blob: 46cdb67b1fbfdaecf489d8b8b684b90a0c7897d8 [file] [log] [blame]
Austin Schuh36244a12019-09-21 17:52:38 -07001// Copyright 2018 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// For reference check out:
16// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
17//
18// Note that we only have partial C++11 support yet.
19
20#include "absl/debugging/internal/demangle.h"
21
22#include <cstdint>
23#include <cstdio>
24#include <limits>
25
26namespace absl {
Austin Schuhb4691e92020-12-31 12:37:18 -080027ABSL_NAMESPACE_BEGIN
Austin Schuh36244a12019-09-21 17:52:38 -070028namespace debugging_internal {
29
30typedef struct {
31 const char *abbrev;
32 const char *real_name;
33 // Number of arguments in <expression> context, or 0 if disallowed.
34 int arity;
35} AbbrevPair;
36
37// List of operators from Itanium C++ ABI.
38static const AbbrevPair kOperatorList[] = {
39 // New has special syntax (not currently supported).
40 {"nw", "new", 0},
41 {"na", "new[]", 0},
42
43 // Works except that the 'gs' prefix is not supported.
44 {"dl", "delete", 1},
45 {"da", "delete[]", 1},
46
47 {"ps", "+", 1}, // "positive"
48 {"ng", "-", 1}, // "negative"
49 {"ad", "&", 1}, // "address-of"
50 {"de", "*", 1}, // "dereference"
51 {"co", "~", 1},
52
53 {"pl", "+", 2},
54 {"mi", "-", 2},
55 {"ml", "*", 2},
56 {"dv", "/", 2},
57 {"rm", "%", 2},
58 {"an", "&", 2},
59 {"or", "|", 2},
60 {"eo", "^", 2},
61 {"aS", "=", 2},
62 {"pL", "+=", 2},
63 {"mI", "-=", 2},
64 {"mL", "*=", 2},
65 {"dV", "/=", 2},
66 {"rM", "%=", 2},
67 {"aN", "&=", 2},
68 {"oR", "|=", 2},
69 {"eO", "^=", 2},
70 {"ls", "<<", 2},
71 {"rs", ">>", 2},
72 {"lS", "<<=", 2},
73 {"rS", ">>=", 2},
74 {"eq", "==", 2},
75 {"ne", "!=", 2},
76 {"lt", "<", 2},
77 {"gt", ">", 2},
78 {"le", "<=", 2},
79 {"ge", ">=", 2},
80 {"nt", "!", 1},
81 {"aa", "&&", 2},
82 {"oo", "||", 2},
83 {"pp", "++", 1},
84 {"mm", "--", 1},
85 {"cm", ",", 2},
86 {"pm", "->*", 2},
87 {"pt", "->", 0}, // Special syntax
88 {"cl", "()", 0}, // Special syntax
89 {"ix", "[]", 2},
90 {"qu", "?", 3},
91 {"st", "sizeof", 0}, // Special syntax
92 {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions.
93 {nullptr, nullptr, 0},
94};
95
96// List of builtin types from Itanium C++ ABI.
Austin Schuhb4691e92020-12-31 12:37:18 -080097//
98// Invariant: only one- or two-character type abbreviations here.
Austin Schuh36244a12019-09-21 17:52:38 -070099static const AbbrevPair kBuiltinTypeList[] = {
100 {"v", "void", 0},
101 {"w", "wchar_t", 0},
102 {"b", "bool", 0},
103 {"c", "char", 0},
104 {"a", "signed char", 0},
105 {"h", "unsigned char", 0},
106 {"s", "short", 0},
107 {"t", "unsigned short", 0},
108 {"i", "int", 0},
109 {"j", "unsigned int", 0},
110 {"l", "long", 0},
111 {"m", "unsigned long", 0},
112 {"x", "long long", 0},
113 {"y", "unsigned long long", 0},
114 {"n", "__int128", 0},
115 {"o", "unsigned __int128", 0},
116 {"f", "float", 0},
117 {"d", "double", 0},
118 {"e", "long double", 0},
119 {"g", "__float128", 0},
120 {"z", "ellipsis", 0},
Austin Schuhb4691e92020-12-31 12:37:18 -0800121
122 {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits)
123 {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits)
124 {"Dc", "decltype(auto)", 0},
125 {"Da", "auto", 0},
126 {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr)
127 {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits)
128 {"Di", "char32_t", 0},
129 {"Du", "char8_t", 0},
130 {"Ds", "char16_t", 0},
131 {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits)
Austin Schuh36244a12019-09-21 17:52:38 -0700132 {nullptr, nullptr, 0},
133};
134
135// List of substitutions Itanium C++ ABI.
136static const AbbrevPair kSubstitutionList[] = {
137 {"St", "", 0},
138 {"Sa", "allocator", 0},
139 {"Sb", "basic_string", 0},
140 // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
141 {"Ss", "string", 0},
142 // std::basic_istream<char, std::char_traits<char> >
143 {"Si", "istream", 0},
144 // std::basic_ostream<char, std::char_traits<char> >
145 {"So", "ostream", 0},
146 // std::basic_iostream<char, std::char_traits<char> >
147 {"Sd", "iostream", 0},
148 {nullptr, nullptr, 0},
149};
150
151// State needed for demangling. This struct is copied in almost every stack
152// frame, so every byte counts.
153typedef struct {
154 int mangled_idx; // Cursor of mangled name.
Austin Schuhb4691e92020-12-31 12:37:18 -0800155 int out_cur_idx; // Cursor of output string.
Austin Schuh36244a12019-09-21 17:52:38 -0700156 int prev_name_idx; // For constructors/destructors.
157 signed int prev_name_length : 16; // For constructors/destructors.
158 signed int nest_level : 15; // For nested names.
159 unsigned int append : 1; // Append flag.
160 // Note: for some reason MSVC can't pack "bool append : 1" into the same int
161 // with the above two fields, so we use an int instead. Amusingly it can pack
162 // "signed bool" as expected, but relying on that to continue to be a legal
163 // type seems ill-advised (as it's illegal in at least clang).
164} ParseState;
165
166static_assert(sizeof(ParseState) == 4 * sizeof(int),
167 "unexpected size of ParseState");
168
169// One-off state for demangling that's not subject to backtracking -- either
170// constant data, data that's intentionally immune to backtracking (steps), or
171// data that would never be changed by backtracking anyway (recursion_depth).
172//
173// Only one copy of this exists for each call to Demangle, so the size of this
174// struct is nearly inconsequential.
175typedef struct {
Austin Schuhb4691e92020-12-31 12:37:18 -0800176 const char *mangled_begin; // Beginning of input string.
177 char *out; // Beginning of output string.
Austin Schuh36244a12019-09-21 17:52:38 -0700178 int out_end_idx; // One past last allowed output character.
179 int recursion_depth; // For stack exhaustion prevention.
180 int steps; // Cap how much work we'll do, regardless of depth.
181 ParseState parse_state; // Backtrackable state copied for most frames.
182} State;
183
184namespace {
185// Prevent deep recursion / stack exhaustion.
186// Also prevent unbounded handling of complex inputs.
187class ComplexityGuard {
188 public:
189 explicit ComplexityGuard(State *state) : state_(state) {
190 ++state->recursion_depth;
191 ++state->steps;
192 }
193 ~ComplexityGuard() { --state_->recursion_depth; }
194
195 // 256 levels of recursion seems like a reasonable upper limit on depth.
196 // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
197 // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
198 static constexpr int kRecursionDepthLimit = 256;
199
200 // We're trying to pick a charitable upper-limit on how many parse steps are
201 // necessary to handle something that a human could actually make use of.
202 // This is mostly in place as a bound on how much work we'll do if we are
203 // asked to demangle an mangled name from an untrusted source, so it should be
204 // much larger than the largest expected symbol, but much smaller than the
205 // amount of work we can do in, e.g., a second.
206 //
207 // Some real-world symbols from an arbitrary binary started failing between
208 // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
209 // the limit.
210 //
211 // Spending one second on 2^17 parse steps would require each step to take
212 // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
213 // under a second.
214 static constexpr int kParseStepsLimit = 1 << 17;
215
216 bool IsTooComplex() const {
217 return state_->recursion_depth > kRecursionDepthLimit ||
218 state_->steps > kParseStepsLimit;
219 }
220
221 private:
222 State *state_;
223};
224} // namespace
225
226// We don't use strlen() in libc since it's not guaranteed to be async
227// signal safe.
228static size_t StrLen(const char *str) {
229 size_t len = 0;
230 while (*str != '\0') {
231 ++str;
232 ++len;
233 }
234 return len;
235}
236
237// Returns true if "str" has at least "n" characters remaining.
