blob: fa61d9bc852db147b16211981db53bf9f71b240c [file] [log] [blame]
Brian Silverman7be68ba2020-01-08 22:08:40 -08001#include "frc971/wpilib/ADIS16470.h"
2
3#include <inttypes.h>
4
5#include "glog/logging.h"
6
Austin Schuhac17fba2020-03-28 15:55:33 -07007#include "aos/containers/sized_array.h"
Brian Silverman7be68ba2020-01-08 22:08:40 -08008#include "aos/time/time.h"
9#include "hal/HAL.h"
10
11namespace frc971 {
12namespace wpilib {
13namespace {
14namespace registers {
15
16// Flash memory write count
17constexpr uint8_t FLASH_CNT = 0x00;
18// Diagnostic and operational status
19constexpr uint8_t DIAG_STAT = 0x02;
20// X-axis gyroscope output, lower word
21constexpr uint8_t X_GYRO_LOW = 0x04;
22// X-axis gyroscope output, upper word
23constexpr uint8_t X_GYRO_OUT = 0x06;
24// Y-axis gyroscope output, lower word
25constexpr uint8_t Y_GYRO_LOW = 0x08;
26// Y-axis gyroscope output, upper word
27constexpr uint8_t Y_GYRO_OUT = 0x0A;
28// Z-axis gyroscope output, lower word
29constexpr uint8_t Z_GYRO_LOW = 0x0C;
30// Z-axis gyroscope output, upper word
31constexpr uint8_t Z_GYRO_OUT = 0x0E;
32// X-axis accelerometer output, lower word
33constexpr uint8_t X_ACCL_LOW = 0x10;
34// X-axis accelerometer output, upper word
35constexpr uint8_t X_ACCL_OUT = 0x12;
36// Y-axis accelerometer output, lower word
37constexpr uint8_t Y_ACCL_OUT = 0x16;
38// Y-axis accelerometer output, upper word
39constexpr uint8_t Z_ACCL_LOW = 0x18;
40// Z-axis accelerometer output, lower word
41constexpr uint8_t Z_ACCL_OUT = 0x1A;
42// Z-axis accelerometer output, upper word
43constexpr uint8_t TEMP_OUT = 0x1C;
44// Temperature output (internal, not calibrated)
45constexpr uint8_t TIME_STAMP = 0x1E;
46// PPS mode time stamp
47constexpr uint8_t X_DELTANG_LOW = 0x24;
48// X-axis delta angle output, lower word
49constexpr uint8_t X_DELTANG_OUT = 0x26;
50// X-axis delta angle output, upper word
51constexpr uint8_t Y_DELTANG_LOW = 0x28;
52// Y-axis delta angle output, lower word
53constexpr uint8_t Y_DELTANG_OUT = 0x2A;
54// Y-axis delta angle output, upper word
55constexpr uint8_t Z_DELTANG_LOW = 0x2C;
56// Z-axis delta angle output, lower word
57constexpr uint8_t Z_DELTANG_OUT = 0x2E;
58// Z-axis delta angle output, upper word
59constexpr uint8_t X_DELTVEL_LOW = 0x30;
60// X-axis delta velocity output, lower word
61constexpr uint8_t X_DELTVEL_OUT = 0x32;
62// X-axis delta velocity output, upper word
63constexpr uint8_t Y_DELTVEL_LOW = 0x34;
64// Y-axis delta velocity output, lower word
65constexpr uint8_t Y_DELTVEL_OUT = 0x36;
66// Y-axis delta velocity output, upper word
67constexpr uint8_t Z_DELTVEL_LOW = 0x38;
68// Z-axis delta velocity output, lower word
69constexpr uint8_t Z_DELTVEL_OUT = 0x3A;
70// Z-axis delta velocity output, upper word
71constexpr uint8_t XG_BIAS_LOW = 0x40;
72// X-axis gyroscope bias offset correction, lower word
73constexpr uint8_t XG_BIAS_HIGH = 0x42;
74// X-axis gyroscope bias offset correction, upper word
75constexpr uint8_t YG_BIAS_LOW = 0x44;
76// Y-axis gyroscope bias offset correction, lower word
77constexpr uint8_t YG_BIAS_HIGH = 0x46;
78// Y-axis gyroscope bias offset correction, upper word
79constexpr uint8_t ZG_BIAS_LOW = 0x48;
80// Z-axis gyroscope bias offset correction, lower word
81constexpr uint8_t ZG_BIAS_HIGH = 0x4A;
82// Z-axis gyroscope bias offset correction, upper word
83constexpr uint8_t XA_BIAS_LOW = 0x4C;
84// X-axis accelerometer bias offset correction, lower word
85constexpr uint8_t XA_BIAS_HIGH = 0x4E;
