blob: f4d5727bdeb58294c3767229f5eb3534251dc80d [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2018 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// This library provides Symbolize() function that symbolizes program
16// counters to their corresponding symbol names on linux platforms.
17// This library has a minimal implementation of an ELF symbol table
18// reader (i.e. it doesn't depend on libelf, etc.).
19//
20// The algorithm used in Symbolize() is as follows.
21//
22// 1. Go through a list of maps in /proc/self/maps and find the map
23// containing the program counter.
24//
25// 2. Open the mapped file and find a regular symbol table inside.
26// Iterate over symbols in the symbol table and look for the symbol
27// containing the program counter. If such a symbol is found,
28// obtain the symbol name, and demangle the symbol if possible.
29// If the symbol isn't found in the regular symbol table (binary is
30// stripped), try the same thing with a dynamic symbol table.
31//
32// Note that Symbolize() is originally implemented to be used in
33// signal handlers, hence it doesn't use malloc() and other unsafe
34// operations. It should be both thread-safe and async-signal-safe.
35//
36// Implementation note:
37//
38// We don't use heaps but only use stacks. We want to reduce the
39// stack consumption so that the symbolizer can run on small stacks.
40//
41// Here are some numbers collected with GCC 4.1.0 on x86:
42// - sizeof(Elf32_Sym) = 16
43// - sizeof(Elf32_Shdr) = 40
44// - sizeof(Elf64_Sym) = 24
45// - sizeof(Elf64_Shdr) = 64
46//
47// This implementation is intended to be async-signal-safe but uses some
48// functions which are not guaranteed to be so, such as memchr() and
49// memmove(). We assume they are async-signal-safe.
50
51#include <dlfcn.h>
52#include <elf.h>
53#include <fcntl.h>
54#include <link.h> // For ElfW() macro.
55#include <sys/stat.h>
56#include <sys/types.h>
57#include <unistd.h>
58
59#include <algorithm>
Austin Schuhb4691e92020-12-31 12:37:18 -080060#include <array>
Austin Schuh36244a12019-09-21 17:52:38 -070061#include <atomic>
62#include <cerrno>
63#include <cinttypes>
64#include <climits>
65#include <cstdint>
66#include <cstdio>
67#include <cstdlib>
68#include <cstring>
69
70#include "absl/base/casts.h"
71#include "absl/base/dynamic_annotations.h"
72#include "absl/base/internal/low_level_alloc.h"
73#include "absl/base/internal/raw_logging.h"
74#include "absl/base/internal/spinlock.h"
75#include "absl/base/port.h"
76#include "absl/debugging/internal/demangle.h"
77#include "absl/debugging/internal/vdso_support.h"
Austin Schuhb4691e92020-12-31 12:37:18 -080078#include "absl/strings/string_view.h"
Austin Schuh36244a12019-09-21 17:52:38 -070079
80namespace absl {
Austin Schuhb4691e92020-12-31 12:37:18 -080081ABSL_NAMESPACE_BEGIN
Austin Schuh36244a12019-09-21 17:52:38 -070082
83// Value of argv[0]. Used by MaybeInitializeObjFile().
84static char *argv0_value = nullptr;
85
86void InitializeSymbolizer(const char *argv0) {
Austin Schuhb4691e92020-12-31 12:37:18 -080087#ifdef ABSL_HAVE_VDSO_SUPPORT
88 // We need to make sure VDSOSupport::Init() is called before any setuid or
89 // chroot calls, so InitializeSymbolizer() should be called very early in the
90 // life of a program.
91 absl::debugging_internal::VDSOSupport::Init();
92#endif
Austin Schuh36244a12019-09-21 17:52:38 -070093 if (argv0_value != nullptr) {
94 free(argv0_value);
95 argv0_value = nullptr;
96 }
97 if (argv0 != nullptr && argv0[0] != '\0') {
98 argv0_value = strdup(argv0);
99 }
100}
101
102namespace debugging_internal {
103namespace {
104
105// Re-runs fn until it doesn't cause EINTR.
106#define NO_INTR(fn) \
107 do { \
108 } while ((fn) < 0 && errno == EINTR)
109
110// On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable
111// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
112#ifndef ELF_ST_BIND
113#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
114#endif
115
116#ifndef ELF_ST_TYPE
117#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
118#endif
119
120// Some platforms use a special .opd section to store function pointers.
121const char kOpdSectionName[] = ".opd";
122
123#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
124// Use opd section for function descriptors on these platforms, the function
125// address is the first word of the descriptor.
126enum { kPlatformUsesOPDSections = 1 };
127#else // not PPC or IA64
128enum { kPlatformUsesOPDSections = 0 };
129#endif
130
131// This works for PowerPC & IA64 only. A function descriptor consist of two
132// pointers and the first one is the function's entry.
133const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
134
135const int kMaxDecorators = 10; // Seems like a reasonable upper limit.
136
137struct InstalledSymbolDecorator {
138 SymbolDecorator fn;
139 void *arg;
140 int ticket;
141};
142
143int g_num_decorators;
144InstalledSymbolDecorator g_decorators[kMaxDecorators];
145
146struct FileMappingHint {
147 const void *start;
148 const void *end;
149 uint64_t offset;
150 const char *filename;
151};
152
153// Protects g_decorators.
154// We are using SpinLock and not a Mutex here, because we may be called
155// from inside Mutex::Lock itself, and it prohibits recursive calls.
156// This happens in e.g. base/stacktrace_syscall_unittest.
157// Moreover, we are using only TryLock(), if the decorator list
158// is being modified (is busy), we skip all decorators, and possibly
159// loose some info. Sorry, that's the best we could do.
Austin Schuhb4691e92020-12-31 12:37:18 -0800160ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu(
161 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
Austin Schuh36244a12019-09-21 17:52:38 -0700162
163const int kMaxFileMappingHints = 8;
164int g_num_file_mapping_hints;
165FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
166// Protects g_file_mapping_hints.
Austin Schuhb4691e92020-12-31 12:37:18 -0800167ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu(
168 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
Austin Schuh36244a12019-09-21 17:52:38 -0700169
170// Async-signal-safe function to zero a buffer.
171// memset() is not guaranteed to be async-signal-safe.
172static void SafeMemZero(void* p, size_t size) {
173 unsigned char *c = static_cast<unsigned char *>(p);
174 while (size--) {
175 *c++ = 0;
176 }
177}
178
179struct ObjFile {
180 ObjFile()
181 : filename(nullptr),
182 start_addr(nullptr),
183 end_addr(nullptr),
184 offset(0),
185 fd(-1),
186 elf_type(-1) {
187 SafeMemZero(&elf_header, sizeof(elf_header));
Austin Schuhb4691e92020-12-31 12:37:18 -0800188 SafeMemZero(&phdr[0], sizeof(phdr));
Austin Schuh36244a12019-09-21 17:52:38 -0700189 }
190
191 char *filename;
192 const void *start_addr;
193 const void *end_addr;
194 uint64_t offset;
195
196 // The following fields are initialized on the first access to the
197 // object file.