238static bool AtLeastNumCharsRemaining(const char *str, int n) {
239 for (int i = 0; i < n; ++i) {
240 if (str[i] == '\0') {
241 return false;
242 }
243 }
244 return true;
245}
246
247// Returns true if "str" has "prefix" as a prefix.
248static bool StrPrefix(const char *str, const char *prefix) {
249 size_t i = 0;
250 while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
251 ++i;
252 }
253 return prefix[i] == '\0'; // Consumed everything in "prefix".
254}
255
256static void InitState(State *state, const char *mangled, char *out,
257 int out_size) {
258 state->mangled_begin = mangled;
259 state->out = out;
260 state->out_end_idx = out_size;
261 state->recursion_depth = 0;
262 state->steps = 0;
263
264 state->parse_state.mangled_idx = 0;
265 state->parse_state.out_cur_idx = 0;
266 state->parse_state.prev_name_idx = 0;
267 state->parse_state.prev_name_length = -1;
268 state->parse_state.nest_level = -1;
269 state->parse_state.append = true;
270}
271
272static inline const char *RemainingInput(State *state) {
273 return &state->mangled_begin[state->parse_state.mangled_idx];
274}
275
276// Returns true and advances "mangled_idx" if we find "one_char_token"
277// at "mangled_idx" position. It is assumed that "one_char_token" does
278// not contain '\0'.
279static bool ParseOneCharToken(State *state, const char one_char_token) {
280 ComplexityGuard guard(state);
281 if (guard.IsTooComplex()) return false;
282 if (RemainingInput(state)[0] == one_char_token) {
283 ++state->parse_state.mangled_idx;
284 return true;
285 }
286 return false;
287}
288
289// Returns true and advances "mangled_cur" if we find "two_char_token"
290// at "mangled_cur" position. It is assumed that "two_char_token" does
291// not contain '\0'.
292static bool ParseTwoCharToken(State *state, const char *two_char_token) {
293 ComplexityGuard guard(state);
294 if (guard.IsTooComplex()) return false;
295 if (RemainingInput(state)[0] == two_char_token[0] &&
296 RemainingInput(state)[1] == two_char_token[1]) {
297 state->parse_state.mangled_idx += 2;
298 return true;
299 }
300 return false;
301}
302
303// Returns true and advances "mangled_cur" if we find any character in
304// "char_class" at "mangled_cur" position.
305static bool ParseCharClass(State *state, const char *char_class) {
306 ComplexityGuard guard(state);
307 if (guard.IsTooComplex()) return false;
308 if (RemainingInput(state)[0] == '\0') {
309 return false;
310 }
311 const char *p = char_class;
312 for (; *p != '\0'; ++p) {
313 if (RemainingInput(state)[0] == *p) {
314 ++state->parse_state.mangled_idx;
315 return true;
316 }
317 }
318 return false;
319}
320
321static bool ParseDigit(State *state, int *digit) {
322 char c = RemainingInput(state)[0];
323 if (ParseCharClass(state, "0123456789")) {
324 if (digit != nullptr) {
325 *digit = c - '0';
326 }
327 return true;
328 }
329 return false;
330}
331
332// This function is used for handling an optional non-terminal.
333static bool Optional(bool /*status*/) { return true; }
334
335// This function is used for handling <non-terminal>+ syntax.
336typedef bool (*ParseFunc)(State *);
337static bool OneOrMore(ParseFunc parse_func, State *state) {
338 if (parse_func(state)) {
339 while (parse_func(state)) {
340 }
341 return true;
342 }
343 return false;
344}
345
346// This function is used for handling <non-terminal>* syntax. The function
347// always returns true and must be followed by a termination token or a
348// terminating sequence not handled by parse_func (e.g.
349// ParseOneCharToken(state, 'E')).
350static bool ZeroOrMore(ParseFunc parse_func, State *state) {
351 while (parse_func(state)) {
352 }
353 return true;
354}
355
356// Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is
357// set to out_end_idx+1. The output string is ensured to
358// always terminate with '\0' as long as there is no overflow.
359static void Append(State *state, const char *const str, const int length) {
360 for (int i = 0; i < length; ++i) {
361 if (state->parse_state.out_cur_idx + 1 <
362 state->out_end_idx) { // +1 for '\0'
363 state->out[state->parse_state.out_cur_idx++] = str[i];
364 } else {
365 // signal overflow
366 state->parse_state.out_cur_idx = state->out_end_idx + 1;
367 break;
368 }
369 }
370 if (state->parse_state.out_cur_idx < state->out_end_idx) {
371 state->out[state->parse_state.out_cur_idx] =
372 '\0'; // Terminate it with '\0'
373 }
374}
375
376// We don't use equivalents in libc to avoid locale issues.
377static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
378
379static bool IsAlpha(char c) {
380 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
381}
382
383static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
384
385// Returns true if "str" is a function clone suffix. These suffixes are used
386// by GCC 4.5.x and later versions (and our locally-modified version of GCC
387// 4.4.x) to indicate functions which have been cloned during optimization.
388// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
389static bool IsFunctionCloneSuffix(const char *str) {
390 size_t i = 0;
391 while (str[i] != '\0') {
392 // Consume a single .<alpha>+.<digit>+ sequence.
393 if (str[i] != '.' || !IsAlpha(str[i + 1])) {
394 return false;
395 }
396 i += 2;
397 while (IsAlpha(str[i])) {
398 ++i;
399 }
400 if (str[i] != '.' || !IsDigit(str[i + 1])) {
401 return false;
402 }
403 i += 2;
404 while (IsDigit(str[i])) {
405 ++i;
406 }
407 }
408 return true; // Consumed everything in "str".
409}
410
411static bool EndsWith(State *state, const char chr) {
412 return state->parse_state.out_cur_idx > 0 &&
Austin Schuhb4691e92020-12-31 12:37:18 -0800413 state->parse_state.out_cur_idx < state->out_end_idx &&
Austin Schuh36244a12019-09-21 17:52:38 -0700414 chr == state->out[state->parse_state.out_cur_idx - 1];
415}
416
417// Append "str" with some tweaks, iff "append" state is true.
418static void MaybeAppendWithLength(State *state, const char *const str,
419 const int length) {
420 if (state->parse_state.append && length > 0) {
421 // Append a space if the output buffer ends with '<' and "str"
422 // starts with '<' to avoid <<<.
423 if (str[0] == '<' && EndsWith(state, '<')) {
424 Append(state, " ", 1);
425 }
Austin Schuhb4691e92020-12-31 12:37:18 -0800426 // Remember the last identifier name for ctors/dtors,
427 // but only if we haven't yet overflown the buffer.
428 if (state->parse_state.out_cur_idx < state->out_end_idx &&
429 (IsAlpha(str[0]) || str[0] == '_')) {
Austin Schuh36244a12019-09-21 17:52:38 -0700430 state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
431 state->parse_state.prev_name_length = length;
432 }
433 Append(state, str, length);
434 }
435}
436
437// Appends a positive decimal number to the output if appending is enabled.
438static bool MaybeAppendDecimal(State *state, unsigned int val) {
439 // Max {32-64}-bit unsigned int is 20 digits.
440 constexpr size_t kMaxLength = 20;
441 char buf[kMaxLength];
442
443 // We can't use itoa or sprintf as neither is specified to be
444 // async-signal-safe.
445 if (state->parse_state.append) {
446 // We can't have a one-before-the-beginning pointer, so instead start with
447 // one-past-the-end and manipulate one character before the pointer.
448 char *p = &buf[kMaxLength];
449 do { // val=0 is the only input that should write a leading zero digit.
450 *--p = (val % 10) + '0';
451 val /= 10;
452 } while (p > buf && val != 0);
453
454 // 'p' landed on the last character we set. How convenient.
455 Append(state, p, kMaxLength - (p - buf));
456 }
457
458 return true;
459}
460
461// A convenient wrapper around MaybeAppendWithLength().
462// Returns true so that it can be placed in "if" conditions.
463static bool MaybeAppend(State *state, const char *const str) {
464 if (state->parse_state.append) {
465 int length = StrLen(str);
466 MaybeAppendWithLength(state, str, length);
467 }
468 return true;
469}
470
471// This function is used for handling nested names.
472static bool EnterNestedName(State *state) {
473 state->parse_state.nest_level = 0;
474 return true;
475}
476
477// This function is used for handling nested names.
478static bool LeaveNestedName(State *state, int16_t prev_value) {
479 state->parse_state.nest_level = prev_value;
480 return true;
481}
482
483// Disable the append mode not to print function parameters, etc.
