Intel CPUID documentation.
124 const char* prefixes[3] = {"MHz", "GHz", "THz"};
125 const double multipliers[3] = {1E6, 1E9, 1E12};
126 for (size_t i = 0; i < 3; ++i) {
127 const size_t pos_prefix = brand_string.find(prefixes[i]);
128 if (pos_prefix != std::string::npos) {
129 const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1);
130 if (pos_space != std::string::npos) {
131 const std::string digits =
132 brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1);
133 return std::stod(digits) * multipliers[i];
134 }
135 }
136 }
137
138 return 0.0;
139}
140
141#endif // ABSL_ARCH_X86_64
142} // namespace platform
143
144// Prevents the compiler from eliding the computations that led to "output".
145template <class T>
146inline void PreventElision(T&& output) {
147#ifndef ABSL_OS_WIN
148 // Works by indicating to the compiler that "output" is being read and
149 // modified. The +r constraint avoids unnecessary writes to memory, but only
150 // works for built-in types (typically FuncOutput).
151 asm volatile("" : "+r"(output) : : "memory");
152#else
153 // MSVC does not support inline assembly anymore (and never supported GCC's
154 // RTL constraints). Self-assignment with #pragma optimize("off") might be
155 // expected to prevent elision, but it does not with MSVC 2015. Type-punning
156 // with volatile pointers generates inefficient code on MSVC 2017.
157 static std::atomic<T> dummy(T{});
158 dummy.store(output, std::memory_order_relaxed);
159#endif
160}
161
162namespace timer {
163
164// Start/Stop return absolute timestamps and must be placed immediately before
165// and after the region to measure. We provide separate Start/Stop functions
166// because they use different fences.
167//
168// Background: RDTSC is not 'serializing'; earlier instructions may complete
169// after it, and/or later instructions may complete before it. 'Fences' ensure
170// regions' elapsed times are independent of such reordering. The only
171// documented unprivileged serializing instruction is CPUID, which acts as a
172// full fence (no reordering across it in either direction). Unfortunately
173// the latency of CPUID varies wildly (perhaps made worse by not initializing
174// its EAX input). Because it cannot reliably be deducted from the region's
175// elapsed time, it must not be included in the region to measure (i.e.
176// between the two RDTSC).
177//
178// The newer RDTSCP is sometimes described as serializing, but it actually
179// only serves as a half-fence with release semantics. Although all
180// instructions in the region will complete before the final timestamp is
181// captured, subsequent instructions may leak into the region and increase the
182// elapsed time. Inserting another fence after the final RDTSCP would prevent
183// such reordering without affecting the measured region.
184//
185// Fortunately, such a fence exists. The LFENCE instruction is only documented
186// to delay later loads until earlier loads are visible. However, Intel's
187// reference manual says it acts as a full fence (waiting until all earlier
188// instructions have completed, and delaying later instructions until it
189// completes). AMD assigns the same behavior to MFENCE.
190//
191// We need a fence before the initial RDTSC to prevent earlier instructions
192// from leaking into the region, and arguably another after RDTSC to avoid
193// region instructions from completing before the timestamp is recorded.
194// When surrounded by fences, the additional RDTSCP half-fence provides no
195// benefit, so the initial timestamp can be recorded via RDTSC, which has
196// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
197// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
198//
199// Using Start+Start leads to higher variance and overhead than Stop+Stop.
200// However, Stop+Stop includes an LFENCE in the region measurements, which
201// adds a delay dependent on earlier loads. The combination of Start+Stop
202// is faster than Start+Start and more consistent than Stop+Stop because
203// the first LFENCE already delayed subsequent loads before the measured
204// region. This combination seems not to have been considered in prior work:
205// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
206//
207// Note: performance counters can measure 'exact' instructions-retired or
208// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
209// requires fences. Unfortunately, it is not accessible on all OSes and we
210// prefer to avoid kernel-mode drivers. Performance counters are also affected
211// by several under/over-count errata, so we use the TSC instead.
