blob: bc320ff75bc533774107e8ee1efc46296c92e29d [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2017 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14//
15// Produce stack trace
16
17#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
18#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
19
20#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
21#include <ucontext.h> // for ucontext_t
22#endif
23
24#if !defined(_WIN32)
25#include <unistd.h>
26#endif
27
28#include <cassert>
29#include <cstdint>
30
31#include "absl/base/macros.h"
32#include "absl/base/port.h"
33#include "absl/debugging/internal/address_is_readable.h"
34#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
35#include "absl/debugging/stacktrace.h"
36
37#include "absl/base/internal/raw_logging.h"
38
39using absl::debugging_internal::AddressIsReadable;
40
41#if defined(__linux__) && defined(__i386__)
42// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
43// preceeding "syscall" or "sysenter".
44// If __kernel_vsyscall uses frame pointer, answer 0.
45//
46// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
47// to analyze before giving up. Up to kMaxBytes+1 bytes of
48// instructions could be accessed.
49//
50// Here are known __kernel_vsyscall instruction sequences:
51//
52// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
53// Used on Intel.
54// 0xffffe400 <__kernel_vsyscall+0>: push %ecx
55// 0xffffe401 <__kernel_vsyscall+1>: push %edx
56// 0xffffe402 <__kernel_vsyscall+2>: push %ebp
57// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
58// 0xffffe405 <__kernel_vsyscall+5>: sysenter
59//
60// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
61// Used on AMD.
62// 0xffffe400 <__kernel_vsyscall+0>: push %ebp
63// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
64// 0xffffe403 <__kernel_vsyscall+3>: syscall
65//
66
67// The sequence below isn't actually expected in Google fleet,
68// here only for completeness. Remove this comment from OSS release.
69
70// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
71// 0xffffe400 <__kernel_vsyscall+0>: int $0x80
72// 0xffffe401 <__kernel_vsyscall+1>: ret
73//
74static const int kMaxBytes = 10;
75
76// We use assert()s instead of DCHECK()s -- this is too low level
77// for DCHECK().
78
79static int CountPushInstructions(const unsigned char *const addr) {
80 int result = 0;
81 for (int i = 0; i < kMaxBytes; ++i) {
82 if (addr[i] == 0x89) {
83 // "mov reg,reg"
84 if (addr[i + 1] == 0xE5) {
85 // Found "mov %esp,%ebp".
86 return 0;
87 }
88 ++i; // Skip register encoding byte.
89 } else if (addr[i] == 0x0F &&
90 (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
91 // Found "sysenter" or "syscall".
92 return result;
93 } else if ((addr[i] & 0xF0) == 0x50) {
94 // Found "push %reg".
95 ++result;
96 } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
97 // Found "int $0x80"
98 assert(result == 0);
99 return 0;
100 } else {
101 // Unexpected instruction.
102 assert(false && "unexpected instruction in __kernel_vsyscall");
103 return 0;
104 }
105 }
106 // Unexpected: didn't find SYSENTER or SYSCALL in
107 // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
108 assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
109 return 0;
110}
111#endif
112
113// Assume stack frames larger than 100,000 bytes are bogus.
114static const int kMaxFrameBytes = 100000;
115
116// Returns the stack frame pointer from signal context, 0 if unknown.
117// vuc is a ucontext_t *. We use void* to avoid the use
118// of ucontext_t on non-POSIX systems.
119static uintptr_t GetFP(const void *vuc) {
120#if !defined(__linux__)
121 static_cast<void>(vuc); // Avoid an unused argument compiler warning.
122#else
123 if (vuc != nullptr) {
124 auto *uc = reinterpret_cast<const ucontext_t *>(vuc);
125#if defined(__i386__)
126 const auto bp = uc->uc_mcontext.gregs[REG_EBP];
127 const auto sp = uc->uc_mcontext.gregs[REG_ESP];
128#elif defined(__x86_64__)
129 const auto bp = uc->uc_mcontext.gregs[REG_RBP];
130 const auto sp = uc->uc_mcontext.gregs[REG_RSP];
131#else
132 const uintptr_t bp = 0;
133 const uintptr_t sp = 0;
134#endif
135 // Sanity-check that the base pointer is valid. It should be as long as
136 // SHRINK_WRAP_FRAME_POINTER is not set, but it's possible that some code in
137 // the process is compiled with --copt=-fomit-frame-pointer or
138 // --copt=-momit-leaf-frame-pointer.