198 int fd;
199 int elf_type;
200 ElfW(Ehdr) elf_header;
Austin Schuhb4691e92020-12-31 12:37:18 -0800201
202 // PT_LOAD program header describing executable code.
203 // Normally we expect just one, but SWIFT binaries have two.
204 std::array<ElfW(Phdr), 2> phdr;
Austin Schuh36244a12019-09-21 17:52:38 -0700205};
206
207// Build 4-way associative cache for symbols. Within each cache line, symbols
208// are replaced in LRU order.
209enum {
210 ASSOCIATIVITY = 4,
211};
212struct SymbolCacheLine {
213 const void *pc[ASSOCIATIVITY];
214 char *name[ASSOCIATIVITY];
215
216 // age[i] is incremented when a line is accessed. it's reset to zero if the
217 // i'th entry is read.
218 uint32_t age[ASSOCIATIVITY];
219};
220
221// ---------------------------------------------------------------
222// An async-signal-safe arena for LowLevelAlloc
223static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
224
225static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
226 return g_sig_safe_arena.load(std::memory_order_acquire);
227}
228
229static void InitSigSafeArena() {
230 if (SigSafeArena() == nullptr) {
231 base_internal::LowLevelAlloc::Arena *new_arena =
232 base_internal::LowLevelAlloc::NewArena(
233 base_internal::LowLevelAlloc::kAsyncSignalSafe);
234 base_internal::LowLevelAlloc::Arena *old_value = nullptr;
235 if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
236 std::memory_order_release,
237 std::memory_order_relaxed)) {
238 // We lost a race to allocate an arena; deallocate.
239 base_internal::LowLevelAlloc::DeleteArena(new_arena);
240 }
241 }
242}
243
244// ---------------------------------------------------------------
245// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
246
247class AddrMap {
248 public:
249 AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
250 ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
251 int Size() const { return size_; }
252 ObjFile *At(int i) { return &obj_[i]; }
253 ObjFile *Add();
254 void Clear();
255
256 private:
257 int size_; // count of valid elements (<= allocated_)
258 int allocated_; // count of allocated elements
259 ObjFile *obj_; // array of allocated_ elements
260 AddrMap(const AddrMap &) = delete;
261 AddrMap &operator=(const AddrMap &) = delete;
262};
263
264void AddrMap::Clear() {
265 for (int i = 0; i != size_; i++) {
266 At(i)->~ObjFile();
267 }
268 size_ = 0;
269}
270
271ObjFile *AddrMap::Add() {
272 if (size_ == allocated_) {
273 int new_allocated = allocated_ * 2 + 50;
274 ObjFile *new_obj_ =
275 static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
276 new_allocated * sizeof(*new_obj_), SigSafeArena()));
277 if (obj_) {
278 memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
279 base_internal::LowLevelAlloc::Free(obj_);
280 }
281 obj_ = new_obj_;
282 allocated_ = new_allocated;
283 }
284 return new (&obj_[size_++]) ObjFile;
285}
286
287// ---------------------------------------------------------------
288
289enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
290
291class Symbolizer {
292 public:
293 Symbolizer();
294 ~Symbolizer();
295 const char *GetSymbol(const void *const pc);
296
297 private:
298 char *CopyString(const char *s) {
299 int len = strlen(s);
300 char *dst = static_cast<char *>(
301 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
302 ABSL_RAW_CHECK(dst != nullptr, "out of memory");
303 memcpy(dst, s, len + 1);
304 return dst;
305 }
306 ObjFile *FindObjFile(const void *const start,
307 size_t size) ABSL_ATTRIBUTE_NOINLINE;
308 static bool RegisterObjFile(const char *filename,
309 const void *const start_addr,
310 const void *const end_addr, uint64_t offset,
311 void *arg);
312 SymbolCacheLine *GetCacheLine(const void *const pc);
313 const char *FindSymbolInCache(const void *const pc);
314 const char *InsertSymbolInCache(const void *const pc, const char *name);
315 void AgeSymbols(SymbolCacheLine *line);
316 void ClearAddrMap();
317 FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
318 const void *const pc,
319 const ptrdiff_t relocation,
320 char *out, int out_size,
321 char *tmp_buf, int tmp_buf_size);
322
323 enum {
324 SYMBOL_BUF_SIZE = 3072,
325 TMP_BUF_SIZE = 1024,
326 SYMBOL_CACHE_LINES = 128,
327 };
328
329 AddrMap addr_map_;
330
331 bool ok_;
332 bool addr_map_read_;
333
334 char symbol_buf_[SYMBOL_BUF_SIZE];
335
336 // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
337 // so we ensure that tmp_buf_ is properly aligned to store either.
338 alignas(16) char tmp_buf_[TMP_BUF_SIZE];
339 static_assert(alignof(ElfW(Shdr)) <= 16,
340 "alignment of tmp buf too small for Shdr");
341 static_assert(alignof(ElfW(Sym)) <= 16,
342 "alignment of tmp buf too small for Sym");
343
344 SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
345};
346
347static std::atomic<Symbolizer *> g_cached_symbolizer;
348
349} // namespace
350
351static int SymbolizerSize() {
352#if defined(__wasm__) || defined(__asmjs__)
353 int pagesize = getpagesize();
354#else
355 int pagesize = sysconf(_SC_PAGESIZE);
356#endif
357 return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
358}
359
360// Return (and set null) g_cached_symbolized_state if it is not null.
361// Otherwise return a new symbolizer.
362static Symbolizer *AllocateSymbolizer() {
363 InitSigSafeArena();
364 Symbolizer *symbolizer =
365 g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
366 if (symbolizer != nullptr) {
367 return symbolizer;
368 }
369 return new (base_internal::LowLevelAlloc::AllocWithArena(
370 SymbolizerSize(), SigSafeArena())) Symbolizer();
371}
372
373// Set g_cached_symbolize_state to s if it is null, otherwise
374// delete s.
375static void FreeSymbolizer(Symbolizer *s) {
376 Symbolizer *old_cached_symbolizer = nullptr;
377 if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
378 std::memory_order_release,
379 std::memory_order_relaxed)) {
380 s->~Symbolizer();
381 base_internal::LowLevelAlloc::Free(s);
382 }
383}
384
385Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
386 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
387 for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
388 symbol_cache_line.pc[j] = nullptr;
389 symbol_cache_line.name[j] = nullptr;
390 symbol_cache_line.age[j] = 0;
391 }
392 }
393}
394
395Symbolizer::~Symbolizer() {
396 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
397 for (char *s : symbol_cache_line.name) {
398 base_internal::LowLevelAlloc::Free(s);
399 }
400 }
401 ClearAddrMap();
402}
403
404// We don't use assert() since it's not guaranteed to be
405// async-signal-safe. Instead we define a minimal assertion
406// macro. So far, we don't need pretty printing for __FILE__, etc.
