James Kuszmaul | 886675c | 2024-10-09 20:32:00 -0700 | [diff] [blame] | 1 | #include <memory> |
| 2 | |
| 3 | #include "absl/log/check.h" |
| 4 | #include "absl/log/log.h" |
| 5 | #include <Eigen/Dense> |
| 6 | |
| 7 | #include "frc971/control_loops/c2d.h" |
| 8 | #include "frc971/control_loops/dlqr.h" |
| 9 | #include "frc971/control_loops/jacobian.h" |
| 10 | #include "frc971/control_loops/swerve/dynamics.h" |
| 11 | #include "frc971/control_loops/swerve/linearization_utils.h" |
| 12 | |
| 13 | namespace frc971::control_loops::swerve { |
| 14 | |
| 15 | // Provides a simple LQR controller that takes a non-linear system, linearizes |
| 16 | // the dynamics at each timepoint, recalculates the LQR gains for those |
| 17 | // dynamics, and calculates the relevant feedback inputs to provide. |
| 18 | template <int NStates, typename Scalar = double> |
| 19 | class LinearizedController { |
| 20 | public: |
| 21 | typedef Eigen::Matrix<Scalar, NStates, 1> State; |
| 22 | typedef Eigen::Matrix<Scalar, NStates, NStates> StateSquare; |
| 23 | typedef Eigen::Matrix<Scalar, kNumInputs, 1> Input; |
| 24 | typedef Eigen::Matrix<Scalar, kNumInputs, kNumInputs> InputSquare; |
| 25 | typedef Eigen::Matrix<Scalar, NStates, kNumInputs> BMatrix; |
| 26 | typedef DynamicsInterface<State, Input> Dynamics; |
| 27 | |
| 28 | struct Parameters { |
| 29 | // State cost matrix. |
| 30 | StateSquare Q; |
| 31 | // Input cost matrix. |
| 32 | InputSquare R; |
| 33 | // period at which the controller is called. |
| 34 | std::chrono::nanoseconds dt; |
| 35 | // The dynamics to use. |
| 36 | // TODO(james): I wrote this before creating the auto-differentiation |
| 37 | // functions; we should swap to the auto-differentiation, since the |
| 38 | // numerical linearization is one of the bigger timesinks in this controller |
| 39 | // right now. |
| 40 | std::unique_ptr<Dynamics> dynamics; |
| 41 | }; |
| 42 | |
| 43 | // Represents the linearized dynamics of the system. |
| 44 | struct LinearDynamics { |
| 45 | StateSquare A; |
| 46 | BMatrix B; |
| 47 | }; |
| 48 | |
| 49 | // Debug information for a given cycle of the controller. |
| 50 | struct ControllerDebug { |
| 51 | // Feedforward input which we provided. |
| 52 | Input U_ff; |
| 53 | // Calculated feedback input to provide. |
| 54 | Input U_feedback; |
| 55 | Eigen::Matrix<Scalar, kNumInputs, NStates> feedback_contributions; |
| 56 | }; |
| 57 | |
| 58 | struct ControllerResult { |
| 59 | // Control input to provide to the robot. |
| 60 | Input U; |
| 61 | ControllerDebug debug; |
| 62 | }; |
| 63 | |
| 64 | LinearizedController(Parameters params) : params_(std::move(params)) {} |
| 65 | |
| 66 | // Runs the controller for a given iteration, relinearizing the dynamics about |
| 67 | // the provided current state X, attempting to control the robot to the |
| 68 | // desired goal state. |
| 69 | // The U_ff input will be added into the returned control input. |
| 70 | ControllerResult RunController(const State &X, const State &goal, |
| 71 | Input U_ff) { |
| 72 | auto start_time = aos::monotonic_clock::now(); |
| 73 | // TODO(james): Swap this to the auto-diff methods; this is currently about |
| 74 | // a third of the total time spent in this method when run on the roborio. |
| 75 | const struct LinearDynamics continuous_dynamics = |
| 76 | LinearizeDynamics(X, U_ff); |
| 77 | auto linearization_time = aos::monotonic_clock::now(); |
| 78 | struct LinearDynamics discrete_dynamics; |
| 79 | frc971::controls::C2D(continuous_dynamics.A, continuous_dynamics.B, |
| 80 | params_.dt, &discrete_dynamics.A, |
| 81 | &discrete_dynamics.B); |
| 82 | auto c2d_time = aos::monotonic_clock::now(); |
| 83 | VLOG(2) << "Controllability of dynamics (ideally should be " << NStates |
| 84 | << "): " |
| 85 | << frc971::controls::Controllability(discrete_dynamics.A, |
| 86 | discrete_dynamics.B); |
| 87 | Eigen::Matrix<Scalar, kNumInputs, NStates> K; |
| 88 | Eigen::Matrix<Scalar, NStates, NStates> S; |
| 89 | // TODO(james): Swap this to a cheaper DARE solver; we should probably just |
| 90 | // do something like we do in Trajectory::CalculatePathGains for the tank |
| 91 | // spline controller where we approximate the infinite-horizon DARE solution |
| 92 | // by doing a finite-horizon LQR. |
| 93 | // Currently the dlqr call represents ~60% of the time spent in the |
| 94 | // RunController() method. |
| 95 | frc971::controls::dlqr(discrete_dynamics.A, discrete_dynamics.B, params_.Q, |
| 96 | params_.R, &K, &S); |
| 97 | auto dlqr_time = aos::monotonic_clock::now(); |
| 98 | const Input U_feedback = K * (goal - X); |
| 99 | const Input U = U_ff + U_feedback; |
| 100 | Eigen::Matrix<Scalar, kNumInputs, NStates> feedback_contributions; |
| 101 | for (int state_idx = 0; state_idx < NStates; ++state_idx) { |
| 102 | feedback_contributions.col(state_idx) = |
| 103 | K.col(state_idx) * (goal - X)(state_idx); |
| 104 | } |
| 105 | VLOG(2) << "linearization time " |
| 106 | << aos::time::DurationInSeconds(linearization_time - start_time) |
| 107 | << " c2d time " |
| 108 | << aos::time::DurationInSeconds(c2d_time - linearization_time) |
| 109 | << " dlqr time " |
| 110 | << aos::time::DurationInSeconds(dlqr_time - c2d_time); |
| 111 | return {.U = U, |
| 112 | .debug = {.U_ff = U_ff, |
| 113 | .U_feedback = U_feedback, |
| 114 | .feedback_contributions = feedback_contributions}}; |
| 115 | } |
| 116 | |
| 117 | LinearDynamics LinearizeDynamics(const State &X, const Input &U) { |
| 118 | return {.A = NumericalJacobianX(*params_.dynamics, X, U), |
| 119 | .B = NumericalJacobianU(*params_.dynamics, X, U)}; |
| 120 | } |
| 121 | |
| 122 | private: |
| 123 | const Parameters params_; |
| 124 | }; |
| 125 | |
| 126 | } // namespace frc971::control_loops::swerve |