484static bool DisableAppend(State *state) {
485 state->parse_state.append = false;
486 return true;
487}
488
489// Restore the append mode to the previous state.
490static bool RestoreAppend(State *state, bool prev_value) {
491 state->parse_state.append = prev_value;
492 return true;
493}
494
495// Increase the nest level for nested names.
496static void MaybeIncreaseNestLevel(State *state) {
497 if (state->parse_state.nest_level > -1) {
498 ++state->parse_state.nest_level;
499 }
500}
501
502// Appends :: for nested names if necessary.
503static void MaybeAppendSeparator(State *state) {
504 if (state->parse_state.nest_level >= 1) {
505 MaybeAppend(state, "::");
506 }
507}
508
509// Cancel the last separator if necessary.
510static void MaybeCancelLastSeparator(State *state) {
511 if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
512 state->parse_state.out_cur_idx >= 2) {
513 state->parse_state.out_cur_idx -= 2;
514 state->out[state->parse_state.out_cur_idx] = '\0';
515 }
516}
517
518// Returns true if the identifier of the given length pointed to by
519// "mangled_cur" is anonymous namespace.
520static bool IdentifierIsAnonymousNamespace(State *state, int length) {
521 // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
522 static const char anon_prefix[] = "_GLOBAL__N_";
523 return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&
524 StrPrefix(RemainingInput(state), anon_prefix));
525}
526
527// Forward declarations of our parsing functions.
528static bool ParseMangledName(State *state);
529static bool ParseEncoding(State *state);
530static bool ParseName(State *state);
531static bool ParseUnscopedName(State *state);
532static bool ParseNestedName(State *state);
533static bool ParsePrefix(State *state);
534static bool ParseUnqualifiedName(State *state);
535static bool ParseSourceName(State *state);
536static bool ParseLocalSourceName(State *state);
537static bool ParseUnnamedTypeName(State *state);
538static bool ParseNumber(State *state, int *number_out);
539static bool ParseFloatNumber(State *state);
540static bool ParseSeqId(State *state);
541static bool ParseIdentifier(State *state, int length);
542static bool ParseOperatorName(State *state, int *arity);
543static bool ParseSpecialName(State *state);
544static bool ParseCallOffset(State *state);
545static bool ParseNVOffset(State *state);
546static bool ParseVOffset(State *state);
547static bool ParseCtorDtorName(State *state);
548static bool ParseDecltype(State *state);
549static bool ParseType(State *state);
550static bool ParseCVQualifiers(State *state);
551static bool ParseBuiltinType(State *state);
552static bool ParseFunctionType(State *state);
553static bool ParseBareFunctionType(State *state);
554static bool ParseClassEnumType(State *state);
555static bool ParseArrayType(State *state);
556static bool ParsePointerToMemberType(State *state);
557static bool ParseTemplateParam(State *state);
558static bool ParseTemplateTemplateParam(State *state);
559static bool ParseTemplateArgs(State *state);
560static bool ParseTemplateArg(State *state);
561static bool ParseBaseUnresolvedName(State *state);
562static bool ParseUnresolvedName(State *state);
563static bool ParseExpression(State *state);
564static bool ParseExprPrimary(State *state);
565static bool ParseExprCastValue(State *state);
566static bool ParseLocalName(State *state);
567static bool ParseLocalNameSuffix(State *state);
568static bool ParseDiscriminator(State *state);
569static bool ParseSubstitution(State *state, bool accept_std);
570
571// Implementation note: the following code is a straightforward
572// translation of the Itanium C++ ABI defined in BNF with a couple of
573// exceptions.
574//
575// - Support GNU extensions not defined in the Itanium C++ ABI
576// - <prefix> and <template-prefix> are combined to avoid infinite loop
577// - Reorder patterns to shorten the code
578// - Reorder patterns to give greedier functions precedence
579// We'll mark "Less greedy than" for these cases in the code
580//
581// Each parsing function changes the parse state and returns true on
582// success, or returns false and doesn't change the parse state (note:
583// the parse-steps counter increases regardless of success or failure).
584// To ensure that the parse state isn't changed in the latter case, we
585// save the original state before we call multiple parsing functions
586// consecutively with &&, and restore it if unsuccessful. See
587// ParseEncoding() as an example of this convention. We follow the
588// convention throughout the code.
589//
590// Originally we tried to do demangling without following the full ABI
591// syntax but it turned out we needed to follow the full syntax to
592// parse complicated cases like nested template arguments. Note that
593// implementing a full-fledged demangler isn't trivial (libiberty's
594// cp-demangle.c has +4300 lines).
595//
596// Note that (foo) in <(foo) ...> is a modifier to be ignored.
597//
598// Reference:
599// - Itanium C++ ABI
600// <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>
601
602// <mangled-name> ::= _Z <encoding>
603static bool ParseMangledName(State *state) {
604 ComplexityGuard guard(state);
605 if (guard.IsTooComplex()) return false;
606 return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
607}
608
609// <encoding> ::= <(function) name> <bare-function-type>
610// ::= <(data) name>
611// ::= <special-name>
612static bool ParseEncoding(State *state) {
613 ComplexityGuard guard(state);
614 if (guard.IsTooComplex()) return false;
615 // Implementing the first two productions together as <name>
616 // [<bare-function-type>] avoids exponential blowup of backtracking.
617 //
618 // Since Optional(...) can't fail, there's no need to copy the state for
619 // backtracking.
620 if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
621 return true;
622 }
623
624 if (ParseSpecialName(state)) {
625 return true;
626 }
627 return false;
628}
629
630// <name> ::= <nested-name>
631// ::= <unscoped-template-name> <template-args>
632// ::= <unscoped-name>
633// ::= <local-name>
634static bool ParseName(State *state) {
635 ComplexityGuard guard(state);
636 if (guard.IsTooComplex()) return false;
637 if (ParseNestedName(state) || ParseLocalName(state)) {
638 return true;
639 }
640
641 // We reorganize the productions to avoid re-parsing unscoped names.
642 // - Inline <unscoped-template-name> productions:
643 // <name> ::= <substitution> <template-args>
644 // ::= <unscoped-name> <template-args>
645 // ::= <unscoped-name>
646 // - Merge the two productions that start with unscoped-name:
647 // <name> ::= <unscoped-name> [<template-args>]
648
649 ParseState copy = state->parse_state;
650 // "std<...>" isn't a valid name.
651 if (ParseSubstitution(state, /*accept_std=*/false) &&
652 ParseTemplateArgs(state)) {
653 return true;
654 }
655 state->parse_state = copy;
656
657 // Note there's no need to restore state after this since only the first
658 // subparser can fail.
659 return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
660}
661
662// <unscoped-name> ::= <unqualified-name>
663// ::= St <unqualified-name>
664static bool ParseUnscopedName(State *state) {
665 ComplexityGuard guard(state);
666 if (guard.IsTooComplex()) return false;
667 if (ParseUnqualifiedName(state)) {
668 return true;
669 }
670
671 ParseState copy = state->parse_state;
672 if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
673 ParseUnqualifiedName(state)) {
674 return true;
675 }
676 state->parse_state = copy;
677 return false;
678}
679
680// <ref-qualifer> ::= R // lvalue method reference qualifier
681// ::= O // rvalue method reference qualifier
682static inline bool ParseRefQualifier(State *state) {
683 return ParseCharClass(state, "OR");
684}
685
686// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
687// <unqualified-name> E
688// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
689// <template-args> E
690static bool ParseNestedName(State *state) {
691 ComplexityGuard guard(state);
692 if (guard.IsTooComplex()) return false;
693 ParseState copy = state->parse_state;
694 if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
695 Optional(ParseCVQualifiers(state)) &&
696 Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
697 LeaveNestedName(state, copy.nest_level) &&
698 ParseOneCharToken(state, 'E')) {
699 return true;
700 }
701 state->parse_state = copy;
702 return false;
703}
704
705// This part is tricky. If we literally translate them to code, we'll
706// end up infinite loop. Hence we merge them to avoid the case.
