blob: 6b6628dab26e9f0905be8216ec92114917ec38f5 [file] [log] [blame]
James Kuszmaul9f9676d2019-01-25 21:27:58 -08001#ifndef FRC971_CONTROL_LOOPS_POSE_H_
2#define FRC971_CONTROL_LOOPS_POSE_H_
3
James Kuszmaul090563a2019-02-09 14:43:20 -08004#include <vector>
5
James Kuszmaul9f9676d2019-01-25 21:27:58 -08006#include "Eigen/Dense"
7#include "aos/util/math.h"
8
9namespace frc971 {
10namespace control_loops {
11
James Kuszmaul3ca28612020-02-15 17:52:27 -080012// Constructs a homogeneous transformation matrix for rotating about the Z axis.
13template <typename Scalar>
14Eigen::Matrix<Scalar, 4, 4> TransformationMatrixForYaw(Scalar yaw) {
15 Eigen::Matrix<Scalar, 4, 4> matrix;
16 matrix.setIdentity();
17 const Scalar stheta = std::sin(yaw);
18 const Scalar ctheta = std::cos(yaw);
19 matrix(0, 0) = ctheta;
20 matrix(1, 1) = ctheta;
21 matrix(0, 1) = -stheta;
22 matrix(1, 0) = stheta;
23 return matrix;
24}
25
James Kuszmaul9f9676d2019-01-25 21:27:58 -080026// Provides a representation of a transformation on the field.
27// Currently, this is heavily geared towards things that occur in a 2-D plane.
28// The Z-axis is rarely used (but still relevant; e.g., in 2019 some of the
29// targets are at a different height).
30// For rotations, we currently just represent the yaw axis (the rotation about
31// the Z-axis).
32// As a convention, we use right-handed coordinate systems; the positive Z
33// axis will go up on the field, the positive X axis shall be "forwards" for
34// some relevant meaning of forwards, and the origin shall be chosen as
35// appropriate.
36// For 2019, at least, the global origin will be on the ground at the center
37// of the driver's station wall of your current alliance and the positive X-axis
38// will point straight into the field from the driver's station.
39// In future years this may need to change if the field's symmetry changes and
40// we can't interchangeably handle which side of the field we are on.
41// This means that if we had a Pose for the center of mass of the robot with a
42// position of (10, -5, 0) and a yaw of pi / 2, that suggests the robot is
43// facing straight to the left from the driver's perspective and is placed 10m
44// from the driver's station wall and 5m to the right of the center of the wall.
45//
46// Furthermore, Poses can be chained such that a Pose can be placed relative to
47// another Pose; the other Pose can dynamically update, thus allowing us to,
48// e.g., provide a Pose for a camera that is relative to the Pose of the robot.
49// Poses can also be in the global frame with no parent Pose.
50template <typename Scalar = double>
51class TypedPose {
52 public:
53 EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
54
55 // The type that contains the translational (x, y, z) component of the Pose.
56 typedef Eigen::Matrix<Scalar, 3, 1> Pos;
57
James Kuszmaul3ca28612020-02-15 17:52:27 -080058 // Provide a default constructor that creates a pose at the origin.
James Kuszmaul090563a2019-02-09 14:43:20 -080059 TypedPose() : TypedPose({0.0, 0.0, 0.0}, 0.0) {}
60
James Kuszmaul9f9676d2019-01-25 21:27:58 -080061 // Construct a Pose in the absolute frame with a particular position and yaw.
62 TypedPose(const Pos &abs_pos, Scalar theta) : pos_(abs_pos), theta_(theta) {}
63 // Construct a Pose relative to another Pose (base).
64 // If you provide a base of nullptr, then this will
65 // construct a Pose in the global frame.
66 // Note that the lifetime of base should be greater than the lifetime of
67 // the object being constructed.
68 TypedPose(const TypedPose<Scalar> *base, const Pos &rel_pos, Scalar rel_theta)
69 : base_(base), pos_(rel_pos), theta_(rel_theta) {}
70
James Kuszmaul3ca28612020-02-15 17:52:27 -080071 // Constructs a Pose from a homogeneous transformation matrix. Ignores the
72 // pitch/roll components of the rotation. Ignores the bottom row.