212
213// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
214// divide by InvariantTicksPerSecond.
215inline uint64_t Start64() {
216 uint64_t t;
217#if defined(ABSL_ARCH_PPC)
218 asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
219#elif defined(ABSL_ARCH_X86_64)
220#if defined(ABSL_OS_WIN)
221 _ReadWriteBarrier();
222 _mm_lfence();
223 _ReadWriteBarrier();
224 t = __rdtsc();
225 _ReadWriteBarrier();
226 _mm_lfence();
227 _ReadWriteBarrier();
228#else
229 asm volatile(
230 "lfence\n\t"
231 "rdtsc\n\t"
232 "shl $32, %%rdx\n\t"
233 "or %%rdx, %0\n\t"
234 "lfence"
235 : "=a"(t)
236 :
237 // "memory" avoids reordering. rdx = TSC >> 32.
238 // "cc" = flags modified by SHL.
239 : "rdx", "memory", "cc");
240#endif
241#else
242 // Fall back to OS - unsure how to reliably query cntvct_el0 frequency.
243 timespec ts;
244 clock_gettime(CLOCK_REALTIME, &ts);
245 t = ts.tv_sec * 1000000000LL + ts.tv_nsec;
246#endif
247 return t;
248}
249
250inline uint64_t Stop64() {
251 uint64_t t;
252#if defined(ABSL_ARCH_X86_64)
253#if defined(ABSL_OS_WIN)
254 _ReadWriteBarrier();
255 unsigned aux;
256 t = __rdtscp(&aux);
257 _ReadWriteBarrier();
258 _mm_lfence();
259 _ReadWriteBarrier();
260#else
261 // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
262 asm volatile(
263 "rdtscp\n\t"
264 "shl $32, %%rdx\n\t"
265 "or %%rdx, %0\n\t"
266 "lfence"
267 : "=a"(t)
268 :
269 // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
270 // "cc" = flags modified by SHL.
271 : "rcx", "rdx", "memory", "cc");
272#endif
273#else
274 t = Start64();
275#endif
276 return t;
277}
278
279// Returns a 32-bit timestamp with about 4 cycles less overhead than
280// Start64. Only suitable for measuring very short regions because the
281// timestamp overflows about once a second.
282inline uint32_t Start32() {
283 uint32_t t;
284#if defined(ABSL_ARCH_X86_64)
285#if defined(ABSL_OS_WIN)
286 _ReadWriteBarrier();
287 _mm_lfence();
288 _ReadWriteBarrier();
289 t = static_cast<uint32_t>(__rdtsc());
290 _ReadWriteBarrier();
291 _mm_lfence();
292 _ReadWriteBarrier();
293#else
294 asm volatile(
295 "lfence\n\t"
296 "rdtsc\n\t"
297 "lfence"
298 : "=a"(t)
299 :
300 // "memory" avoids reordering. rdx = TSC >> 32.
301 : "rdx", "memory");
302#endif
303#else
304 t = static_cast<uint32_t>(Start64());
305#endif
306 return t;
307}
308
309inline uint32_t Stop32() {
310 uint32_t t;
311#if defined(ABSL_ARCH_X86_64)
312#if defined(ABSL_OS_WIN)
313 _ReadWriteBarrier();
314 unsigned aux;
315 t = static_cast<uint32_t>(__rdtscp(&aux));
316 _ReadWriteBarrier();
317 _mm_lfence();
318 _ReadWriteBarrier();
319#else
320 // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
321 asm volatile(
322 "rdtscp\n\t"
323 "lfence"
324 : "=a"(t)
325 :
326 // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
327 : "rcx", "rdx", "memory");
328#endif
329#else
330 t = static_cast<uint32_t>(Stop64());
331#endif
332 return t;
333}
334
335} // namespace timer
336
337namespace robust_statistics {
338
339// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
340// than std::sort for input distributions with very few unique values.
