Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/random/internal/chi_square.h" |
| 16 | |
| 17 | #include <cmath> |
| 18 | |
| 19 | #include "absl/random/internal/distribution_test_util.h" |
| 20 | |
| 21 | namespace absl { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 22 | ABSL_NAMESPACE_BEGIN |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 23 | namespace random_internal { |
| 24 | namespace { |
| 25 | |
| 26 | #if defined(__EMSCRIPTEN__) |
| 27 | // Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. |
| 28 | inline double fma(double x, double y, double z) { |
| 29 | return (x * y) + z; |
| 30 | } |
| 31 | #endif |
| 32 | |
| 33 | // Use Horner's method to evaluate a polynomial. |
| 34 | template <typename T, unsigned N> |
| 35 | inline T EvaluatePolynomial(T x, const T (&poly)[N]) { |
| 36 | #if !defined(__EMSCRIPTEN__) |
| 37 | using std::fma; |
| 38 | #endif |
| 39 | T p = poly[N - 1]; |
| 40 | for (unsigned i = 2; i <= N; i++) { |
| 41 | p = fma(p, x, poly[N - i]); |
| 42 | } |
| 43 | return p; |
| 44 | } |
| 45 | |
| 46 | static constexpr int kLargeDOF = 150; |
| 47 | |
| 48 | // Returns the probability of a normal z-value. |
| 49 | // |
| 50 | // Adapted from the POZ function in: |
| 51 | // Ibbetson D, Algorithm 209 |
| 52 | // Collected Algorithms of the CACM 1963 p. 616 |
| 53 | // |
| 54 | double POZ(double z) { |
| 55 | static constexpr double kP1[] = { |
| 56 | 0.797884560593, -0.531923007300, 0.319152932694, |
| 57 | -0.151968751364, 0.059054035642, -0.019198292004, |
| 58 | 0.005198775019, -0.001075204047, 0.000124818987, |
| 59 | }; |
| 60 | static constexpr double kP2[] = { |
| 61 | 0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108, |
| 62 | -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214, |
| 63 | -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986, |
| 64 | -0.000019538132, 0.000152529290, -0.000045255659, |
| 65 | }; |
| 66 | |
| 67 | const double kZMax = 6.0; // Maximum meaningful z-value. |
| 68 | if (z == 0.0) { |
| 69 | return 0.5; |
| 70 | } |
| 71 | double x; |
| 72 | double y = 0.5 * std::fabs(z); |
| 73 | if (y >= (kZMax * 0.5)) { |
| 74 | x = 1.0; |
| 75 | } else if (y < 1.0) { |
| 76 | double w = y * y; |
| 77 | x = EvaluatePolynomial(w, kP1) * y * 2.0; |
| 78 | } else { |
| 79 | y -= 2.0; |
| 80 | x = EvaluatePolynomial(y, kP2); |
| 81 | } |
| 82 | return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5); |
| 83 | } |
| 84 | |
| 85 | // Approximates the survival function of the normal distribution. |
| 86 | // |
| 87 | // Algorithm 26.2.18, from: |
| 88 | // [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932] |
| 89 | // http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf |
| 90 | // |
| 91 | double normal_survival(double z) { |
| 92 | // Maybe replace with the alternate formulation. |
| 93 | // 0.5 * erfc((x - mean)/(sqrt(2) * sigma)) |
| 94 | static constexpr double kR[] = { |
| 95 | 1.0, 0.196854, 0.115194, 0.000344, 0.019527, |
| 96 | }; |
| 97 | double r = EvaluatePolynomial(z, kR); |
| 98 | r *= r; |
| 99 | return 0.5 / (r * r); |
| 100 | } |
| 101 | |
| 102 | } // namespace |
| 103 | |
| 104 | // Calculates the critical chi-square value given degrees-of-freedom and a |
| 105 | // p-value, usually using bisection. Also known by the name CRITCHI. |
| 106 | double ChiSquareValue(int dof, double p) { |
| 107 | static constexpr double kChiEpsilon = |
| 108 | 0.000001; // Accuracy of the approximation. |
| 109 | static constexpr double kChiMax = |
| 110 | 99999.0; // Maximum chi-squared value. |
| 111 | |
| 112 | const double p_value = 1.0 - p; |
| 113 | if (dof < 1 || p_value > 1.0) { |
| 114 | return 0.0; |
| 115 | } |
| 116 | |
| 117 | if (dof > kLargeDOF) { |
| 118 | // For large degrees of freedom, use the normal approximation by |
| 119 | // Wilson, E. B. and Hilferty, M. M. (1931) |
| 120 | // chi^2 - mean |
| 121 | // Z = -------------- |
| 122 | // stddev |
| 123 | const double z = InverseNormalSurvival(p_value); |
| 124 | const double mean = 1 - 2.0 / (9 * dof); |
| 125 | const double variance = 2.0 / (9 * dof); |
| 126 | // Cannot use this method if the variance is 0. |