407#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
408
409// Read up to "count" bytes from file descriptor "fd" into the buffer
410// starting at "buf" while handling short reads and EINTR. On
411// success, return the number of bytes read. Otherwise, return -1.
412static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
413 SAFE_ASSERT(fd >= 0);
414 SAFE_ASSERT(count <= SSIZE_MAX);
415 char *buf0 = reinterpret_cast<char *>(buf);
416 size_t num_bytes = 0;
417 while (num_bytes < count) {
418 ssize_t len;
419 NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
420 if (len < 0) { // There was an error other than EINTR.
421 ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
422 return -1;
423 }
424 if (len == 0) { // Reached EOF.
425 break;
426 }
427 num_bytes += len;
428 }
429 SAFE_ASSERT(num_bytes <= count);
430 return static_cast<ssize_t>(num_bytes);
431}
432
433// Read up to "count" bytes from "offset" in the file pointed by file
434// descriptor "fd" into the buffer starting at "buf". On success,
435// return the number of bytes read. Otherwise, return -1.
436static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,
437 const off_t offset) {
438 off_t off = lseek(fd, offset, SEEK_SET);
439 if (off == (off_t)-1) {
440 ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,
441 static_cast<uintmax_t>(offset), errno);
442 return -1;
443 }
444 return ReadPersistent(fd, buf, count);
445}
446
447// Try reading exactly "count" bytes from "offset" bytes in a file
448// pointed by "fd" into the buffer starting at "buf" while handling
449// short reads and EINTR. On success, return true. Otherwise, return
450// false.
451static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,
452 const off_t offset) {
453 ssize_t len = ReadFromOffset(fd, buf, count, offset);
454 return len >= 0 && static_cast<size_t>(len) == count;
455}
456
457// Returns elf_header.e_type if the file pointed by fd is an ELF binary.
458static int FileGetElfType(const int fd) {
459 ElfW(Ehdr) elf_header;
460 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
461 return -1;
462 }
463 if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
464 return -1;
465 }
466 return elf_header.e_type;
467}
468
469// Read the section headers in the given ELF binary, and if a section
470// of the specified type is found, set the output to this section header
471// and return true. Otherwise, return false.
472// To keep stack consumption low, we would like this function to not get
473// inlined.
474static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
475 const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,
476 ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {
477 ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
478 const int buf_entries = tmp_buf_size / sizeof(buf[0]);
479 const int buf_bytes = buf_entries * sizeof(buf[0]);
480
481 for (int i = 0; i < sh_num;) {
482 const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
483 const ssize_t num_bytes_to_read =
484 (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
485 const off_t offset = sh_offset + i * sizeof(buf[0]);
486 const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);
487 if (len % sizeof(buf[0]) != 0) {
488 ABSL_RAW_LOG(
489 WARNING,
490 "Reading %zd bytes from offset %ju returned %zd which is not a "
491 "multiple of %zu.",
492 num_bytes_to_read, static_cast<uintmax_t>(offset), len,
493 sizeof(buf[0]));
494 return false;
495 }
496 const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
497 SAFE_ASSERT(num_headers_in_buf <= buf_entries);
498 for (int j = 0; j < num_headers_in_buf; ++j) {
499 if (buf[j].sh_type == type) {
500 *out = buf[j];
501 return true;
502 }
503 }
504 i += num_headers_in_buf;
505 }
506 return false;
507}
508
509// There is no particular reason to limit section name to 63 characters,
510// but there has (as yet) been no need for anything longer either.
511const int kMaxSectionNameLen = 64;
512
513bool ForEachSection(int fd,
Austin Schuhb4691e92020-12-31 12:37:18 -0800514 const std::function<bool(absl::string_view name,
Austin Schuh36244a12019-09-21 17:52:38 -0700515 const ElfW(Shdr) &)> &callback) {
516 ElfW(Ehdr) elf_header;
517 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
518 return false;
519 }
520
521 ElfW(Shdr) shstrtab;
522 off_t shstrtab_offset =
523 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
524 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
525 return false;
526 }
527
528 for (int i = 0; i < elf_header.e_shnum; ++i) {
529 ElfW(Shdr) out;
530 off_t section_header_offset =
531 (elf_header.e_shoff + elf_header.e_shentsize * i);
532 if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {
533 return false;
534 }
535 off_t name_offset = shstrtab.sh_offset + out.sh_name;
Austin Schuhb4691e92020-12-31 12:37:18 -0800536 char header_name[kMaxSectionNameLen];
Austin Schuh36244a12019-09-21 17:52:38 -0700537 ssize_t n_read =
538 ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);
539 if (n_read == -1) {
540 return false;
541 } else if (n_read > kMaxSectionNameLen) {
542 // Long read?
543 return false;
544 }
Austin Schuh36244a12019-09-21 17:52:38 -0700545
Austin Schuhb4691e92020-12-31 12:37:18 -0800546 absl::string_view name(header_name, strnlen(header_name, n_read));
Austin Schuh36244a12019-09-21 17:52:38 -0700547 if (!callback(name, out)) {
548 break;
549 }
550 }
551 return true;
552}
553
554// name_len should include terminating '\0'.
555bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
556 ElfW(Shdr) * out) {
557 char header_name[kMaxSectionNameLen];
558 if (sizeof(header_name) < name_len) {
559 ABSL_RAW_LOG(WARNING,
560 "Section name '%s' is too long (%zu); "
561 "section will not be found (even if present).",
562 name, name_len);
563 // No point in even trying.
564 return false;
565 }
566
567 ElfW(Ehdr) elf_header;
568 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
569 return false;
570 }
571
572 ElfW(Shdr) shstrtab;
573 off_t shstrtab_offset =
574 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
575 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
576 return false;
577 }
578
579 for (int i = 0; i < elf_header.e_shnum; ++i) {
580 off_t section_header_offset =
581 (elf_header.e_shoff + elf_header.e_shentsize * i);
582 if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
583 return false;
584 }
585 off_t name_offset = shstrtab.sh_offset + out->sh_name;
586 ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
587 if (n_read < 0) {
588 return false;
589 } else if (static_cast<size_t>(n_read) != name_len) {
590 // Short read -- name could be at end of file.
591 continue;
592 }
593 if (memcmp(header_name, name, name_len) == 0) {
594 return true;
595 }
596 }
597 return false;
598}
599
600// Compare symbols at in the same address.
601// Return true if we should pick symbol1.
602static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
603 const ElfW(Sym) & symbol2) {
604 // If one of the symbols is weak and the other is not, pick the one
605 // this is not a weak symbol.