707//
708// <prefix> ::= <prefix> <unqualified-name>
709// ::= <template-prefix> <template-args>
710// ::= <template-param>
711// ::= <substitution>
712// ::= # empty
713// <template-prefix> ::= <prefix> <(template) unqualified-name>
714// ::= <template-param>
715// ::= <substitution>
716static bool ParsePrefix(State *state) {
717 ComplexityGuard guard(state);
718 if (guard.IsTooComplex()) return false;
719 bool has_something = false;
720 while (true) {
721 MaybeAppendSeparator(state);
722 if (ParseTemplateParam(state) ||
723 ParseSubstitution(state, /*accept_std=*/true) ||
724 ParseUnscopedName(state) ||
725 (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
726 has_something = true;
727 MaybeIncreaseNestLevel(state);
728 continue;
729 }
730 MaybeCancelLastSeparator(state);
731 if (has_something && ParseTemplateArgs(state)) {
732 return ParsePrefix(state);
733 } else {
734 break;
735 }
736 }
737 return true;
738}
739
740// <unqualified-name> ::= <operator-name>
741// ::= <ctor-dtor-name>
742// ::= <source-name>
743// ::= <local-source-name> // GCC extension; see below.
744// ::= <unnamed-type-name>
745static bool ParseUnqualifiedName(State *state) {
746 ComplexityGuard guard(state);
747 if (guard.IsTooComplex()) return false;
748 return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
749 ParseSourceName(state) || ParseLocalSourceName(state) ||
750 ParseUnnamedTypeName(state));
751}
752
753// <source-name> ::= <positive length number> <identifier>
754static bool ParseSourceName(State *state) {
755 ComplexityGuard guard(state);
756 if (guard.IsTooComplex()) return false;
757 ParseState copy = state->parse_state;
758 int length = -1;
759 if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {
760 return true;
761 }
762 state->parse_state = copy;
763 return false;
764}
765
766// <local-source-name> ::= L <source-name> [<discriminator>]
767//
768// References:
769// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
770// https://gcc.gnu.org/viewcvs?view=rev&revision=124467
771static bool ParseLocalSourceName(State *state) {
772 ComplexityGuard guard(state);
773 if (guard.IsTooComplex()) return false;
774 ParseState copy = state->parse_state;
775 if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
776 Optional(ParseDiscriminator(state))) {
777 return true;
778 }
779 state->parse_state = copy;
780 return false;
781}
782
783// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
784// ::= <closure-type-name>
785// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
786// <lambda-sig> ::= <(parameter) type>+
787static bool ParseUnnamedTypeName(State *state) {
788 ComplexityGuard guard(state);
789 if (guard.IsTooComplex()) return false;
790 ParseState copy = state->parse_state;
791 // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
792 // Optionally parse the encoded value into 'which' and add 2 to get the index.
793 int which = -1;
794
795 // Unnamed type local to function or class.
796 if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
797 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
798 ParseOneCharToken(state, '_')) {
799 MaybeAppend(state, "{unnamed type#");
800 MaybeAppendDecimal(state, 2 + which);
801 MaybeAppend(state, "}");
802 return true;
803 }
804 state->parse_state = copy;
805
806 // Closure type.
807 which = -1;
808 if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
809 OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
810 ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
811 which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
812 ParseOneCharToken(state, '_')) {
813 MaybeAppend(state, "{lambda()#");
814 MaybeAppendDecimal(state, 2 + which);
815 MaybeAppend(state, "}");
816 return true;
817 }
818 state->parse_state = copy;
819
820 return false;
821}
822
823// <number> ::= [n] <non-negative decimal integer>
824// If "number_out" is non-null, then *number_out is set to the value of the
825// parsed number on success.
826static bool ParseNumber(State *state, int *number_out) {
827 ComplexityGuard guard(state);
828 if (guard.IsTooComplex()) return false;
829 bool negative = false;
830 if (ParseOneCharToken(state, 'n')) {
831 negative = true;
832 }
833 const char *p = RemainingInput(state);
834 uint64_t number = 0;
835 for (; *p != '\0'; ++p) {
836 if (IsDigit(*p)) {
837 number = number * 10 + (*p - '0');
838 } else {
839 break;
840 }
841 }
842 // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives
843 // "incorrect" results for out-of-range inputs, but negative values only
844 // appear for literals, which aren't printed.
845 if (negative) {
846 number = ~number + 1;
847 }
848 if (p != RemainingInput(state)) { // Conversion succeeded.
849 state->parse_state.mangled_idx += p - RemainingInput(state);
850 if (number_out != nullptr) {
851 // Note: possibly truncate "number".
852 *number_out = number;
853 }
854 return true;
855 }
856 return false;
857}
858
859// Floating-point literals are encoded using a fixed-length lowercase
860// hexadecimal string.
861static bool ParseFloatNumber(State *state) {
862 ComplexityGuard guard(state);
863 if (guard.IsTooComplex()) return false;
864 const char *p = RemainingInput(state);
865 for (; *p != '\0'; ++p) {
866 if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
867 break;
868 }
869 }
870 if (p != RemainingInput(state)) { // Conversion succeeded.
871 state->parse_state.mangled_idx += p - RemainingInput(state);
872 return true;
873 }
874 return false;
875}
876
877// The <seq-id> is a sequence number in base 36,
878// using digits and upper case letters
879static bool ParseSeqId(State *state) {
880 ComplexityGuard guard(state);
881 if (guard.IsTooComplex()) return false;
882 const char *p = RemainingInput(state);
883 for (; *p != '\0'; ++p) {
884 if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
885 break;
886 }
887 }
888 if (p != RemainingInput(state)) { // Conversion succeeded.
889 state->parse_state.mangled_idx += p - RemainingInput(state);
890 return true;
891 }
892 return false;
893}
894
895// <identifier> ::= <unqualified source code identifier> (of given length)
896static bool ParseIdentifier(State *state, int length) {
897 ComplexityGuard guard(state);
898 if (guard.IsTooComplex()) return false;
899 if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {
900 return false;
901 }
902 if (IdentifierIsAnonymousNamespace(state, length)) {
903 MaybeAppend(state, "(anonymous namespace)");
904 } else {
905 MaybeAppendWithLength(state, RemainingInput(state), length);
906 }
907 state->parse_state.mangled_idx += length;
908 return true;
909}
910
911// <operator-name> ::= nw, and other two letters cases
912// ::= cv <type> # (cast)
913// ::= v <digit> <source-name> # vendor extended operator
914static bool ParseOperatorName(State *state, int *arity) {
915 ComplexityGuard guard(state);
916 if (guard.IsTooComplex()) return false;
917 if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
918 return false;
919 }
920 // First check with "cv" (cast) case.
921 ParseState copy = state->parse_state;
922 if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
923 EnterNestedName(state) && ParseType(state) &&
924 LeaveNestedName(state, copy.nest_level)) {
925 if (arity != nullptr) {
926 *arity = 1;
927 }
928 return true;
929 }
930 state->parse_state = copy;
931
932 // Then vendor extended operators.
933 if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
934 ParseSourceName(state)) {
935 return true;
936 }
937 state->parse_state = copy;
938
939 // Other operator names should start with a lower alphabet followed
940 // by a lower/upper alphabet.
941 if (!(IsLower(RemainingInput(state)[0]) &&
942 IsAlpha(RemainingInput(state)[1]))) {
943 return false;
944 }
945 // We may want to perform a binary search if we really need speed.
946 const AbbrevPair *p;
947 for (p = kOperatorList; p->abbrev != nullptr; ++p) {
948 if (RemainingInput(state)[0] == p->abbrev[0] &&
949 RemainingInput(state)[1] == p->abbrev[1]) {
950 if (arity != nullptr) {
951 *arity = p->arity;
952 }
953 MaybeAppend(state, "operator");
954 if (IsLower(*p->real_name)) { // new, delete, etc.
955 MaybeAppend(state, " ");
956 }
957 MaybeAppend(state, p->real_name);
958 state->parse_state.mangled_idx += 2;
959 return true;
960 }
961 }
962 return false;
963}
964
965// <special-name> ::= TV <type>
966// ::= TT <type>
967// ::= TI <type>
968// ::= TS <type>
Austin Schuhb4691e92020-12-31 12:37:18 -0800969// ::= TH <type> # thread-local
Austin Schuh36244a12019-09-21 17:52:38 -0700970// ::= Tc <call-offset> <call-offset> <(base) encoding>
971// ::= GV <(object) name>
972// ::= T <call-offset> <(base) encoding>
973// G++ extensions:
974// ::= TC <type> <(offset) number> _ <(base) type>
975// ::= TF <type>
976// ::= TJ <type>
977// ::= GR <name>
978// ::= GA <encoding>
979// ::= Th <call-offset> <(base) encoding>
980// ::= Tv <call-offset> <(base) encoding>
981//
982// Note: we don't care much about them since they don't appear in
983// stack traces. The are special data.