| 127 | if (variance != 0) { |
| 128 | return std::pow(z * std::sqrt(variance) + mean, 3.0) * dof; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | if (p_value <= 0.0) return kChiMax; |
| 133 | |
| 134 | // Otherwise search for the p value by bisection |
| 135 | double min_chisq = 0.0; |
| 136 | double max_chisq = kChiMax; |
| 137 | double current = dof / std::sqrt(p_value); |
| 138 | while ((max_chisq - min_chisq) > kChiEpsilon) { |
| 139 | if (ChiSquarePValue(current, dof) < p_value) { |
| 140 | max_chisq = current; |
| 141 | } else { |
| 142 | min_chisq = current; |
| 143 | } |
| 144 | current = (max_chisq + min_chisq) * 0.5; |
| 145 | } |
| 146 | return current; |
| 147 | } |
| 148 | |
| 149 | // Calculates the p-value (probability) of a given chi-square value |
| 150 | // and degrees of freedom. |
| 151 | // |
| 152 | // Adapted from the POCHISQ function from: |
| 153 | // Hill, I. D. and Pike, M. C. Algorithm 299 |
| 154 | // Collected Algorithms of the CACM 1963 p. 243 |
| 155 | // |
| 156 | double ChiSquarePValue(double chi_square, int dof) { |
| 157 | static constexpr double kLogSqrtPi = |
| 158 | 0.5723649429247000870717135; // Log[Sqrt[Pi]] |
| 159 | static constexpr double kInverseSqrtPi = |
| 160 | 0.5641895835477562869480795; // 1/(Sqrt[Pi]) |
| 161 | |
| 162 | // For large degrees of freedom, use the normal approximation by |
| 163 | // Wilson, E. B. and Hilferty, M. M. (1931) |
| 164 | // Via Wikipedia: |
| 165 | // By the Central Limit Theorem, because the chi-square distribution is the |
| 166 | // sum of k independent random variables with finite mean and variance, it |
| 167 | // converges to a normal distribution for large k. |
| 168 | if (dof > kLargeDOF) { |
| 169 | // Re-scale everything. |
| 170 | const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3); |
| 171 | const double mean = 1 - 2.0 / (9 * dof); |
| 172 | const double variance = 2.0 / (9 * dof); |
| 173 | // If variance is 0, this method cannot be used. |
| 174 | if (variance != 0) { |
| 175 | const double z = (chi_square_scaled - mean) / std::sqrt(variance); |
| 176 | if (z > 0) { |
| 177 | return normal_survival(z); |
| 178 | } else if (z < 0) { |
| 179 | return 1.0 - normal_survival(-z); |
| 180 | } else { |
| 181 | return 0.5; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | // The chi square function is >= 0 for any degrees of freedom. |
| 187 | // In other words, probability that the chi square function >= 0 is 1. |
| 188 | if (chi_square <= 0.0) return 1.0; |
| 189 | |
| 190 | // If the degrees of freedom is zero, the chi square function is always 0 by |
| 191 | // definition. In other words, the probability that the chi square function |
| 192 | // is > 0 is zero (chi square values <= 0 have been filtered above). |
| 193 | if (dof < 1) return 0; |
| 194 | |
| 195 | auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); }; |
| 196 | static constexpr double kBigX = 20; |
| 197 | |
| 198 | double a = 0.5 * chi_square; |
| 199 | const bool even = !(dof & 1); // True if dof is an even number. |
| 200 | const double y = capped_exp(-a); |
| 201 | double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square))); |
| 202 | |
| 203 | if (dof <= 2) { |
| 204 | return s; |
| 205 | } |
| 206 | |
| 207 | chi_square = 0.5 * (dof - 1.0); |
| 208 | double z = (even ? 1.0 : 0.5); |
| 209 | if (a > kBigX) { |
| 210 | double e = (even ? 0.0 : kLogSqrtPi); |
| 211 | double c = std::log(a); |
| 212 | while (z <= chi_square) { |
| 213 | e = std::log(z) + e; |
| 214 | s += capped_exp(c * z - a - e); |
| 215 | z += 1.0; |
| 216 | } |
| 217 | return s; |
| 218 | } |
| 219 | |
| 220 | double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a))); |
| 221 | double c = 0.0; |
| 222 | while (z <= chi_square) { |
| 223 | e = e * (a / z); |
| 224 | c = c + e; |
| 225 | z += 1.0; |
| 226 | } |
| 227 | return c * y + s; |
| 228 | } |
| 229 | |
| 230 | } // namespace random_internal |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 231 | ABSL_NAMESPACE_END |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 232 | } // namespace absl |