341template <class T>
342void CountingSort(T* values, size_t num_values) {
343 // Unique values and their frequency (similar to flat_map).
344 using Unique = std::pair<T, int>;
345 std::vector<Unique> unique;
346 for (size_t i = 0; i < num_values; ++i) {
347 const T value = values[i];
348 const auto pos =
349 std::find_if(unique.begin(), unique.end(),
350 [value](const Unique u) { return u.first == value; });
351 if (pos == unique.end()) {
352 unique.push_back(std::make_pair(value, 1));
353 } else {
354 ++pos->second;
355 }
356 }
357
358 // Sort in ascending order of value (pair.first).
359 std::sort(unique.begin(), unique.end());
360
361 // Write that many copies of each unique value to the array.
362 T* ABSL_RANDOM_INTERNAL_RESTRICT p = values;
363 for (const auto& value_count : unique) {
364 std::fill(p, p + value_count.second, value_count.first);
365 p += value_count.second;
366 }
367 ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output");
368}
369
370// @return i in [idx_begin, idx_begin + half_count) that minimizes
371// sorted[i + half_count] - sorted[i].
372template <typename T>
373size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
374 const size_t idx_begin, const size_t half_count) {
375 T min_range = (std::numeric_limits<T>::max)();
376 size_t min_idx = 0;
377
378 for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
379 ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted");
380 const T range = sorted[idx + half_count] - sorted[idx];
381 if (range < min_range) {
382 min_range = range;
383 min_idx = idx;
384 }
385 }
386
387 return min_idx;
388}
389
390// Returns an estimate of the mode by calling MinRange on successively
391// halved intervals. "sorted" must be in ascending order. This is the
392// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
393// estimator of the mode", with complexity O(N log N). The mode is less
394// affected by outliers in highly-skewed distributions than the median.
395// The averaging operation below assumes "T" is an unsigned integer type.
396template <typename T>
397T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
398 const size_t num_values) {
399 size_t idx_begin = 0;
400 size_t half_count = num_values / 2;
401 while (half_count > 1) {
402 idx_begin = MinRange(sorted, idx_begin, half_count);
403 half_count >>= 1;
404 }
405
406 const T x = sorted[idx_begin + 0];
407 if (half_count == 0) {
408 return x;
409 }
410 ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1");
411 const T average = (x + sorted[idx_begin + 1] + 1) / 2;
412 return average;
413}
414
415// Returns the mode. Side effect: sorts "values".
416template <typename T>
417T Mode(T* values, const size_t num_values) {
418 CountingSort(values, num_values);
419 return ModeOfSorted(values, num_values);
420}
421
422template <typename T, size_t N>
423T Mode(T (&values)[N]) {
424 return Mode(&values[0], N);
425}
426
427// Returns the median value. Side effect: sorts "values".
428template <typename T>
429T Median(T* values, const size_t num_values) {
430 ABSL_RAW_CHECK(num_values != 0, "Empty input");
431 std::sort(values, values + num_values);
432 const size_t half = num_values / 2;
433 // Odd count: return middle
434 if (num_values % 2) {
435 return values[half];
436 }
437 // Even count: return average of middle two.
438 return (values[half] + values[half - 1] + 1) / 2;
439}
440
441// Returns a robust measure of variability.
442template <typename T>
443T MedianAbsoluteDeviation(const T* values, const size_t num_values,
444 const T median) {
445 ABSL_RAW_CHECK(num_values != 0, "Empty input");
446 std::vector<T> abs_deviations;
447 abs_deviations.reserve(num_values);
448 for (size_t i = 0; i < num_values; ++i) {
449 const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median));
450 abs_deviations.push_back(static_cast<T>(abs));
451 }
452 return Median(abs_deviations.data(), num_values);
453}
454
455} // namespace robust_statistics
456
457// Ticks := platform-specific timer values (CPU cycles on x86). Must be
458// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to
459// read than 64 bit.
460using Ticks = uint32_t;
461
462// Returns timer overhead / minimum measurable difference.