73 TypedPose(const Eigen::Matrix<Scalar, 4, 4> &H) {
74 pos_ = H.template block<3, 1>(0, 3);
75 const Eigen::Vector3d rotated_x =
76 H.template block<3, 3>(0, 0) * Eigen::Vector3d::UnitX();
77 theta_ = std::atan2(rotated_x.y(), rotated_x.x());
78 }
79
James Kuszmaul9f9676d2019-01-25 21:27:58 -080080 // Calculate the current global position of this Pose.
81 Pos abs_pos() const {
82 if (base_ == nullptr) {
83 return pos_;
84 }
85 Pos base_pos = base_->abs_pos();
86 Scalar base_theta = base_->abs_theta();
87 return base_pos + YawRotation(base_theta) * pos_;
88 }
89 // Calculate the absolute yaw of this Pose. Since we only have a single
90 // rotational axis, we can just sum the angle with that of the base Pose.
91 Scalar abs_theta() const {
92 if (base_ == nullptr) {
93 return theta_;
94 }
95 return aos::math::NormalizeAngle(theta_ + base_->abs_theta());
96 }
97 // Provide access to the position and yaw relative to the base Pose.
98 Pos rel_pos() const { return pos_; }
99 Scalar rel_theta() const { return theta_; }
James Kuszmaul090563a2019-02-09 14:43:20 -0800100 const TypedPose<Scalar> *base() const { return base_; }
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800101
102 Pos *mutable_pos() { return &pos_; }
103 void set_theta(Scalar theta) { theta_ = theta; }
James Kuszmaul090563a2019-02-09 14:43:20 -0800104 // Swap out the base Pose, keeping the current relative position/angle.
105 void set_base(const TypedPose<Scalar> *new_base) { base_ = new_base; }
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800106
107 // For 2-D calculation, provide the heading, which is distinct from the
108 // yaw/theta value. heading is the heading relative to the base Pose if you
109 // were to draw a line from the base to this Pose. i.e., if heading() is zero
110 // then you are directly in front of the base Pose.
111 Scalar heading() const { return ::std::atan2(pos_.y(), pos_.x()); }
112 // The 2-D distance from the base Pose to this Pose.
113 Scalar xy_norm() const { return pos_.template topRows<2>().norm(); }
114 // Return the absolute xy position.
115 Eigen::Matrix<Scalar, 2, 1> abs_xy() const {
116 return abs_pos().template topRows<2>();
117 }
118
James Kuszmaul3ca28612020-02-15 17:52:27 -0800119 // Returns a transformation matrix representing this pose--note that this
120 // explicitly does not include the base position, so this is equivalent to a
121 // translation and rotation by rel_pos and rel_theta.
122 Eigen::Matrix<Scalar, 4, 4> AsTransformationMatrix() const {
123 Eigen::Matrix<Scalar, 4, 4> matrix = TransformationMatrixForYaw(theta_);
124 matrix.template block<3, 1>(0, 3) = pos_;
125 return matrix;
126 }
127
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800128 // Provide a copy of this that is set to have the same
129 // current absolute Pose as this, but have a different base.
130 // This can be used, e.g., to compute a Pose for a vision target that is
131 // relative to the camera instead of relative to the field. You can then
132 // access the rel_* variables to get what the position of the target is
133 // relative to the robot/camera.
134 // If new_base == nullptr, provides a Pose referenced to the global frame.
135 // Note that the lifetime of new_base should be greater than the lifetime of
136 // the returned object (unless new_base == nullptr).
James Kuszmaulb1b2d8e2020-02-21 21:11:46 -0800137 [[nodiscard]] TypedPose Rebase(const TypedPose<Scalar> *new_base) const;
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800138
James Kuszmaul3ca28612020-02-15 17:52:27 -0800139 // Convert this pose to the heading/distance/skew numbers that we
140 // traditionally use for EKF corrections.
141 Eigen::Matrix<Scalar, 3, 1> ToHeadingDistanceSkew() const {
142 const Scalar target_heading = heading();
143 return {target_heading, xy_norm(),
144 aos::math::NormalizeAngle(rel_theta() - target_heading)};
145 }
146
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800147 private:
148 // A rotation-matrix like representation of the rotation for a given angle.
149 inline static Eigen::AngleAxis<Scalar> YawRotation(double theta) {
150 return Eigen::AngleAxis<Scalar>(theta, Pos::UnitZ());
151 }
152
153 // A pointer to the base Pose. If uninitialized, then this Pose is in the
154 // global frame.