984static bool ParseSpecialName(State *state) {
985 ComplexityGuard guard(state);
986 if (guard.IsTooComplex()) return false;
987 ParseState copy = state->parse_state;
Austin Schuhb4691e92020-12-31 12:37:18 -0800988 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&
Austin Schuh36244a12019-09-21 17:52:38 -0700989 ParseType(state)) {
990 return true;
991 }
992 state->parse_state = copy;
993
994 if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
995 ParseCallOffset(state) && ParseEncoding(state)) {
996 return true;
997 }
998 state->parse_state = copy;
999
1000 if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
1001 return true;
1002 }
1003 state->parse_state = copy;
1004
1005 if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
1006 ParseEncoding(state)) {
1007 return true;
1008 }
1009 state->parse_state = copy;
1010
1011 // G++ extensions
1012 if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
1013 ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1014 DisableAppend(state) && ParseType(state)) {
1015 RestoreAppend(state, copy.append);
1016 return true;
1017 }
1018 state->parse_state = copy;
1019
1020 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
1021 ParseType(state)) {
1022 return true;
1023 }
1024 state->parse_state = copy;
1025
1026 if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
1027 return true;
1028 }
1029 state->parse_state = copy;
1030
1031 if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
1032 return true;
1033 }
1034 state->parse_state = copy;
1035
1036 if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
1037 ParseCallOffset(state) && ParseEncoding(state)) {
1038 return true;
1039 }
1040 state->parse_state = copy;
1041 return false;
1042}
1043
1044// <call-offset> ::= h <nv-offset> _
1045// ::= v <v-offset> _
1046static bool ParseCallOffset(State *state) {
1047 ComplexityGuard guard(state);
1048 if (guard.IsTooComplex()) return false;
1049 ParseState copy = state->parse_state;
1050 if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
1051 ParseOneCharToken(state, '_')) {
1052 return true;
1053 }
1054 state->parse_state = copy;
1055
1056 if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
1057 ParseOneCharToken(state, '_')) {
1058 return true;
1059 }
1060 state->parse_state = copy;
1061
1062 return false;
1063}
1064
1065// <nv-offset> ::= <(offset) number>
1066static bool ParseNVOffset(State *state) {
1067 ComplexityGuard guard(state);
1068 if (guard.IsTooComplex()) return false;
1069 return ParseNumber(state, nullptr);
1070}
1071
1072// <v-offset> ::= <(offset) number> _ <(virtual offset) number>
1073static bool ParseVOffset(State *state) {
1074 ComplexityGuard guard(state);
1075 if (guard.IsTooComplex()) return false;
1076 ParseState copy = state->parse_state;
1077 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1078 ParseNumber(state, nullptr)) {
1079 return true;
1080 }
1081 state->parse_state = copy;
1082 return false;
1083}
1084
Austin Schuhb4691e92020-12-31 12:37:18 -08001085// <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
1086// <base-class-type>
Austin Schuh36244a12019-09-21 17:52:38 -07001087// ::= D0 | D1 | D2
1088// # GCC extensions: "unified" constructor/destructor. See
Austin Schuhb4691e92020-12-31 12:37:18 -08001089// #
1090// https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
Austin Schuh36244a12019-09-21 17:52:38 -07001091// ::= C4 | D4
1092static bool ParseCtorDtorName(State *state) {
1093 ComplexityGuard guard(state);
1094 if (guard.IsTooComplex()) return false;
1095 ParseState copy = state->parse_state;
Austin Schuhb4691e92020-12-31 12:37:18 -08001096 if (ParseOneCharToken(state, 'C')) {
1097 if (ParseCharClass(state, "1234")) {
1098 const char *const prev_name =
1099 state->out + state->parse_state.prev_name_idx;
1100 MaybeAppendWithLength(state, prev_name,
1101 state->parse_state.prev_name_length);
1102 return true;
1103 } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&
1104 ParseClassEnumType(state)) {
1105 return true;
1106 }
Austin Schuh36244a12019-09-21 17:52:38 -07001107 }
1108 state->parse_state = copy;
1109
1110 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
1111 const char *const prev_name = state->out + state->parse_state.prev_name_idx;
1112 MaybeAppend(state, "~");
1113 MaybeAppendWithLength(state, prev_name,
1114 state->parse_state.prev_name_length);
1115 return true;
1116 }
1117 state->parse_state = copy;
1118 return false;
1119}
1120
1121// <decltype> ::= Dt <expression> E # decltype of an id-expression or class
1122// # member access (C++0x)
1123// ::= DT <expression> E # decltype of an expression (C++0x)
1124static bool ParseDecltype(State *state) {
1125 ComplexityGuard guard(state);
1126 if (guard.IsTooComplex()) return false;
1127
1128 ParseState copy = state->parse_state;
1129 if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
1130 ParseExpression(state) && ParseOneCharToken(state, 'E')) {
1131 return true;
1132 }
1133 state->parse_state = copy;
1134
1135 return false;
1136}
1137
1138// <type> ::= <CV-qualifiers> <type>
1139// ::= P <type> # pointer-to
1140// ::= R <type> # reference-to
1141// ::= O <type> # rvalue reference-to (C++0x)
1142// ::= C <type> # complex pair (C 2000)
1143// ::= G <type> # imaginary (C 2000)
1144// ::= U <source-name> <type> # vendor extended type qualifier
1145// ::= <builtin-type>
1146// ::= <function-type>
1147// ::= <class-enum-type> # note: just an alias for <name>
1148// ::= <array-type>
1149// ::= <pointer-to-member-type>
1150// ::= <template-template-param> <template-args>
1151// ::= <template-param>
1152// ::= <decltype>
1153// ::= <substitution>
1154// ::= Dp <type> # pack expansion of (C++0x)
Austin Schuhb4691e92020-12-31 12:37:18 -08001155// ::= Dv <num-elems> _ # GNU vector extension
Austin Schuh36244a12019-09-21 17:52:38 -07001156//
1157static bool ParseType(State *state) {
1158 ComplexityGuard guard(state);
1159 if (guard.IsTooComplex()) return false;
1160 ParseState copy = state->parse_state;
1161
1162 // We should check CV-qualifers, and PRGC things first.
1163 //
1164 // CV-qualifiers overlap with some operator names, but an operator name is not
1165 // valid as a type. To avoid an ambiguity that can lead to exponential time
1166 // complexity, refuse to backtrack the CV-qualifiers.
1167 //
1168 // _Z4aoeuIrMvvE
1169 // => _Z 4aoeuI rM v v E
1170 // aoeu<operator%=, void, void>
1171 // => _Z 4aoeuI r Mv v E
1172 // aoeu<void void::* restrict>
1173 //
1174 // By consuming the CV-qualifiers first, the former parse is disabled.
1175 if (ParseCVQualifiers(state)) {
1176 const bool result = ParseType(state);
1177 if (!result) state->parse_state = copy;
1178 return result;
1179 }
1180 state->parse_state = copy;
1181
1182 // Similarly, these tag characters can overlap with other <name>s resulting in
1183 // two different parse prefixes that land on <template-args> in the same
1184 // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by
1185 // refusing to backtrack the tag characters.
1186 if (ParseCharClass(state, "OPRCG")) {
1187 const bool result = ParseType(state);
1188 if (!result) state->parse_state = copy;
1189 return result;
1190 }
1191 state->parse_state = copy;
1192
1193 if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
1194 return true;
1195 }
1196 state->parse_state = copy;
1197
Austin Schuh36244a12019-09-21 17:52:38 -07001198 if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
1199 ParseType(state)) {
1200 return true;
1201 }
1202 state->parse_state = copy;
1203
1204 if (ParseBuiltinType(state) || ParseFunctionType(state) ||
1205 ParseClassEnumType(state) || ParseArrayType(state) ||
1206 ParsePointerToMemberType(state) || ParseDecltype(state) ||
1207 // "std" on its own isn't a type.
1208 ParseSubstitution(state, /*accept_std=*/false)) {
1209 return true;
1210 }
1211
1212 if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
1213 return true;
1214 }
1215 state->parse_state = copy;
1216
1217 // Less greedy than <template-template-param> <template-args>.
1218 if (ParseTemplateParam(state)) {
1219 return true;
1220 }
1221
Austin Schuhb4691e92020-12-31 12:37:18 -08001222 if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
1223 ParseOneCharToken(state, '_')) {
1224 return true;
1225 }
1226 state->parse_state = copy;
1227
Austin Schuh36244a12019-09-21 17:52:38 -07001228 return false;
1229}
1230
1231// <CV-qualifiers> ::= [r] [V] [K]
1232// We don't allow empty <CV-qualifiers> to avoid infinite loop in
1233// ParseType().