463Ticks TimerResolution() {
464 // Nested loop avoids exceeding stack/L1 capacity.
465 Ticks repetitions[Params::kTimerSamples];
466 for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
467 Ticks samples[Params::kTimerSamples];
468 for (size_t i = 0; i < Params::kTimerSamples; ++i) {
469 const Ticks t0 = timer::Start32();
470 const Ticks t1 = timer::Stop32();
471 samples[i] = t1 - t0;
472 }
473 repetitions[rep] = robust_statistics::Mode(samples);
474 }
475 return robust_statistics::Mode(repetitions);
476}
477
478static const Ticks timer_resolution = TimerResolution();
479
480// Estimates the expected value of "lambda" values with a variable number of
481// samples until the variability "rel_mad" is less than "max_rel_mad".
482template <class Lambda>
483Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
484 const Params& p, const Lambda& lambda) {
485 auto measure_duration = [&lambda]() -> Ticks {
486 const Ticks t0 = timer::Start32();
487 lambda();
488 const Ticks t1 = timer::Stop32();
489 return t1 - t0;
490 };
491
492 // Choose initial samples_per_eval based on a single estimated duration.
493 Ticks est = measure_duration();
494 static const double ticks_per_second = InvariantTicksPerSecond();
495 const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval;
496 size_t samples_per_eval = ticks_per_eval / est;
497 samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval);
498
499 std::vector<Ticks> samples;
500 samples.reserve(1 + samples_per_eval);
501 samples.push_back(est);
502
503 // Percentage is too strict for tiny differences, so also allow a small
504 // absolute "median absolute deviation".
505 const Ticks max_abs_mad = (timer_resolution + 99) / 100;
506 *rel_mad = 0.0; // ensure initialized
507
508 for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
509 samples.reserve(samples.size() + samples_per_eval);
510 for (size_t i = 0; i < samples_per_eval; ++i) {
511 const Ticks r = measure_duration();
512 samples.push_back(r);
513 }
514
515 if (samples.size() >= p.min_mode_samples) {
516 est = robust_statistics::Mode(samples.data(), samples.size());
517 } else {
518 // For "few" (depends also on the variance) samples, Median is safer.
519 est = robust_statistics::Median(samples.data(), samples.size());
520 }
521 ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration");
522
523 // Median absolute deviation (mad) is a robust measure of 'variability'.
524 const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
525 samples.data(), samples.size(), est);
526 *rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est;
527
528 if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
529 if (p.verbose) {
530 ABSL_RAW_LOG(INFO,
531 "%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n",
532 samples.size(), est, abs_mad, *rel_mad * 100.0);
533 }
534 return est;
535 }
536 }
537
538 if (p.verbose) {
539 ABSL_RAW_LOG(WARNING,
540 "rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n",
541 *rel_mad * 100.0, max_rel_mad * 100.0, samples.size());
542 }
543 return est;
544}
545
546using InputVec = std::vector<FuncInput>;
547
548// Returns vector of unique input values.
549InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
550 InputVec unique(inputs, inputs + num_inputs);
551 std::sort(unique.begin(), unique.end());
552 unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
553 return unique;
554}
555
556// Returns how often we need to call func for sufficient precision, or zero
557// on failure (e.g. the elapsed time is too long for a 32-bit tick count).
558size_t NumSkip(const Func func, const void* arg, const InputVec& unique,
559 const Params& p) {
560 // Min elapsed ticks for any input.
561 Ticks min_duration = ~0u;
562
563 for (const FuncInput input : unique) {
564 // Make sure a 32-bit timer is sufficient.