606 char bind1 = ELF_ST_BIND(symbol1.st_info);
607 char bind2 = ELF_ST_BIND(symbol1.st_info);
608 if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
609 if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
610
611 // If one of the symbols has zero size and the other is not, pick the
612 // one that has non-zero size.
613 if (symbol1.st_size != 0 && symbol2.st_size == 0) {
614 return true;
615 }
616 if (symbol1.st_size == 0 && symbol2.st_size != 0) {
617 return false;
618 }
619
620 // If one of the symbols has no type and the other is not, pick the
621 // one that has a type.
622 char type1 = ELF_ST_TYPE(symbol1.st_info);
623 char type2 = ELF_ST_TYPE(symbol1.st_info);
624 if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
625 return true;
626 }
627 if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
628 return false;
629 }
630
631 // Pick the first one, if we still cannot decide.
632 return true;
633}
634
635// Return true if an address is inside a section.
636static bool InSection(const void *address, const ElfW(Shdr) * section) {
637 const char *start = reinterpret_cast<const char *>(section->sh_addr);
638 size_t size = static_cast<size_t>(section->sh_size);
639 return start <= address && address < (start + size);
640}
641
642static const char *ComputeOffset(const char *base, ptrdiff_t offset) {
643 // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to
644 // zero and offset is non-zero.
645 return reinterpret_cast<const char *>(
646 reinterpret_cast<uintptr_t>(base) + offset);
647}
648
649// Read a symbol table and look for the symbol containing the
650// pc. Iterate over symbols in a symbol table and look for the symbol
651// containing "pc". If the symbol is found, and its name fits in
652// out_size, the name is written into out and SYMBOL_FOUND is returned.
653// If the name does not fit, truncated name is written into out,
654// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
655// If the symbol is not found, SYMBOL_NOT_FOUND is returned;
656// To keep stack consumption low, we would like this function to not get
657// inlined.
658static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
659 const void *const pc, const int fd, char *out, int out_size,
660 ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
661 const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {
662 if (symtab == nullptr) {
663 return SYMBOL_NOT_FOUND;
664 }
665
666 // Read multiple symbols at once to save read() calls.
667 ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
668 const int buf_entries = tmp_buf_size / sizeof(buf[0]);
669
670 const int num_symbols = symtab->sh_size / symtab->sh_entsize;
671
672 // On platforms using an .opd section (PowerPC & IA64), a function symbol
673 // has the address of a function descriptor, which contains the real
674 // starting address. However, we do not always want to use the real
675 // starting address because we sometimes want to symbolize a function
676 // pointer into the .opd section, e.g. FindSymbol(&foo,...).
677 const bool pc_in_opd =
678 kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);
679 const bool deref_function_descriptor_pointer =
680 kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
681
682 ElfW(Sym) best_match;
683 SafeMemZero(&best_match, sizeof(best_match));
684 bool found_match = false;
685 for (int i = 0; i < num_symbols;) {
686 off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
687 const int num_remaining_symbols = num_symbols - i;
688 const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);
689 const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
690 const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);
691 SAFE_ASSERT(len % sizeof(buf[0]) == 0);
692 const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
693 SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
694 for (int j = 0; j < num_symbols_in_buf; ++j) {
695 const ElfW(Sym) &symbol = buf[j];
696
697 // For a DSO, a symbol address is relocated by the loading address.
698 // We keep the original address for opd redirection below.
699 const char *const original_start_address =
700 reinterpret_cast<const char *>(symbol.st_value);
701 const char *start_address =
702 ComputeOffset(original_start_address, relocation);
703
704 if (deref_function_descriptor_pointer &&
705 InSection(original_start_address, opd)) {
706 // The opd section is mapped into memory. Just dereference
707 // start_address to get the first double word, which points to the
708 // function entry.
709 start_address = *reinterpret_cast<const char *const *>(start_address);
710 }
711
712 // If pc is inside the .opd section, it points to a function descriptor.
713 const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
714 const void *const end_address = ComputeOffset(start_address, size);
715 if (symbol.st_value != 0 && // Skip null value symbols.
716 symbol.st_shndx != 0 && // Skip undefined symbols.
717#ifdef STT_TLS
718 ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data.
719#endif // STT_TLS
720 ((start_address <= pc && pc < end_address) ||
721 (start_address == pc && pc == end_address))) {
722 if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
723 found_match = true;
724 best_match = symbol;
725 }
726 }
727 }
728 i += num_symbols_in_buf;
729 }
730
731 if (found_match) {
732 const size_t off = strtab->sh_offset + best_match.st_name;
733 const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);
734 if (n_read <= 0) {
735 // This should never happen.
736 ABSL_RAW_LOG(WARNING,
737 "Unable to read from fd %d at offset %zu: n_read = %zd", fd,
738 off, n_read);
739 return SYMBOL_NOT_FOUND;
740 }
741 ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");
742
743 // strtab->sh_offset points into .strtab-like section that contains
744 // NUL-terminated strings: '\0foo\0barbaz\0...".
745 //
746 // sh_offset+st_name points to the start of symbol name, but we don't know
747 // how long the symbol is, so we try to read as much as we have space for,
748 // and usually over-read (i.e. there is a NUL somewhere before n_read).
749 if (memchr(out, '\0', n_read) == nullptr) {
750 // Either out_size was too small (n_read == out_size and no NUL), or
751 // we tried to read past the EOF (n_read < out_size) and .strtab is
752 // corrupt (missing terminating NUL; should never happen for valid ELF).
753 out[n_read - 1] = '\0';
754 return SYMBOL_TRUNCATED;
755 }
756 return SYMBOL_FOUND;
757 }
758
759 return SYMBOL_NOT_FOUND;
760}
761
762// Get the symbol name of "pc" from the file pointed by "fd". Process
763// both regular and dynamic symbol tables if necessary.
764// See FindSymbol() comment for description of return value.
765FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
766 const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
767 char *out, int out_size, char *tmp_buf, int tmp_buf_size) {
768 ElfW(Shdr) symtab;
769 ElfW(Shdr) strtab;
770 ElfW(Shdr) opd;
771 ElfW(Shdr) *opd_ptr = nullptr;
772
773 // On platforms using an .opd sections for function descriptor, read
774 // the section header. The .opd section is in data segment and should be
775 // loaded but we check that it is mapped just to be extra careful.
776 if (kPlatformUsesOPDSections) {
777 if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
778 sizeof(kOpdSectionName) - 1, &opd) &&
779 FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
780 opd.sh_size) != nullptr) {
781 opd_ptr = &opd;
782 } else {
783 return SYMBOL_NOT_FOUND;
784 }
785 }
786
787 // Consult a regular symbol table, then fall back to the dynamic symbol table.