86// X-axis accelerometer bias offset correction, upper word
87constexpr uint8_t YA_BIAS_LOW = 0x50;
88// Y-axis accelerometer bias offset correction, lower word
89constexpr uint8_t YA_BIAS_HIGH = 0x52;
90// Y-axis accelerometer bias offset correction, upper word
91constexpr uint8_t ZA_BIAS_LOW = 0x54;
92// Z-axis accelerometer bias offset correction, lower word
93constexpr uint8_t ZA_BIAS_HIGH = 0x56;
94// Z-axis accelerometer bias offset correction, upper word
95constexpr uint8_t FILT_CTRL = 0x5C;
96// Filter control
97constexpr uint8_t MSC_CTRL = 0x60;
98// Miscellaneous control
99constexpr uint8_t UP_SCALE = 0x62;
100// Clock scale factor, PPS mode
101constexpr uint8_t DEC_RATE = 0x64;
102// Decimation rate control (output data rate)
103constexpr uint8_t NULL_CNFG = 0x66;
104// Auto-null configuration control
105constexpr uint8_t GLOB_CMD = 0x68;
106// Global commands
107constexpr uint8_t FIRM_REV = 0x6C;
108// Firmware revision
109constexpr uint8_t FIRM_DM = 0x6E;
110// Firmware revision date, month and day
111constexpr uint8_t FIRM_Y = 0x70;
112// Firmware revision date, year
113constexpr uint8_t PROD_ID = 0x72;
114// Product identification
115constexpr uint8_t SERIAL_NUM = 0x74;
116// Serial number (relative to assembly lot)
117constexpr uint8_t USER_SCR1 = 0x76;
118// User scratch register 1
119constexpr uint8_t USER_SCR2 = 0x78;
120// User scratch register 2
121constexpr uint8_t USER_SCR3 = 0x7A;
122// User scratch register 3
123constexpr uint8_t FLSHCNT_LOW = 0x7C;
124// Flash update count, lower word
125constexpr uint8_t FLSHCNT_HIGH = 0x7E;
126// Flash update count, upper word
127constexpr uint8_t Y_ACCL_LOW = 0x14;
128
129} // namespace registers
130
131// The complete automatic packet we will send. This needs to include the dummy 0
132// bytes making up full 16-bit frames.
133// Note that in addition to the 24-byte limit from the FPGA, this is also
134// limited to 12 16-bit register reads by the IMU itself given that we're
135// reading at the full 2kHz rate.
136// We rotate the registers here by 1, such that the first thing we read is the
137// last thing triggered by the previous reading. We put DIAG_STAT in this
138// position because we don't care if it's one cycle stale.
139constexpr uint8_t kAutospiPacket[] = {
140 // X
141 registers::X_GYRO_OUT, 0,
142 registers::X_ACCL_OUT, 0, registers::X_ACCL_LOW, 0,
143 // Y
144 registers::Y_GYRO_OUT, 0,
145 registers::Y_ACCL_OUT, 0, registers::Y_ACCL_LOW, 0,
146 // Z
147 registers::Z_GYRO_OUT, 0,
148 registers::Z_ACCL_OUT, 0, registers::Z_ACCL_LOW, 0,
149 // Other
150 registers::TEMP_OUT, 0, registers::DIAG_STAT, 0,
151};
152// clang-format on
153
154static_assert((sizeof(kAutospiPacket) % 2) == 0,
155 "Need a whole number of register reads");
156
157static constexpr size_t kAutospiDataSize = sizeof(kAutospiPacket) + 1 /* timestamp */;
158
159// radian/second/LSB for the gyros (for just the 16-bit value).
160constexpr double kGyroLsbRadianSecond =
161 1.0 / 10.0 * (2.0 * M_PI / 360.0) /* degrees -> radians */;
162// G/LSB for the accelerometers (for the full 32-bit value).
James Kuszmaulb145b322020-01-22 22:31:52 -0800163constexpr double kAccelerometerLsbG = 1.0 / 52'428'800.0;
Brian Silverman7be68ba2020-01-08 22:08:40 -0800164// C/LSB for the temperature.
165constexpr double kTemperatureLsbDegree = 0.1;
166
167// This is what the datasheet says PROD_ID should be.
168constexpr uint16_t kExpectedProductId = 0x4056;
169// This is the PROD_ID we observe.