565 const uint64_t t0 = timer::Start64();
566 PreventElision(func(arg, input));
567 const uint64_t t1 = timer::Stop64();
568 const uint64_t elapsed = t1 - t0;
569 if (elapsed >= (1ULL << 30)) {
570 ABSL_RAW_LOG(WARNING,
571 "Measurement failed: need 64-bit timer for input=%zu\n",
572 static_cast<size_t>(input));
573 return 0;
574 }
575
576 double rel_mad;
577 const Ticks total = SampleUntilStable(
578 p.target_rel_mad, &rel_mad, p,
579 [func, arg, input]() { PreventElision(func(arg, input)); });
580 min_duration = (std::min)(min_duration, total - timer_resolution);
581 }
582
583 // Number of repetitions required to reach the target resolution.
584 const size_t max_skip = p.precision_divisor;
585 // Number of repetitions given the estimated duration.
586 const size_t num_skip =
587 min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration;
588 if (p.verbose) {
589 ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n",
590 timer_resolution, max_skip, min_duration, num_skip);
591 }
592 return num_skip;
593}
594
595// Replicates inputs until we can omit "num_skip" occurrences of an input.
596InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
597 const size_t num_unique, const size_t num_skip,
598 const Params& p) {
599 InputVec full;
600 if (num_unique == 1) {
601 full.assign(p.subset_ratio * num_skip, inputs[0]);
602 return full;
603 }
604
605 full.reserve(p.subset_ratio * num_skip * num_inputs);
606 for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
607 full.insert(full.end(), inputs, inputs + num_inputs);
608 }
609 absl::random_internal::randen_engine<uint32_t> rng;
610 std::shuffle(full.begin(), full.end(), rng);
611 return full;
612}
613
614// Copies the "full" to "subset" in the same order, but with "num_skip"
615// randomly selected occurrences of "input_to_skip" removed.
616void FillSubset(const InputVec& full, const FuncInput input_to_skip,
617 const size_t num_skip, InputVec* subset) {
618 const size_t count = std::count(full.begin(), full.end(), input_to_skip);
619 // Generate num_skip random indices: which occurrence to skip.
620 std::vector<uint32_t> omit;
621 // Replacement for std::iota, not yet available in MSVC builds.
622 omit.reserve(count);
623 for (size_t i = 0; i < count; ++i) {
624 omit.push_back(i);
625 }
626 // omit[] is the same on every call, but that's OK because they identify the
627 // Nth instance of input_to_skip, so the position within full[] differs.
628 absl::random_internal::randen_engine<uint32_t> rng;
629 std::shuffle(omit.begin(), omit.end(), rng);
630 omit.resize(num_skip);
631 std::sort(omit.begin(), omit.end());
632
633 uint32_t occurrence = ~0u; // 0 after preincrement
634 size_t idx_omit = 0; // cursor within omit[]
635 size_t idx_subset = 0; // cursor within *subset
636 for (const FuncInput next : full) {
637 if (next == input_to_skip) {
638 ++occurrence;
639 // Haven't removed enough already
640 if (idx_omit < num_skip) {
641 // This one is up for removal
642 if (occurrence == omit[idx_omit]) {
643 ++idx_omit;
644 continue;
645 }
646 }
647 }
648 if (idx_subset < subset->size()) {
649 (*subset)[idx_subset++] = next;
650 }
651 }
652 ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end");
653 ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end");
654 ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end");
655}
656
657// Returns total ticks elapsed for all inputs.
658Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
659 const Params& p, double* max_rel_mad) {
660 double rel_mad;
661 const Ticks duration =
662 SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
663 for (const FuncInput input : *inputs) {
664 PreventElision(func(arg, input));
665 }
666 });
667 *max_rel_mad = (std::max)(*max_rel_mad, rel_mad);
668 return duration;
669}
670
671// (Nearly) empty Func for measuring timer overhead/resolution.
672ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput
673EmptyFunc(const void* arg, const FuncInput input) {
674 return input;
675}
676
677// Returns overhead of accessing inputs[] and calling a function; this will
678// be deducted from future TotalDuration return values.
679Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) {
680 double rel_mad;
681 // Zero tolerance because repeatability is crucial and EmptyFunc is fast.