1234static bool ParseCVQualifiers(State *state) {
1235 ComplexityGuard guard(state);
1236 if (guard.IsTooComplex()) return false;
1237 int num_cv_qualifiers = 0;
1238 num_cv_qualifiers += ParseOneCharToken(state, 'r');
1239 num_cv_qualifiers += ParseOneCharToken(state, 'V');
1240 num_cv_qualifiers += ParseOneCharToken(state, 'K');
1241 return num_cv_qualifiers > 0;
1242}
1243
Austin Schuhb4691e92020-12-31 12:37:18 -08001244// <builtin-type> ::= v, etc. # single-character builtin types
Austin Schuh36244a12019-09-21 17:52:38 -07001245// ::= u <source-name>
Austin Schuhb4691e92020-12-31 12:37:18 -08001246// ::= Dd, etc. # two-character builtin types
1247//
1248// Not supported:
1249// ::= DF <number> _ # _FloatN (N bits)
1250//
Austin Schuh36244a12019-09-21 17:52:38 -07001251static bool ParseBuiltinType(State *state) {
1252 ComplexityGuard guard(state);
1253 if (guard.IsTooComplex()) return false;
1254 const AbbrevPair *p;
1255 for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
Austin Schuhb4691e92020-12-31 12:37:18 -08001256 // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
1257 if (p->abbrev[1] == '\0') {
1258 if (ParseOneCharToken(state, p->abbrev[0])) {
1259 MaybeAppend(state, p->real_name);
1260 return true;
1261 }
1262 } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
Austin Schuh36244a12019-09-21 17:52:38 -07001263 MaybeAppend(state, p->real_name);
Austin Schuh36244a12019-09-21 17:52:38 -07001264 return true;
1265 }
1266 }
1267
1268 ParseState copy = state->parse_state;
1269 if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
1270 return true;
1271 }
1272 state->parse_state = copy;
1273 return false;
1274}
1275
Austin Schuhb4691e92020-12-31 12:37:18 -08001276// <exception-spec> ::= Do # non-throwing
1277// exception-specification (e.g.,
1278// noexcept, throw())
1279// ::= DO <expression> E # computed (instantiation-dependent)
1280// noexcept
1281// ::= Dw <type>+ E # dynamic exception specification
1282// with instantiation-dependent types
1283static bool ParseExceptionSpec(State *state) {
1284 ComplexityGuard guard(state);
1285 if (guard.IsTooComplex()) return false;
1286
1287 if (ParseTwoCharToken(state, "Do")) return true;
1288
1289 ParseState copy = state->parse_state;
1290 if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&
1291 ParseOneCharToken(state, 'E')) {
1292 return true;
1293 }
1294 state->parse_state = copy;
1295 if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&
1296 ParseOneCharToken(state, 'E')) {
1297 return true;
1298 }
1299 state->parse_state = copy;
1300
1301 return false;
1302}
1303
1304// <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] E
Austin Schuh36244a12019-09-21 17:52:38 -07001305static bool ParseFunctionType(State *state) {
1306 ComplexityGuard guard(state);
1307 if (guard.IsTooComplex()) return false;
1308 ParseState copy = state->parse_state;
Austin Schuhb4691e92020-12-31 12:37:18 -08001309 if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&
Austin Schuh36244a12019-09-21 17:52:38 -07001310 Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
Austin Schuhb4691e92020-12-31 12:37:18 -08001311 Optional(ParseOneCharToken(state, 'O')) &&
Austin Schuh36244a12019-09-21 17:52:38 -07001312 ParseOneCharToken(state, 'E')) {
1313 return true;
1314 }
1315 state->parse_state = copy;
1316 return false;
1317}
1318
1319// <bare-function-type> ::= <(signature) type>+
1320static bool ParseBareFunctionType(State *state) {
1321 ComplexityGuard guard(state);
1322 if (guard.IsTooComplex()) return false;
1323 ParseState copy = state->parse_state;
1324 DisableAppend(state);
1325 if (OneOrMore(ParseType, state)) {
1326 RestoreAppend(state, copy.append);
1327 MaybeAppend(state, "()");
1328 return true;
1329 }
1330 state->parse_state = copy;
1331 return false;
1332}
1333
1334// <class-enum-type> ::= <name>
1335static bool ParseClassEnumType(State *state) {
1336 ComplexityGuard guard(state);
1337 if (guard.IsTooComplex()) return false;
1338 return ParseName(state);
1339}
1340
1341// <array-type> ::= A <(positive dimension) number> _ <(element) type>
1342// ::= A [<(dimension) expression>] _ <(element) type>
1343static bool ParseArrayType(State *state) {
1344 ComplexityGuard guard(state);
1345 if (guard.IsTooComplex()) return false;
1346 ParseState copy = state->parse_state;
1347 if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
1348 ParseOneCharToken(state, '_') && ParseType(state)) {
1349 return true;
1350 }
1351 state->parse_state = copy;
1352
1353 if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
1354 ParseOneCharToken(state, '_') && ParseType(state)) {
1355 return true;
1356 }
1357 state->parse_state = copy;
1358 return false;
1359}
1360
1361// <pointer-to-member-type> ::= M <(class) type> <(member) type>
1362static bool ParsePointerToMemberType(State *state) {
1363 ComplexityGuard guard(state);
1364 if (guard.IsTooComplex()) return false;
1365 ParseState copy = state->parse_state;
1366 if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
1367 return true;
1368 }
1369 state->parse_state = copy;
1370 return false;
1371}
1372
1373// <template-param> ::= T_
1374// ::= T <parameter-2 non-negative number> _
1375static bool ParseTemplateParam(State *state) {
1376 ComplexityGuard guard(state);
1377 if (guard.IsTooComplex()) return false;
1378 if (ParseTwoCharToken(state, "T_")) {
1379 MaybeAppend(state, "?"); // We don't support template substitutions.
1380 return true;
1381 }
1382
1383 ParseState copy = state->parse_state;
1384 if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
1385 ParseOneCharToken(state, '_')) {
1386 MaybeAppend(state, "?"); // We don't support template substitutions.
1387 return true;
1388 }
1389 state->parse_state = copy;
1390 return false;
1391}
1392
1393// <template-template-param> ::= <template-param>
1394// ::= <substitution>
1395static bool ParseTemplateTemplateParam(State *state) {
1396 ComplexityGuard guard(state);
1397 if (guard.IsTooComplex()) return false;
1398 return (ParseTemplateParam(state) ||
1399 // "std" on its own isn't a template.
1400 ParseSubstitution(state, /*accept_std=*/false));
1401}
1402
1403// <template-args> ::= I <template-arg>+ E
1404static bool ParseTemplateArgs(State *state) {
1405 ComplexityGuard guard(state);
1406 if (guard.IsTooComplex()) return false;
1407 ParseState copy = state->parse_state;
1408 DisableAppend(state);
1409 if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
1410 ParseOneCharToken(state, 'E')) {
1411 RestoreAppend(state, copy.append);
1412 MaybeAppend(state, "<>");
1413 return true;
1414 }
1415 state->parse_state = copy;
1416 return false;
1417}
1418
1419// <template-arg> ::= <type>
1420// ::= <expr-primary>
1421// ::= J <template-arg>* E # argument pack
1422// ::= X <expression> E
1423static bool ParseTemplateArg(State *state) {
1424 ComplexityGuard guard(state);
1425 if (guard.IsTooComplex()) return false;
1426 ParseState copy = state->parse_state;
1427 if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
1428 ParseOneCharToken(state, 'E')) {
1429 return true;
1430 }
1431 state->parse_state = copy;
1432
1433 // There can be significant overlap between the following leading to
1434 // exponential backtracking:
1435 //
1436 // <expr-primary> ::= L <type> <expr-cast-value> E
1437 // e.g. L 2xxIvE 1 E
1438 // <type> ==> <local-source-name> <template-args>
1439 // e.g. L 2xx IvE
1440 //
1441 // This means parsing an entire <type> twice, and <type> can contain
1442 // <template-arg>, so this can generate exponential backtracking. There is
1443 // only overlap when the remaining input starts with "L <source-name>", so
1444 // parse all cases that can start this way jointly to share the common prefix.
1445 //
1446 // We have:
1447 //
1448 // <template-arg> ::= <type>
1449 // ::= <expr-primary>
1450 //
1451 // First, drop all the productions of <type> that must start with something
1452 // other than 'L'. All that's left is <class-enum-type>; inline it.