788 for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {
789 if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
790 obj.elf_header.e_shoff, symbol_table_type,
791 &symtab, tmp_buf, tmp_buf_size)) {
792 continue;
793 }
794 if (!ReadFromOffsetExact(
795 obj.fd, &strtab, sizeof(strtab),
796 obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
797 continue;
798 }
799 const FindSymbolResult rc =
800 FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
801 opd_ptr, tmp_buf, tmp_buf_size);
802 if (rc != SYMBOL_NOT_FOUND) {
803 return rc;
804 }
805 }
806
807 return SYMBOL_NOT_FOUND;
808}
809
810namespace {
811// Thin wrapper around a file descriptor so that the file descriptor
812// gets closed for sure.
813class FileDescriptor {
814 public:
815 explicit FileDescriptor(int fd) : fd_(fd) {}
816 FileDescriptor(const FileDescriptor &) = delete;
817 FileDescriptor &operator=(const FileDescriptor &) = delete;
818
819 ~FileDescriptor() {
820 if (fd_ >= 0) {
821 NO_INTR(close(fd_));
822 }
823 }
824
825 int get() const { return fd_; }
826
827 private:
828 const int fd_;
829};
830
831// Helper class for reading lines from file.
832//
833// Note: we don't use ProcMapsIterator since the object is big (it has
834// a 5k array member) and uses async-unsafe functions such as sscanf()
835// and snprintf().
836class LineReader {
837 public:
838 explicit LineReader(int fd, char *buf, int buf_len)
839 : fd_(fd),
840 buf_len_(buf_len),
841 buf_(buf),
842 bol_(buf),
843 eol_(buf),
844 eod_(buf) {}
845
846 LineReader(const LineReader &) = delete;
847 LineReader &operator=(const LineReader &) = delete;
848
849 // Read '\n'-terminated line from file. On success, modify "bol"
850 // and "eol", then return true. Otherwise, return false.
851 //
852 // Note: if the last line doesn't end with '\n', the line will be
853 // dropped. It's an intentional behavior to make the code simple.
854 bool ReadLine(const char **bol, const char **eol) {
855 if (BufferIsEmpty()) { // First time.
856 const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
857 if (num_bytes <= 0) { // EOF or error.
858 return false;
859 }
860 eod_ = buf_ + num_bytes;
861 bol_ = buf_;
862 } else {
863 bol_ = eol_ + 1; // Advance to the next line in the buffer.
864 SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_".
865 if (!HasCompleteLine()) {
866 const int incomplete_line_length = eod_ - bol_;
867 // Move the trailing incomplete line to the beginning.
868 memmove(buf_, bol_, incomplete_line_length);
869 // Read text from file and append it.
870 char *const append_pos = buf_ + incomplete_line_length;
871 const int capacity_left = buf_len_ - incomplete_line_length;
872 const ssize_t num_bytes =
873 ReadPersistent(fd_, append_pos, capacity_left);
874 if (num_bytes <= 0) { // EOF or error.
875 return false;
876 }
877 eod_ = append_pos + num_bytes;
878 bol_ = buf_;
879 }
880 }
881 eol_ = FindLineFeed();
882 if (eol_ == nullptr) { // '\n' not found. Malformed line.
883 return false;
884 }
885 *eol_ = '\0'; // Replace '\n' with '\0'.
886
887 *bol = bol_;
888 *eol = eol_;
889 return true;
890 }
891
892 private:
893 char *FindLineFeed() const {
894 return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
895 }
896
897 bool BufferIsEmpty() const { return buf_ == eod_; }
898
899 bool HasCompleteLine() const {
900 return !BufferIsEmpty() && FindLineFeed() != nullptr;
901 }
902
903 const int fd_;
904 const int buf_len_;
905 char *const buf_;
906 char *bol_;
907 char *eol_;
908 const char *eod_; // End of data in "buf_".
909};
910} // namespace
911
912// Place the hex number read from "start" into "*hex". The pointer to
913// the first non-hex character or "end" is returned.
914static const char *GetHex(const char *start, const char *end,
915 uint64_t *const value) {
916 uint64_t hex = 0;
917 const char *p;
918 for (p = start; p < end; ++p) {
919 int ch = *p;
920 if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
921 (ch >= 'a' && ch <= 'f')) {
922 hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
923 } else { // Encountered the first non-hex character.
924 break;
925 }
926 }
927 SAFE_ASSERT(p <= end);
928 *value = hex;
929 return p;
930}
931
932static const char *GetHex(const char *start, const char *end,
933 const void **const addr) {
934 uint64_t hex = 0;
935 const char *p = GetHex(start, end, &hex);
936 *addr = reinterpret_cast<void *>(hex);
937 return p;
938}
939
940// Normally we are only interested in "r?x" maps.
941// On the PowerPC, function pointers point to descriptors in the .opd
942// section. The descriptors themselves are not executable code, so
943// we need to relax the check below to "r??".
944static bool ShouldUseMapping(const char *const flags) {
945 return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');
946}
947
948// Read /proc/self/maps and run "callback" for each mmapped file found. If
949// "callback" returns false, stop scanning and return true. Else continue
950// scanning /proc/self/maps. Return true if no parse error is found.
951static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
952 bool (*callback)(const char *filename, const void *const start_addr,
953 const void *const end_addr, uint64_t offset, void *arg),
954 void *arg, void *tmp_buf, int tmp_buf_size) {
955 // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
956 // requires kernel to stop all threads, and is significantly slower when there
957 // are 1000s of threads.
958 char maps_path[80];
959 snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
960
961 int maps_fd;
962 NO_INTR(maps_fd = open(maps_path, O_RDONLY));
963 FileDescriptor wrapped_maps_fd(maps_fd);
964 if (wrapped_maps_fd.get() < 0) {
965 ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
966 return false;
967 }
968
969 // Iterate over maps and look for the map containing the pc. Then
970 // look into the symbol tables inside.
971 LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
972 tmp_buf_size);
973 while (true) {
974 const char *cursor;
975 const char *eol;
976 if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line.
977 break;
978 }
979
980 const char *line = cursor;
981 const void *start_address;
982 // Start parsing line in /proc/self/maps. Here is an example:
983 //
984 // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat
985 //
986 // We want start address (08048000), end address (0804c000), flags
987 // (r-xp) and file name (/bin/cat).
988
989 // Read start address.
990 cursor = GetHex(cursor, eol, &start_address);
991 if (cursor == eol || *cursor != '-') {
992 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
993 return false;
994 }
995 ++cursor; // Skip '-'.
996
997 // Read end address.
998 const void *end_address;
999 cursor = GetHex(cursor, eol, &end_address);
1000 if (cursor == eol || *cursor != ' ') {
1001 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1002 return false;
1003 }
1004 ++cursor; // Skip ' '.
1005
1006 // Read flags. Skip flags until we encounter a space or eol.