139 //
140 // TODO(bcmills): -momit-leaf-frame-pointer is currently the default
141 // behavior when building with clang. Talk to the C++ toolchain team about
142 // fixing that.
143 if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp;
144
145 // If bp isn't a plausible frame pointer, return the stack pointer instead.
146 // If we're lucky, it points to the start of a stack frame; otherwise, we'll
147 // get one frame of garbage in the stack trace and fail the sanity check on
148 // the next iteration.
149 return sp;
150 }
151#endif
152 return 0;
153}
154
155// Given a pointer to a stack frame, locate and return the calling
156// stackframe, or return null if no stackframe can be found. Perform sanity
157// checks (the strictness of which is controlled by the boolean parameter
158// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
159template <bool STRICT_UNWINDING, bool WITH_CONTEXT>
160ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
161ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
162static void **NextStackFrame(void **old_fp, const void *uc) {
163 void **new_fp = (void **)*old_fp;
164
165#if defined(__linux__) && defined(__i386__)
166 if (WITH_CONTEXT && uc != nullptr) {
167 // How many "push %reg" instructions are there at __kernel_vsyscall?
168 // This is constant for a given kernel and processor, so compute
169 // it only once.
170 static int num_push_instructions = -1; // Sentinel: not computed yet.
171 // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
172 // be there.
173 static const unsigned char *kernel_rt_sigreturn_address = nullptr;
174 static const unsigned char *kernel_vsyscall_address = nullptr;
175 if (num_push_instructions == -1) {
Austin Schuhb4691e92020-12-31 12:37:18 -0800176#ifdef ABSL_HAVE_VDSO_SUPPORT
Austin Schuh36244a12019-09-21 17:52:38 -0700177 absl::debugging_internal::VDSOSupport vdso;
178 if (vdso.IsPresent()) {
179 absl::debugging_internal::VDSOSupport::SymbolInfo
180 rt_sigreturn_symbol_info;
181 absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info;
182 if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC,
183 &rt_sigreturn_symbol_info) ||
184 !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC,
185 &vsyscall_symbol_info) ||
186 rt_sigreturn_symbol_info.address == nullptr ||
187 vsyscall_symbol_info.address == nullptr) {
188 // Unexpected: 32-bit VDSO is present, yet one of the expected
189 // symbols is missing or null.
190 assert(false && "VDSO is present, but doesn't have expected symbols");
191 num_push_instructions = 0;
192 } else {
193 kernel_rt_sigreturn_address =
194 reinterpret_cast<const unsigned char *>(
195 rt_sigreturn_symbol_info.address);
196 kernel_vsyscall_address =
197 reinterpret_cast<const unsigned char *>(
198 vsyscall_symbol_info.address);
199 num_push_instructions =
200 CountPushInstructions(kernel_vsyscall_address);
201 }
202 } else {
203 num_push_instructions = 0;
204 }
Austin Schuhb4691e92020-12-31 12:37:18 -0800205#else // ABSL_HAVE_VDSO_SUPPORT
206 num_push_instructions = 0;
207#endif // ABSL_HAVE_VDSO_SUPPORT
Austin Schuh36244a12019-09-21 17:52:38 -0700208 }
209 if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr &&
210 old_fp[1] == kernel_rt_sigreturn_address) {
211 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
212 // This kernel does not use frame pointer in its VDSO code,
213 // and so %ebp is not suitable for unwinding.
214 void **const reg_ebp =
215 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
216 const unsigned char *const reg_eip =
217 reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
218 if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip &&
219 reg_eip - kernel_vsyscall_address < kMaxBytes) {
220 // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
221 // Restore from 'ucv' instead.
222 void **const reg_esp =
223 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
224 // Check that alleged %esp is not null and is reasonably aligned.
225 if (reg_esp &&
226 ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
227 // Check that alleged %esp is actually readable. This is to prevent
228 // "double fault" in case we hit the first fault due to e.g. stack
229 // corruption.