1453 //
1454 // <type> ::= <nested-name> # starts with 'N'
1455 // ::= <unscoped-name>
1456 // ::= <unscoped-template-name> <template-args>
1457 // ::= <local-name> # starts with 'Z'
1458 //
1459 // Drop and inline again:
1460 //
1461 // <type> ::= <unscoped-name>
1462 // ::= <unscoped-name> <template-args>
1463 // ::= <substitution> <template-args> # starts with 'S'
1464 //
1465 // Merge the first two, inline <unscoped-name>, drop last:
1466 //
1467 // <type> ::= <unqualified-name> [<template-args>]
1468 // ::= St <unqualified-name> [<template-args>] # starts with 'S'
1469 //
1470 // Drop and inline:
1471 //
1472 // <type> ::= <operator-name> [<template-args>] # starts with lowercase
1473 // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
1474 // ::= <source-name> [<template-args>] # starts with digit
1475 // ::= <local-source-name> [<template-args>]
1476 // ::= <unnamed-type-name> [<template-args>] # starts with 'U'
1477 //
1478 // One more time:
1479 //
1480 // <type> ::= L <source-name> [<template-args>]
1481 //
1482 // Likewise with <expr-primary>:
1483 //
1484 // <expr-primary> ::= L <type> <expr-cast-value> E
1485 // ::= LZ <encoding> E # cannot overlap; drop
1486 // ::= L <mangled_name> E # cannot overlap; drop
1487 //
1488 // By similar reasoning as shown above, the only <type>s starting with
1489 // <source-name> are "<source-name> [<template-args>]". Inline this.
1490 //
1491 // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
1492 //
1493 // Now inline both of these into <template-arg>:
1494 //
1495 // <template-arg> ::= L <source-name> [<template-args>]
1496 // ::= L <source-name> [<template-args>] <expr-cast-value> E
1497 //
1498 // Merge them and we're done:
1499 // <template-arg>
1500 // ::= L <source-name> [<template-args>] [<expr-cast-value> E]
1501 if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
1502 copy = state->parse_state;
1503 if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
1504 return true;
1505 }
1506 state->parse_state = copy;
1507 return true;
1508 }
1509
1510 // Now that the overlapping cases can't reach this code, we can safely call
1511 // both of these.
1512 if (ParseType(state) || ParseExprPrimary(state)) {
1513 return true;
1514 }
1515 state->parse_state = copy;
1516
1517 if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
1518 ParseOneCharToken(state, 'E')) {
1519 return true;
1520 }
1521 state->parse_state = copy;
1522 return false;
1523}
1524
1525// <unresolved-type> ::= <template-param> [<template-args>]
1526// ::= <decltype>
1527// ::= <substitution>
1528static inline bool ParseUnresolvedType(State *state) {
1529 // No ComplexityGuard because we don't copy the state in this stack frame.
1530 return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
1531 ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
1532}
1533
1534// <simple-id> ::= <source-name> [<template-args>]
1535static inline bool ParseSimpleId(State *state) {
1536 // No ComplexityGuard because we don't copy the state in this stack frame.
1537
1538 // Note: <simple-id> cannot be followed by a parameter pack; see comment in
1539 // ParseUnresolvedType.
1540 return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
1541}
1542
1543// <base-unresolved-name> ::= <source-name> [<template-args>]
1544// ::= on <operator-name> [<template-args>]
1545// ::= dn <destructor-name>
1546static bool ParseBaseUnresolvedName(State *state) {
1547 ComplexityGuard guard(state);
1548 if (guard.IsTooComplex()) return false;
1549
1550 if (ParseSimpleId(state)) {
1551 return true;
1552 }
1553
1554 ParseState copy = state->parse_state;
1555 if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
1556 Optional(ParseTemplateArgs(state))) {
1557 return true;
1558 }
1559 state->parse_state = copy;
1560
1561 if (ParseTwoCharToken(state, "dn") &&
1562 (ParseUnresolvedType(state) || ParseSimpleId(state))) {
1563 return true;
1564 }
1565 state->parse_state = copy;
1566
1567 return false;
1568}
1569
1570// <unresolved-name> ::= [gs] <base-unresolved-name>
1571// ::= sr <unresolved-type> <base-unresolved-name>
1572// ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1573// <base-unresolved-name>
1574// ::= [gs] sr <unresolved-qualifier-level>+ E
1575// <base-unresolved-name>
1576static bool ParseUnresolvedName(State *state) {
1577 ComplexityGuard guard(state);
1578 if (guard.IsTooComplex()) return false;
1579
1580 ParseState copy = state->parse_state;
1581 if (Optional(ParseTwoCharToken(state, "gs")) &&
1582 ParseBaseUnresolvedName(state)) {
1583 return true;
1584 }
1585 state->parse_state = copy;
1586
1587 if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
1588 ParseBaseUnresolvedName(state)) {
1589 return true;
1590 }
1591 state->parse_state = copy;
1592
1593 if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
1594 ParseUnresolvedType(state) &&
1595 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1596 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1597 return true;
1598 }
1599 state->parse_state = copy;
1600
1601 if (Optional(ParseTwoCharToken(state, "gs")) &&
1602 ParseTwoCharToken(state, "sr") &&
1603 OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
1604 ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
1605 return true;
1606 }
1607 state->parse_state = copy;
1608
1609 return false;
1610}
1611
1612// <expression> ::= <1-ary operator-name> <expression>
1613// ::= <2-ary operator-name> <expression> <expression>
1614// ::= <3-ary operator-name> <expression> <expression> <expression>
1615// ::= cl <expression>+ E
1616// ::= cv <type> <expression> # type (expression)
1617// ::= cv <type> _ <expression>* E # type (expr-list)
1618// ::= st <type>
1619// ::= <template-param>
1620// ::= <function-param>
1621// ::= <expr-primary>
1622// ::= dt <expression> <unresolved-name> # expr.name
1623// ::= pt <expression> <unresolved-name> # expr->name
1624// ::= sp <expression> # argument pack expansion
1625// ::= sr <type> <unqualified-name> <template-args>
1626// ::= sr <type> <unqualified-name>
1627// <function-param> ::= fp <(top-level) CV-qualifiers> _
1628// ::= fp <(top-level) CV-qualifiers> <number> _
1629// ::= fL <number> p <(top-level) CV-qualifiers> _
1630// ::= fL <number> p <(top-level) CV-qualifiers> <number> _
1631static bool ParseExpression(State *state) {
1632 ComplexityGuard guard(state);
1633 if (guard.IsTooComplex()) return false;
1634 if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
1635 return true;
1636 }
1637
1638 // Object/function call expression.
1639 ParseState copy = state->parse_state;
1640 if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
1641 ParseOneCharToken(state, 'E')) {
1642 return true;
1643 }
1644 state->parse_state = copy;
1645
1646 // Function-param expression (level 0).
1647 if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
1648 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1649 return true;
1650 }
1651 state->parse_state = copy;
1652
1653 // Function-param expression (level 1+).
1654 if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
1655 ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
1656 Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
1657 return true;
1658 }
1659 state->parse_state = copy;
1660
1661 // Parse the conversion expressions jointly to avoid re-parsing the <type> in
1662 // their common prefix. Parsed as:
1663 // <expression> ::= cv <type> <conversion-args>
1664 // <conversion-args> ::= _ <expression>* E
1665 // ::= <expression>
1666 //
1667 // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
1668 // also needs to accept "cv <type>" in other contexts.
1669 if (ParseTwoCharToken(state, "cv")) {
1670 if (ParseType(state)) {
1671 ParseState copy2 = state->parse_state;
1672 if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
1673 ParseOneCharToken(state, 'E')) {
1674 return true;
1675 }
1676 state->parse_state = copy2;
1677 if (ParseExpression(state)) {
1678 return true;
1679 }
1680 }
1681 } else {
1682 // Parse unary, binary, and ternary operator expressions jointly, taking
1683 // care not to re-parse subexpressions repeatedly. Parse like:
1684 // <expression> ::= <operator-name> <expression>
1685 // [<one-to-two-expressions>]
1686 // <one-to-two-expressions> ::= <expression> [<expression>]
1687 int arity = -1;
1688 if (ParseOperatorName(state, &arity) &&
1689 arity > 0 && // 0 arity => disabled.
1690 (arity < 3 || ParseExpression(state)) &&
1691 (arity < 2 || ParseExpression(state)) &&
1692 (arity < 1 || ParseExpression(state))) {
1693 return true;
1694 }
1695 }
1696 state->parse_state = copy;
1697
1698 // sizeof type
1699 if (ParseTwoCharToken(state, "st") && ParseType(state)) {
1700 return true;
1701 }
1702 state->parse_state = copy;
1703
1704 // Object and pointer member access expressions.