1007 const char *const flags_start = cursor;
1008 while (cursor < eol && *cursor != ' ') {
1009 ++cursor;
1010 }
1011 // We expect at least four letters for flags (ex. "r-xp").
1012 if (cursor == eol || cursor < flags_start + 4) {
1013 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
1014 return false;
1015 }
1016
1017 // Check flags.
1018 if (!ShouldUseMapping(flags_start)) {
1019 continue; // We skip this map.
1020 }
1021 ++cursor; // Skip ' '.
1022
1023 // Read file offset.
1024 uint64_t offset;
1025 cursor = GetHex(cursor, eol, &offset);
1026 ++cursor; // Skip ' '.
1027
1028 // Skip to file name. "cursor" now points to dev. We need to skip at least
1029 // two spaces for dev and inode.
1030 int num_spaces = 0;
1031 while (cursor < eol) {
1032 if (*cursor == ' ') {
1033 ++num_spaces;
1034 } else if (num_spaces >= 2) {
1035 // The first non-space character after skipping two spaces
1036 // is the beginning of the file name.
1037 break;
1038 }
1039 ++cursor;
1040 }
1041
1042 // Check whether this entry corresponds to our hint table for the true
1043 // filename.
1044 bool hinted =
1045 GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
1046 if (!hinted && (cursor == eol || cursor[0] == '[')) {
1047 // not an object file, typically [vdso] or [vsyscall]
1048 continue;
1049 }
1050 if (!callback(cursor, start_address, end_address, offset, arg)) break;
1051 }
1052 return true;
1053}
1054
1055// Find the objfile mapped in address region containing [addr, addr + len).
1056ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
1057 for (int i = 0; i < 2; ++i) {
1058 if (!ok_) return nullptr;
1059
1060 // Read /proc/self/maps if necessary
1061 if (!addr_map_read_) {
1062 addr_map_read_ = true;
1063 if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
1064 ok_ = false;
1065 return nullptr;
1066 }
1067 }
1068
1069 int lo = 0;
1070 int hi = addr_map_.Size();
1071 while (lo < hi) {
1072 int mid = (lo + hi) / 2;
1073 if (addr < addr_map_.At(mid)->end_addr) {
1074 hi = mid;
1075 } else {
1076 lo = mid + 1;
1077 }
1078 }
1079 if (lo != addr_map_.Size()) {
1080 ObjFile *obj = addr_map_.At(lo);
1081 SAFE_ASSERT(obj->end_addr > addr);
1082 if (addr >= obj->start_addr &&
1083 reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
1084 return obj;
1085 }
1086
1087 // The address mapping may have changed since it was last read. Retry.
1088 ClearAddrMap();
1089 }
1090 return nullptr;
1091}
1092
1093void Symbolizer::ClearAddrMap() {
1094 for (int i = 0; i != addr_map_.Size(); i++) {
1095 ObjFile *o = addr_map_.At(i);
1096 base_internal::LowLevelAlloc::Free(o->filename);
1097 if (o->fd >= 0) {
1098 NO_INTR(close(o->fd));
1099 }
1100 }
1101 addr_map_.Clear();
1102 addr_map_read_ = false;
1103}
1104
1105// Callback for ReadAddrMap to register objfiles in an in-memory table.
1106bool Symbolizer::RegisterObjFile(const char *filename,
1107 const void *const start_addr,
1108 const void *const end_addr, uint64_t offset,
1109 void *arg) {
1110 Symbolizer *impl = static_cast<Symbolizer *>(arg);
1111
1112 // Files are supposed to be added in the increasing address order. Make
1113 // sure that's the case.
1114 int addr_map_size = impl->addr_map_.Size();
1115 if (addr_map_size != 0) {
1116 ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
1117 if (old->end_addr > end_addr) {
1118 ABSL_RAW_LOG(ERROR,
1119 "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
1120 ": %s",
1121 reinterpret_cast<uintptr_t>(end_addr), filename,
1122 reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1123 return true;
1124 } else if (old->end_addr == end_addr) {
1125 // The same entry appears twice. This sometimes happens for [vdso].
1126 if (old->start_addr != start_addr ||
1127 strcmp(old->filename, filename) != 0) {
1128 ABSL_RAW_LOG(ERROR,
1129 "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
1130 reinterpret_cast<uintptr_t>(end_addr), filename,
1131 reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1132 }
1133 return true;
1134 }
1135 }
1136 ObjFile *obj = impl->addr_map_.Add();
1137 obj->filename = impl->CopyString(filename);
1138 obj->start_addr = start_addr;
1139 obj->end_addr = end_addr;
1140 obj->offset = offset;
1141 obj->elf_type = -1; // filled on demand
1142 obj->fd = -1; // opened on demand
1143 return true;
1144}
1145
1146// This function wraps the Demangle function to provide an interface
1147// where the input symbol is demangled in-place.
1148// To keep stack consumption low, we would like this function to not
1149// get inlined.
1150static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,
1151 char *tmp_buf,
1152 int tmp_buf_size) {
1153 if (Demangle(out, tmp_buf, tmp_buf_size)) {
1154 // Demangling succeeded. Copy to out if the space allows.
1155 int len = strlen(tmp_buf);
1156 if (len + 1 <= out_size) { // +1 for '\0'.
1157 SAFE_ASSERT(len < tmp_buf_size);
1158 memmove(out, tmp_buf, len + 1);
1159 }
1160 }
1161}
1162
1163SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
1164 uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
1165 pc0 >>= 3; // drop the low 3 bits
1166
1167 // Shuffle bits.
1168 pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
1169 return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
1170}
1171
1172void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
1173 for (uint32_t &age : line->age) {
1174 ++age;
1175 }
1176}
1177
1178const char *Symbolizer::FindSymbolInCache(const void *const pc) {
1179 if (pc == nullptr) return nullptr;
1180
1181 SymbolCacheLine *line = GetCacheLine(pc);
1182 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1183 if (line->pc[i] == pc) {
1184 AgeSymbols(line);
1185 line->age[i] = 0;
1186 return line->name[i];
1187 }
1188 }
1189 return nullptr;
1190}
1191
1192const char *Symbolizer::InsertSymbolInCache(const void *const pc,
1193 const char *name) {
1194 SAFE_ASSERT(pc != nullptr);
1195
1196 SymbolCacheLine *line = GetCacheLine(pc);
1197 uint32_t max_age = 0;
1198 int oldest_index = -1;
1199 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1200 if (line->pc[i] == nullptr) {
1201 AgeSymbols(line);
1202 line->pc[i] = pc;
1203 line->name[i] = CopyString(name);
1204 line->age[i] = 0;
1205 return line->name[i];
1206 }
1207 if (line->age[i] >= max_age) {
1208 max_age = line->age[i];
1209 oldest_index = i;
1210 }
1211 }
1212
1213 AgeSymbols(line);
1214 ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");
1215 base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
1216 line->pc[oldest_index] = pc;
1217 line->name[oldest_index] = CopyString(name);
1218 line->age[oldest_index] = 0;
1219 return line->name[oldest_index];
1220}
1221
1222static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
1223 if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
1224 return;
1225 }
1226 int fd = open("/proc/self/exe", O_RDONLY);
1227 if (fd == -1) {
1228 return;
1229 }
1230 // Verify that contents of /proc/self/exe matches in-memory image of
1231 // the binary. This can fail if the "deleted" binary is in fact not
1232 // the main executable, or for binaries that have the first PT_LOAD
1233 // segment smaller than 4K. We do it in four steps so that the
1234 // buffer is smaller and we don't consume too much stack space.