230 void *const reg_esp2 = reg_esp[num_push_instructions - 1];
231 if (AddressIsReadable(reg_esp2)) {
232 // Alleged %esp is readable, use it for further unwinding.
233 new_fp = reinterpret_cast<void **>(reg_esp2);
234 }
235 }
236 }
237 }
238 }
239#endif
240
241 const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp);
242 const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp);
243
244 // Check that the transition from frame pointer old_fp to frame
245 // pointer new_fp isn't clearly bogus. Skip the checks if new_fp
246 // matches the signal context, so that we don't skip out early when
247 // using an alternate signal stack.
248 //
249 // TODO(bcmills): The GetFP call should be completely unnecessary when
250 // SHRINK_WRAP_FRAME_POINTER is set (because we should be back in the thread's
251 // stack by this point), but it is empirically still needed (e.g. when the
252 // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some
253 // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what
254 // it's supposed to.
255 if (STRICT_UNWINDING &&
256 (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) {
257 // With the stack growing downwards, older stack frame must be
258 // at a greater address that the current one.
259 if (new_fp_u <= old_fp_u) return nullptr;
260 if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr;
261 } else {
262 if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below
263 // In the non-strict mode, allow discontiguous stack frames.
264 // (alternate-signal-stacks for example).
265 if (new_fp == old_fp) return nullptr;
266 }
267
268 if (new_fp_u & (sizeof(void *) - 1)) return nullptr;
269#ifdef __i386__
270 // On 32-bit machines, the stack pointer can be very close to
271 // 0xffffffff, so we explicitly check for a pointer into the
272 // last two pages in the address space
273 if (new_fp_u >= 0xffffe000) return nullptr;
274#endif
275#if !defined(_WIN32)
276 if (!STRICT_UNWINDING) {
277 // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test
278 // on AMD-based machines with VDSO-enabled kernels.
279 // Make an extra sanity check to insure new_fp is readable.
280 // Note: NextStackFrame<false>() is only called while the program
281 // is already on its last leg, so it's ok to be slow here.
282
283 if (!AddressIsReadable(new_fp)) {
284 return nullptr;
285 }
286 }
287#endif
288 return new_fp;
289}
290
291template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
292ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
293ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
294ABSL_ATTRIBUTE_NOINLINE
295static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count,
296 const void *ucp, int *min_dropped_frames) {
297 int n = 0;
298 void **fp = reinterpret_cast<void **>(__builtin_frame_address(0));
299
300 while (fp && n < max_depth) {
301 if (*(fp + 1) == reinterpret_cast<void *>(0)) {
302 // In 64-bit code, we often see a frame that
303 // points to itself and has a return address of 0.
304 break;
305 }
306 void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);
307 if (skip_count > 0) {
308 skip_count--;
309 } else {
310 result[n] = *(fp + 1);
311 if (IS_STACK_FRAMES) {
312 if (next_fp > fp) {
313 sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp;
314 } else {
315 // A frame-size of 0 is used to indicate unknown frame size.
316 sizes[n] = 0;
317 }
318 }
319 n++;
320 }
321 fp = next_fp;
322 }
323 if (min_dropped_frames != nullptr) {
324 // Implementation detail: we clamp the max of frames we are willing to
325 // count, so as not to spend too much time in the loop below.
326 const int kMaxUnwind = 1000;
327 int j = 0;
328 for (; fp != nullptr && j < kMaxUnwind; j++) {
329 fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp);
330 }
331 *min_dropped_frames = j;
332 }
333 return n;
334}
335
336namespace absl {
Austin Schuhb4691e92020-12-31 12:37:18 -0800337ABSL_NAMESPACE_BEGIN
Austin Schuh36244a12019-09-21 17:52:38 -0700338namespace debugging_internal {
339bool StackTraceWorksForTest() {
340 return true;
341}
342} // namespace debugging_internal
Austin Schuhb4691e92020-12-31 12:37:18 -0800343ABSL_NAMESPACE_END
Austin Schuh36244a12019-09-21 17:52:38 -0700344} // namespace absl
345
346#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_