155 const TypedPose<Scalar> *base_ = nullptr;
156 // Position and yaw relative to base_.
157 Pos pos_;
158 Scalar theta_;
159}; // class TypedPose
160
161typedef TypedPose<double> Pose;
162
163template <typename Scalar>
164TypedPose<Scalar> TypedPose<Scalar>::Rebase(
165 const TypedPose<Scalar> *new_base) const {
166 if (new_base == nullptr) {
167 return TypedPose<Scalar>(nullptr, abs_pos(), abs_theta());
168 }
169 // Calculate the absolute position/yaws of this and of the new_base, and then
170 // calculate where we are relative to new_base, essentially reversing the
171 // calculation in abs_*.
172 Pos base_pos = new_base->abs_pos();
173 Scalar base_theta = new_base->abs_theta();
174 Pos self_pos = abs_pos();
175 Scalar self_theta = abs_theta();
176 Scalar diff_theta = ::aos::math::DiffAngle(self_theta, base_theta);
177 Pos diff_pos = YawRotation(-base_theta) * (self_pos - base_pos);
178 return TypedPose<Scalar>(new_base, diff_pos, diff_theta);
179}
180
181// Represents a 2D line segment constructed from a pair of Poses.
182// The line segment goes between the two Poses, but for calculating
183// intersections we use the 2D projection of the Poses onto the global X-Y
184// plane.
185template <typename Scalar = double>
186class TypedLineSegment {
187 public:
James Kuszmaul090563a2019-02-09 14:43:20 -0800188 TypedLineSegment() {}
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800189 TypedLineSegment(const TypedPose<Scalar> &pose1,
190 const TypedPose<Scalar> &pose2)
191 : pose1_(pose1), pose2_(pose2) {}
192 // Detects if two line segments intersect.
193 // When at least one end of one line segment is collinear with the other,
194 // the line segments are treated as not intersecting.
195 bool Intersects(const TypedLineSegment<Scalar> &other) const {
196 // Source for algorithm:
197 // https://bryceboe.com/2006/10/23/line-segment-intersection-algorithm/
198 // Method:
199 // We will consider the four triangles that can be made out of any 3 points
200 // from the pair of line segments.
201 // Basically, if you consider one line segment the base of the triangle,
202 // then the two points of the other line segment should be on opposite
203 // sides of the first line segment (we use the PointsAreCCW function for
204 // this). This must hold when splitting off of both line segments.
205 Eigen::Matrix<Scalar, 2, 1> p1 = pose1_.abs_xy();
206 Eigen::Matrix<Scalar, 2, 1> p2 = pose2_.abs_xy();
207 Eigen::Matrix<Scalar, 2, 1> q1 = other.pose1_.abs_xy();
208 Eigen::Matrix<Scalar, 2, 1> q2 = other.pose2_.abs_xy();
209 return (::aos::math::PointsAreCCW<Scalar>(p1, q1, q2) !=
210 ::aos::math::PointsAreCCW<Scalar>(p2, q1, q2)) &&
211 (::aos::math::PointsAreCCW<Scalar>(p1, p2, q1) !=
212 ::aos::math::PointsAreCCW<Scalar>(p1, p2, q2));
213 }
James Kuszmaul090563a2019-02-09 14:43:20 -0800214
215 TypedPose<Scalar> pose1() const { return pose1_; }
216 TypedPose<Scalar> pose2() const { return pose2_; }
217 TypedPose<Scalar> *mutable_pose1() { return &pose1_; }
218 TypedPose<Scalar> *mutable_pose2() { return &pose2_; }
219
220 ::std::vector<TypedPose<Scalar>> PlotPoints() const {
221 return {pose1_, pose2_};
222 }
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800223 private:
James Kuszmaul090563a2019-02-09 14:43:20 -0800224 TypedPose<Scalar> pose1_;
225 TypedPose<Scalar> pose2_;
James Kuszmaul9f9676d2019-01-25 21:27:58 -0800226}; // class TypedLineSegment
227
228typedef TypedLineSegment<double> LineSegment;
229
230} // namespace control_loops
231} // namespace frc971
232
233#endif // FRC971_CONTROL_LOOPS_POSE_H_