1235 const char *mem = reinterpret_cast<const char *>(obj->start_addr);
1236 for (int i = 0; i < 4; ++i) {
1237 char buf[1024];
1238 ssize_t n = read(fd, buf, sizeof(buf));
1239 if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
1240 close(fd);
1241 return;
1242 }
1243 mem += sizeof(buf);
1244 }
1245 obj->fd = fd;
1246}
1247
1248static bool MaybeInitializeObjFile(ObjFile *obj) {
1249 if (obj->fd < 0) {
1250 obj->fd = open(obj->filename, O_RDONLY);
1251
1252 if (obj->fd < 0) {
1253 // Getting /proc/self/exe here means that we were hinted.
1254 if (strcmp(obj->filename, "/proc/self/exe") == 0) {
1255 // /proc/self/exe may be inaccessible (due to setuid, etc.), so try
1256 // accessing the binary via argv0.
1257 if (argv0_value != nullptr) {
1258 obj->fd = open(argv0_value, O_RDONLY);
1259 }
1260 } else {
1261 MaybeOpenFdFromSelfExe(obj);
1262 }
1263 }
1264
1265 if (obj->fd < 0) {
1266 ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
1267 return false;
1268 }
1269 obj->elf_type = FileGetElfType(obj->fd);
1270 if (obj->elf_type < 0) {
1271 ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
1272 obj->elf_type);
1273 return false;
1274 }
1275
1276 if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),
1277 0)) {
1278 ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
1279 return false;
1280 }
Austin Schuhb4691e92020-12-31 12:37:18 -08001281 const int phnum = obj->elf_header.e_phnum;
1282 const int phentsize = obj->elf_header.e_phentsize;
1283 size_t phoff = obj->elf_header.e_phoff;
1284 size_t num_executable_load_segments = 0;
1285 for (int j = 0; j < phnum; j++) {
1286 ElfW(Phdr) phdr;
1287 if (!ReadFromOffsetExact(obj->fd, &phdr, sizeof(phdr), phoff)) {
1288 ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d",
1289 obj->filename, j);
1290 return false;
1291 }
1292 phoff += phentsize;
1293 constexpr int rx = PF_X | PF_R;
1294 if (phdr.p_type != PT_LOAD || (phdr.p_flags & rx) != rx) {
1295 // Not a LOAD segment, or not executable code.
1296 continue;
1297 }
1298 if (num_executable_load_segments < obj->phdr.size()) {
1299 memcpy(&obj->phdr[num_executable_load_segments++], &phdr, sizeof(phdr));
1300 } else {
1301 ABSL_RAW_LOG(WARNING, "%s: too many executable LOAD segments",
1302 obj->filename);
1303 break;
1304 }
1305 }
1306 if (num_executable_load_segments == 0) {
1307 // This object has no "r-x" LOAD segments. That's unexpected.
1308 ABSL_RAW_LOG(WARNING, "%s: no executable LOAD segments", obj->filename);
1309 return false;
1310 }
Austin Schuh36244a12019-09-21 17:52:38 -07001311 }
1312 return true;
1313}
1314
1315// The implementation of our symbolization routine. If it
1316// successfully finds the symbol containing "pc" and obtains the
1317// symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
1318// If any symbol decorators have been installed via InstallSymbolDecorator(),
1319// they are called here as well.
1320// To keep stack consumption low, we would like this function to not
1321// get inlined.
1322const char *Symbolizer::GetSymbol(const void *const pc) {
1323 const char *entry = FindSymbolInCache(pc);
1324 if (entry != nullptr) {
1325 return entry;
1326 }
1327 symbol_buf_[0] = '\0';
1328
1329 ObjFile *const obj = FindObjFile(pc, 1);
1330 ptrdiff_t relocation = 0;
1331 int fd = -1;
1332 if (obj != nullptr) {
1333 if (MaybeInitializeObjFile(obj)) {
Austin Schuhb4691e92020-12-31 12:37:18 -08001334 const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr);
1335 if (obj->elf_type == ET_DYN && start_addr >= obj->offset) {
Austin Schuh36244a12019-09-21 17:52:38 -07001336 // This object was relocated.
1337 //
1338 // For obj->offset > 0, adjust the relocation since a mapping at offset
1339 // X in the file will have a start address of [true relocation]+X.
Austin Schuhb4691e92020-12-31 12:37:18 -08001340 relocation = start_addr - obj->offset;
1341
1342 // Note: some binaries have multiple "rx" LOAD segments. We must
1343 // find the right one.
1344 ElfW(Phdr) *phdr = nullptr;
1345 for (size_t j = 0; j < obj->phdr.size(); j++) {
1346 ElfW(Phdr) &p = obj->phdr[j];
1347 if (p.p_type != PT_LOAD) {
1348 // We only expect PT_LOADs. This must be PT_NULL that we didn't
1349 // write over (i.e. we exhausted all interesting PT_LOADs).
1350 ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type");
1351 break;
1352 }
1353 if (pc < reinterpret_cast<void *>(start_addr + p.p_memsz)) {
1354 phdr = &p;
1355 break;
1356 }
1357 }
1358 if (phdr == nullptr) {
1359 // That's unexpected. Hope for the best.
1360 ABSL_RAW_LOG(
1361 WARNING,
1362 "%s: unable to find LOAD segment for pc: %p, start_addr: %zx",
1363 obj->filename, pc, start_addr);
1364 } else {
1365 // Adjust relocation in case phdr.p_vaddr != 0.
1366 // This happens for binaries linked with `lld --rosegment`, and for
1367 // binaries linked with BFD `ld -z separate-code`.
1368 relocation -= phdr->p_vaddr - phdr->p_offset;
1369 }
Austin Schuh36244a12019-09-21 17:52:38 -07001370 }
1371
1372 fd = obj->fd;
Austin Schuhb4691e92020-12-31 12:37:18 -08001373 if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
1374 sizeof(symbol_buf_), tmp_buf_,
1375 sizeof(tmp_buf_)) == SYMBOL_FOUND) {
1376 // Only try to demangle the symbol name if it fit into symbol_buf_.