682 return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
683 for (const FuncInput input : *inputs) {
684 PreventElision(EmptyFunc(arg, input));
685 }
686 });
687}
688
689} // namespace
690
691void PinThreadToCPU(int cpu) {
692 // We might migrate to another CPU before pinning below, but at least cpu
693 // will be one of the CPUs on which this thread ran.
694#if defined(ABSL_OS_WIN)
695 if (cpu < 0) {
696 cpu = static_cast<int>(GetCurrentProcessorNumber());
697 ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
698 if (cpu >= 64) {
699 // NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns
700 // a value > 64, which is out of range. When this happens, log a message
701 // and don't set a cpu affinity.
702 ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu);
703 return;
704 }
705 } else if (cpu >= 64) {
706 // User specified an explicit CPU affinity > the valid range.
707 ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu);
708 }
709 const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu);
710 ABSL_RAW_CHECK(prev != 0, "SetAffinity failed");
711#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID)
712 if (cpu < 0) {
713 cpu = sched_getcpu();
714 ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
715 }
716 const pid_t pid = 0; // current thread
717 cpu_set_t set;
718 CPU_ZERO(&set);
719 CPU_SET(cpu, &set);
720 const int err = sched_setaffinity(pid, sizeof(set), &set);
721 ABSL_RAW_CHECK(err == 0, "SetAffinity failed");
722#endif
723}
724
725// Returns tick rate. Invariant means the tick counter frequency is independent
726// of CPU throttling or sleep. May be expensive, caller should cache the result.
727double InvariantTicksPerSecond() {
728#if defined(ABSL_ARCH_PPC)
729 return __ppc_get_timebase_freq();
730#elif defined(ABSL_ARCH_X86_64)
731 // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs.
732 return platform::NominalClockRate();
733#else
734 // Fall back to clock_gettime nanoseconds.
735 return 1E9;
736#endif
737}
738
739size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip,
740 const InputVec& unique, const InputVec& full,
741 const Params& p, Result* results) {
742 const float mul = 1.0f / static_cast<int>(num_skip);
743
744 InputVec subset(full.size() - num_skip);
745 const Ticks overhead = Overhead(arg, &full, p);
746 const Ticks overhead_skip = Overhead(arg, &subset, p);
747 if (overhead < overhead_skip) {
748 ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead,
749 overhead_skip);
750 return 0;
751 }
752
753 if (p.verbose) {
754 ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(),
755 subset.size(), overhead, overhead_skip);
756 }
757
758 double max_rel_mad = 0.0;
759 const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
760
761 for (size_t i = 0; i < unique.size(); ++i) {
762 FillSubset(full, unique[i], num_skip, &subset);
763 const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad);
764
765 if (total < total_skip) {
766 ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total,
767 total_skip);
768 return 0;
769 }
770
771 const Ticks duration = (total - overhead) - (total_skip - overhead_skip);
772 results[i].input = unique[i];
773 results[i].ticks = duration * mul;
774 results[i].variability = max_rel_mad;
775 }
776
777 return unique.size();
778}
779
780size_t Measure(const Func func, const void* arg, const FuncInput* inputs,
781 const size_t num_inputs, Result* results, const Params& p) {
782 ABSL_RAW_CHECK(num_inputs != 0, "No inputs");
783
784 const InputVec unique = UniqueInputs(inputs, num_inputs);
785 const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
786 if (num_skip == 0) return 0; // NumSkip already printed error message
787
788 const InputVec full =
789 ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
790
791 // MeasureImpl may fail up to p.max_measure_retries times.
792 for (size_t i = 0; i < p.max_measure_retries; i++) {
793 auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results);
794 if (result != 0) {
795 return result;
796 }
797 }
798 // All retries failed. (Unusual)
799 return 0;
800}
801
802} // namespace random_internal_nanobenchmark
Austin Schuhb4691e92020-12-31 12:37:18 -0800803ABSL_NAMESPACE_END
Austin Schuh36244a12019-09-21 17:52:38 -0700804} // namespace absl