1705 if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
1706 ParseExpression(state) && ParseType(state)) {
1707 return true;
1708 }
1709 state->parse_state = copy;
1710
1711 // Pointer-to-member access expressions. This parses the same as a binary
1712 // operator, but it's implemented separately because "ds" shouldn't be
1713 // accepted in other contexts that parse an operator name.
1714 if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
1715 ParseExpression(state)) {
1716 return true;
1717 }
1718 state->parse_state = copy;
1719
1720 // Parameter pack expansion
1721 if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
1722 return true;
1723 }
1724 state->parse_state = copy;
1725
1726 return ParseUnresolvedName(state);
1727}
1728
1729// <expr-primary> ::= L <type> <(value) number> E
1730// ::= L <type> <(value) float> E
1731// ::= L <mangled-name> E
1732// // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
1733// ::= LZ <encoding> E
1734//
1735// Warning, subtle: the "bug" LZ production above is ambiguous with the first
1736// production where <type> starts with <local-name>, which can lead to
1737// exponential backtracking in two scenarios:
1738//
1739// - When whatever follows the E in the <local-name> in the first production is
1740// not a name, we backtrack the whole <encoding> and re-parse the whole thing.
1741//
1742// - When whatever follows the <local-name> in the first production is not a
1743// number and this <expr-primary> may be followed by a name, we backtrack the
1744// <name> and re-parse it.
1745//
1746// Moreover this ambiguity isn't always resolved -- for example, the following
1747// has two different parses:
1748//
1749// _ZaaILZ4aoeuE1x1EvE
1750// => operator&&<aoeu, x, E, void>
1751// => operator&&<(aoeu::x)(1), void>
1752//
1753// To resolve this, we just do what GCC's demangler does, and refuse to parse
1754// casts to <local-name> types.
1755static bool ParseExprPrimary(State *state) {
1756 ComplexityGuard guard(state);
1757 if (guard.IsTooComplex()) return false;
1758 ParseState copy = state->parse_state;
1759
1760 // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
1761 // or fail, no backtracking.
1762 if (ParseTwoCharToken(state, "LZ")) {
1763 if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
1764 return true;
1765 }
1766
1767 state->parse_state = copy;
1768 return false;
1769 }
1770
1771 // The merged cast production.
1772 if (ParseOneCharToken(state, 'L') && ParseType(state) &&
1773 ParseExprCastValue(state)) {
1774 return true;
1775 }
1776 state->parse_state = copy;
1777
1778 if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
1779 ParseOneCharToken(state, 'E')) {
1780 return true;
1781 }
1782 state->parse_state = copy;
1783
1784 return false;
1785}
1786
1787// <number> or <float>, followed by 'E', as described above ParseExprPrimary.
1788static bool ParseExprCastValue(State *state) {
1789 ComplexityGuard guard(state);
1790 if (guard.IsTooComplex()) return false;
1791 // We have to be able to backtrack after accepting a number because we could
1792 // have e.g. "7fffE", which will accept "7" as a number but then fail to find
1793 // the 'E'.
1794 ParseState copy = state->parse_state;
1795 if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
1796 return true;
1797 }
1798 state->parse_state = copy;
1799
1800 if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
1801 return true;
1802 }
1803 state->parse_state = copy;
1804
1805 return false;
1806}
1807
1808// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
1809// ::= Z <(function) encoding> E s [<discriminator>]
1810//
1811// Parsing a common prefix of these two productions together avoids an
1812// exponential blowup of backtracking. Parse like:
1813// <local-name> := Z <encoding> E <local-name-suffix>
1814// <local-name-suffix> ::= s [<discriminator>]
1815// ::= <name> [<discriminator>]
1816
1817static bool ParseLocalNameSuffix(State *state) {
1818 ComplexityGuard guard(state);
1819 if (guard.IsTooComplex()) return false;
1820
1821 if (MaybeAppend(state, "::") && ParseName(state) &&
1822 Optional(ParseDiscriminator(state))) {
1823 return true;
1824 }
1825
1826 // Since we're not going to overwrite the above "::" by re-parsing the
1827 // <encoding> (whose trailing '\0' byte was in the byte now holding the
1828 // first ':'), we have to rollback the "::" if the <name> parse failed.
1829 if (state->parse_state.append) {
1830 state->out[state->parse_state.out_cur_idx - 2] = '\0';
1831 }
1832
1833 return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
1834}
1835
1836static bool ParseLocalName(State *state) {
1837 ComplexityGuard guard(state);
1838 if (guard.IsTooComplex()) return false;
1839 ParseState copy = state->parse_state;
1840 if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
1841 ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
1842 return true;
1843 }
1844 state->parse_state = copy;
1845 return false;
1846}
1847
1848// <discriminator> := _ <(non-negative) number>
1849static bool ParseDiscriminator(State *state) {
1850 ComplexityGuard guard(state);
1851 if (guard.IsTooComplex()) return false;
1852 ParseState copy = state->parse_state;
1853 if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
1854 return true;
1855 }
1856 state->parse_state = copy;
1857 return false;
1858}
1859
1860// <substitution> ::= S_
1861// ::= S <seq-id> _
1862// ::= St, etc.
1863//
1864// "St" is special in that it's not valid as a standalone name, and it *is*
1865// allowed to precede a name without being wrapped in "N...E". This means that
1866// if we accept it on its own, we can accept "St1a" and try to parse
1867// template-args, then fail and backtrack, accept "St" on its own, then "1a" as
1868// an unqualified name and re-parse the same template-args. To block this
1869// exponential backtracking, we disable it with 'accept_std=false' in
1870// problematic contexts.
1871static bool ParseSubstitution(State *state, bool accept_std) {
1872 ComplexityGuard guard(state);
1873 if (guard.IsTooComplex()) return false;
1874 if (ParseTwoCharToken(state, "S_")) {
1875 MaybeAppend(state, "?"); // We don't support substitutions.
1876 return true;
1877 }
1878
1879 ParseState copy = state->parse_state;
1880 if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
1881 ParseOneCharToken(state, '_')) {
1882 MaybeAppend(state, "?"); // We don't support substitutions.
1883 return true;
1884 }
1885 state->parse_state = copy;
1886
1887 // Expand abbreviations like "St" => "std".
1888 if (ParseOneCharToken(state, 'S')) {
1889 const AbbrevPair *p;
1890 for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
1891 if (RemainingInput(state)[0] == p->abbrev[1] &&
1892 (accept_std || p->abbrev[1] != 't')) {
1893 MaybeAppend(state, "std");
1894 if (p->real_name[0] != '\0') {
1895 MaybeAppend(state, "::");
1896 MaybeAppend(state, p->real_name);
1897 }
1898 ++state->parse_state.mangled_idx;
1899 return true;
1900 }
1901 }
1902 }
1903 state->parse_state = copy;
1904 return false;
1905}
1906
1907// Parse <mangled-name>, optionally followed by either a function-clone suffix
1908// or version suffix. Returns true only if all of "mangled_cur" was consumed.
1909static bool ParseTopLevelMangledName(State *state) {
1910 ComplexityGuard guard(state);
1911 if (guard.IsTooComplex()) return false;
1912 if (ParseMangledName(state)) {
1913 if (RemainingInput(state)[0] != '\0') {
1914 // Drop trailing function clone suffix, if any.
1915 if (IsFunctionCloneSuffix(RemainingInput(state))) {
1916 return true;
1917 }
1918 // Append trailing version suffix if any.
1919 // ex. _Z3foo@@GLIBCXX_3.4
1920 if (RemainingInput(state)[0] == '@') {
1921 MaybeAppend(state, RemainingInput(state));
1922 return true;
1923 }
1924 return false; // Unconsumed suffix.
1925 }
1926 return true;
1927 }
1928 return false;
1929}
1930
1931static bool Overflowed(const State *state) {
1932 return state->parse_state.out_cur_idx >= state->out_end_idx;
1933}
1934
1935// The demangler entry point.
1936bool Demangle(const char *mangled, char *out, int out_size) {
1937 State state;
1938 InitState(&state, mangled, out, out_size);
Austin Schuhb4691e92020-12-31 12:37:18 -08001939 return ParseTopLevelMangledName(&state) && !Overflowed(&state) &&
1940 state.parse_state.out_cur_idx > 0;
Austin Schuh36244a12019-09-21 17:52:38 -07001941}
1942
1943} // namespace debugging_internal
Austin Schuhb4691e92020-12-31 12:37:18 -08001944ABSL_NAMESPACE_END
Austin Schuh36244a12019-09-21 17:52:38 -07001945} // namespace absl