1377 DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
1378 sizeof(tmp_buf_));
1379 }
Austin Schuh36244a12019-09-21 17:52:38 -07001380 }
1381 } else {
1382#if ABSL_HAVE_VDSO_SUPPORT
1383 VDSOSupport vdso;
1384 if (vdso.IsPresent()) {
1385 VDSOSupport::SymbolInfo symbol_info;
1386 if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
1387 // All VDSO symbols are known to be short.
1388 size_t len = strlen(symbol_info.name);
1389 ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
1390 "VDSO symbol unexpectedly long");
1391 memcpy(symbol_buf_, symbol_info.name, len + 1);
1392 }
1393 }
1394#endif
1395 }
1396
1397 if (g_decorators_mu.TryLock()) {
1398 if (g_num_decorators > 0) {
1399 SymbolDecoratorArgs decorator_args = {
1400 pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_),
1401 tmp_buf_, sizeof(tmp_buf_), nullptr};
1402 for (int i = 0; i < g_num_decorators; ++i) {
1403 decorator_args.arg = g_decorators[i].arg;
1404 g_decorators[i].fn(&decorator_args);
1405 }
1406 }
1407 g_decorators_mu.Unlock();
1408 }
1409 if (symbol_buf_[0] == '\0') {
1410 return nullptr;
1411 }
1412 symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia.
1413 return InsertSymbolInCache(pc, symbol_buf_);
1414}
1415
1416bool RemoveAllSymbolDecorators(void) {
1417 if (!g_decorators_mu.TryLock()) {
1418 // Someone else is using decorators. Get out.
1419 return false;
1420 }
1421 g_num_decorators = 0;
1422 g_decorators_mu.Unlock();
1423 return true;
1424}
1425
1426bool RemoveSymbolDecorator(int ticket) {
1427 if (!g_decorators_mu.TryLock()) {
1428 // Someone else is using decorators. Get out.
1429 return false;
1430 }
1431 for (int i = 0; i < g_num_decorators; ++i) {
1432 if (g_decorators[i].ticket == ticket) {
1433 while (i < g_num_decorators - 1) {
1434 g_decorators[i] = g_decorators[i + 1];
1435 ++i;
1436 }
1437 g_num_decorators = i;
1438 break;
1439 }
1440 }
1441 g_decorators_mu.Unlock();
1442 return true; // Decorator is known to be removed.
1443}
1444
1445int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
1446 static int ticket = 0;
1447
1448 if (!g_decorators_mu.TryLock()) {
1449 // Someone else is using decorators. Get out.
Austin Schuhb4691e92020-12-31 12:37:18 -08001450 return -2;
Austin Schuh36244a12019-09-21 17:52:38 -07001451 }
1452 int ret = ticket;
1453 if (g_num_decorators >= kMaxDecorators) {
1454 ret = -1;
1455 } else {
1456 g_decorators[g_num_decorators] = {decorator, arg, ticket++};
1457 ++g_num_decorators;
1458 }
1459 g_decorators_mu.Unlock();
1460 return ret;
1461}
1462
1463bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
1464 const char *filename) {
1465 SAFE_ASSERT(start <= end);
1466 SAFE_ASSERT(filename != nullptr);
1467
1468 InitSigSafeArena();
1469
1470 if (!g_file_mapping_mu.TryLock()) {
1471 return false;
1472 }
1473
1474 bool ret = true;
1475 if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
1476 ret = false;
1477 } else {
Austin Schuhb4691e92020-12-31 12:37:18 -08001478 // TODO(ckennelly): Move this into a string copy routine.
Austin Schuh36244a12019-09-21 17:52:38 -07001479 int len = strlen(filename);
1480 char *dst = static_cast<char *>(
1481 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
1482 ABSL_RAW_CHECK(dst != nullptr, "out of memory");
1483 memcpy(dst, filename, len + 1);
1484
1485 auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
1486 hint.start = start;
1487 hint.end = end;
1488 hint.offset = offset;
1489 hint.filename = dst;
1490 }
1491
1492 g_file_mapping_mu.Unlock();
1493 return ret;
1494}
1495
1496bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
1497 const char **filename) {
1498 if (!g_file_mapping_mu.TryLock()) {
1499 return false;
1500 }
1501 bool found = false;
1502 for (int i = 0; i < g_num_file_mapping_hints; i++) {
1503 if (g_file_mapping_hints[i].start <= *start &&
1504 *end <= g_file_mapping_hints[i].end) {
1505 // We assume that the start_address for the mapping is the base
1506 // address of the ELF section, but when [start_address,end_address) is
1507 // not strictly equal to [hint.start, hint.end), that assumption is
1508 // invalid.
1509 //
1510 // This uses the hint's start address (even though hint.start is not
1511 // necessarily equal to start_address) to ensure the correct
1512 // relocation is computed later.
1513 *start = g_file_mapping_hints[i].start;
1514 *end = g_file_mapping_hints[i].end;
1515 *offset = g_file_mapping_hints[i].offset;
1516 *filename = g_file_mapping_hints[i].filename;
1517 found = true;
1518 break;
1519 }
1520 }
1521 g_file_mapping_mu.Unlock();
1522 return found;
1523}
1524
1525} // namespace debugging_internal
1526
1527bool Symbolize(const void *pc, char *out, int out_size) {
1528 // Symbolization is very slow under tsan.
Austin Schuhb4691e92020-12-31 12:37:18 -08001529 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
Austin Schuh36244a12019-09-21 17:52:38 -07001530 SAFE_ASSERT(out_size >= 0);
1531 debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
1532 const char *name = s->GetSymbol(pc);
1533 bool ok = false;
1534 if (name != nullptr && out_size > 0) {
1535 strncpy(out, name, out_size);
1536 ok = true;
1537 if (out[out_size - 1] != '\0') {
1538 // strncpy() does not '\0' terminate when it truncates. Do so, with
1539 // trailing ellipsis.
1540 static constexpr char kEllipsis[] = "...";
1541 int ellipsis_size =
1542 std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);
1543 memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);
1544 out[out_size - 1] = '\0';
1545 }
1546 }
1547 debugging_internal::FreeSymbolizer(s);
Austin Schuhb4691e92020-12-31 12:37:18 -08001548 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
Austin Schuh36244a12019-09-21 17:52:38 -07001549 return ok;
1550}
1551
Austin Schuhb4691e92020-12-31 12:37:18 -08001552ABSL_NAMESPACE_END
Austin Schuh36244a12019-09-21 17:52:38 -07001553} // namespace absl
Austin Schuhb4691e92020-12-31 12:37:18 -08001554
1555extern "C" bool AbslInternalGetFileMappingHint(const void **start,
1556 const void **end, uint64_t *offset,
1557 const char **filename) {
1558 return absl::debugging_internal::GetFileMappingHint(start, end, offset,
1559 filename);
1560}