Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 1 | // Copyright 2019 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ |
| 16 | #define ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ |
| 17 | |
| 18 | #include <stdint.h> |
| 19 | |
| 20 | #include "absl/base/config.h" |
| 21 | #include "absl/base/macros.h" |
| 22 | |
| 23 | namespace absl { |
| 24 | ABSL_NAMESPACE_BEGIN |
| 25 | namespace base_internal { |
| 26 | |
| 27 | // ExponentialBiased provides a small and fast random number generator for a |
| 28 | // rounded exponential distribution. This generator manages very little state, |
| 29 | // and imposes no synchronization overhead. This makes it useful in specialized |
| 30 | // scenarios requiring minimum overhead, such as stride based periodic sampling. |
| 31 | // |
| 32 | // ExponentialBiased provides two closely related functions, GetSkipCount() and |
| 33 | // GetStride(), both returning a rounded integer defining a number of events |
| 34 | // required before some event with a given mean probability occurs. |
| 35 | // |
| 36 | // The distribution is useful to generate a random wait time or some periodic |
| 37 | // event with a given mean probability. For example, if an action is supposed to |
| 38 | // happen on average once every 'N' events, then we can get a random 'stride' |
| 39 | // counting down how long before the event to happen. For example, if we'd want |
| 40 | // to sample one in every 1000 'Frobber' calls, our code could look like this: |
| 41 | // |
| 42 | // Frobber::Frobber() { |
| 43 | // stride_ = exponential_biased_.GetStride(1000); |
| 44 | // } |
| 45 | // |
| 46 | // void Frobber::Frob(int arg) { |
| 47 | // if (--stride == 0) { |
| 48 | // SampleFrob(arg); |
| 49 | // stride_ = exponential_biased_.GetStride(1000); |
| 50 | // } |
| 51 | // ... |
| 52 | // } |
| 53 | // |
| 54 | // The rounding of the return value creates a bias, especially for smaller means |
| 55 | // where the distribution of the fraction is not evenly distributed. We correct |
| 56 | // this bias by tracking the fraction we rounded up or down on each iteration, |
| 57 | // effectively tracking the distance between the cumulative value, and the |
| 58 | // rounded cumulative value. For example, given a mean of 2: |
| 59 | // |
| 60 | // raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923 |
| 61 | // raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624 |
| 62 | // raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805 |
| 63 | // raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206 |
| 64 | // etc... |
| 65 | // |
| 66 | // Adjusting with rounding bias is relatively trivial: |
| 67 | // |
| 68 | // double value = bias_ + exponential_distribution(mean)(); |
| 69 | // double rounded_value = std::round(value); |
| 70 | // bias_ = value - rounded_value; |
| 71 | // return rounded_value; |
| 72 | // |
| 73 | // This class is thread-compatible. |
| 74 | class ExponentialBiased { |
| 75 | public: |
| 76 | // The number of bits set by NextRandom. |
| 77 | static constexpr int kPrngNumBits = 48; |
| 78 | |
| 79 | // `GetSkipCount()` returns the number of events to skip before some chosen |
| 80 | // event happens. For example, randomly tossing a coin, we will on average |
| 81 | // throw heads once before we get tails. We can simulate random coin tosses |
| 82 | // using GetSkipCount() as: |
| 83 | // |
| 84 | // ExponentialBiased eb; |
| 85 | // for (...) { |
| 86 | // int number_of_heads_before_tail = eb.GetSkipCount(1); |
| 87 | // for (int flips = 0; flips < number_of_heads_before_tail; ++flips) { |
| 88 | // printf("head..."); |
| 89 | // } |
| 90 | // printf("tail\n"); |
| 91 | // } |
| 92 | // |
| 93 | int64_t GetSkipCount(int64_t mean); |
| 94 | |
| 95 | // GetStride() returns the number of events required for a specific event to |
| 96 | // happen. See the class comments for a usage example. `GetStride()` is |
| 97 | // equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or |
| 98 | // `GetSkipCount()` depends mostly on what best fits the use case. |
| 99 | int64_t GetStride(int64_t mean); |
| 100 | |
| 101 | // Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1] |
| 102 | // |
| 103 | // This is public to enable testing. |
| 104 | static uint64_t NextRandom(uint64_t rnd); |
| 105 | |
| 106 | private: |
| 107 | void Initialize(); |
| 108 | |
| 109 | uint64_t rng_{0}; |
| 110 | double bias_{0}; |
| 111 | bool initialized_{false}; |
| 112 | }; |
| 113 | |
| 114 | // Returns the next prng value. |
| 115 | // pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
| 116 | // This is the lrand64 generator. |
| 117 | inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { |
| 118 | const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
| 119 | const uint64_t prng_add = 0xB; |
| 120 | const uint64_t prng_mod_power = 48; |
| 121 | const uint64_t prng_mod_mask = |
| 122 | ~((~static_cast<uint64_t>(0)) << prng_mod_power); |
| 123 | return (prng_mult * rnd + prng_add) & prng_mod_mask; |
| 124 | } |
| 125 | |
| 126 | } // namespace base_internal |
| 127 | ABSL_NAMESPACE_END |
| 128 | } // namespace absl |
| 129 | |
| 130 | #endif // ABSL_BASE_INTERNAL_EXPONENTIAL_BIASED_H_ |