170constexpr uint16_t kObservedProductId = 0x4256;
171
172} // namespace
173
174ADIS16470::ADIS16470(aos::EventLoop *event_loop, frc::SPI *spi,
175 frc::DigitalInput *data_ready, frc::DigitalOutput *reset)
176 : event_loop_(event_loop),
177 imu_values_sender_(
Austin Schuhac17fba2020-03-28 15:55:33 -0700178 event_loop_->MakeSender<::frc971::IMUValuesBatch>("/drivetrain")),
Brian Silverman7be68ba2020-01-08 22:08:40 -0800179 initialize_timer_(
180 event_loop_->AddTimer([this]() { DoInitializeStep(); })),
181 spi_(spi),
182 data_ready_(data_ready),
183 reset_(reset) {
184 // Rather than put the entire data packet into the header, just put a size
185 // there and verify it matches here.
186 CHECK_EQ(kAutospiDataSize, read_data_.size());
187
188 // We're not doing burst mode, so this is the IMU's rated speed.
189 spi_->SetClockRate(2'000'000);
190 spi_->SetChipSelectActiveLow();
191 spi_->SetClockActiveLow();
192 spi_->SetSampleDataOnTrailingEdge();
193 spi_->SetMSBFirst();
194
195 // NI's SPI driver defaults to SCHED_OTHER. Find it's PID with ps, and change
196 // it to a RT priority of 33.
197 PCHECK(
Austin Schuha3f2a312020-02-22 21:03:00 -0800198 system("busybox ps -ef | grep '\\[spi0\\]' | awk '{print $1}' | xargs chrt -f -p "
Brian Silverman7be68ba2020-01-08 22:08:40 -0800199 "33") == 0);
James Kuszmaul57c2baa2020-01-19 14:52:52 -0800200 PCHECK(
Austin Schuha3f2a312020-02-22 21:03:00 -0800201 system("busybox ps -ef | grep '\\[spi1\\]' | awk '{print $1}' | xargs chrt -f -p "
James Kuszmaul57c2baa2020-01-19 14:52:52 -0800202 "33") == 0);
Brian Silverman7be68ba2020-01-08 22:08:40 -0800203
204 event_loop_->OnRun([this]() { BeginInitialization(); });
205}
206
207void ADIS16470::DoReads() {
208 if (state_ != State::kRunning) {
209 // Not sure how to interpret data received now, so ignore it.
210 return;
211 }
212
Austin Schuhac17fba2020-03-28 15:55:33 -0700213 auto builder = imu_values_sender_.MakeBuilder();
214
Brian Silverman7be68ba2020-01-08 22:08:40 -0800215 int amount_to_read =
216 spi_->ReadAutoReceivedData(to_read_.data(), 0, 0 /* don't block */);
Austin Schuhac17fba2020-03-28 15:55:33 -0700217
218 aos::SizedArray<flatbuffers::Offset<IMUValues>, 50> readings_offsets;
Brian Silverman7be68ba2020-01-08 22:08:40 -0800219 while (true) {
220 if (amount_to_read == 0) break;
221 CHECK(!to_read_.empty());
222 const int amount_read_now = std::min<int>(amount_to_read, to_read_.size());
223 CHECK_GT(amount_read_now, 0) << "amount_to_read: " << amount_to_read
224 << ", to_read_.size(): " << to_read_.size();
225 spi_->ReadAutoReceivedData(to_read_.data(), amount_read_now,
226 0 /* don't block */);
227 to_read_ = to_read_.subspan(amount_read_now);
228 amount_to_read -= amount_read_now;
229
230 if (to_read_.empty()) {
Austin Schuhac17fba2020-03-28 15:55:33 -0700231 flatbuffers::Offset<IMUValues> reading_offset =
232 ProcessReading(builder.fbb());
233 readings_offsets.push_back(reading_offset);
Brian Silverman7be68ba2020-01-08 22:08:40 -0800234
235 // Reset for the next reading.
236 to_read_ = absl::MakeSpan(read_data_);
237 } else {
238 CHECK_EQ(amount_to_read, 0);
239 break;
240 }
241 }
Austin Schuhac17fba2020-03-28 15:55:33 -0700242
243 flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<IMUValues>>>
244 readings_offset = builder.fbb()->CreateVector(readings_offsets.data(),
245 readings_offsets.size());
246
247 IMUValuesBatch::Builder imu_values_batch_builder =
248 builder.MakeBuilder<IMUValuesBatch>();
249 imu_values_batch_builder.add_readings(readings_offset);
250 builder.Send(imu_values_batch_builder.Finish());
Brian Silverman7be68ba2020-01-08 22:08:40 -0800251}
252
253void ADIS16470::DoInitializeStep() {
254 switch (state_) {
255 case State::kUninitialized: {
256 to_read_ = absl::MakeSpan(read_data_);
257
258 // First, set the SPI to normal mode so it stops trying to talk
259 // automatically.
260 spi_->StopAuto();
261
262 reset_->Set(false);
263 // Datasheet says it needs a 1 us pulse, so make sure we do something in
264 // between asserting and deasserting.
265 std::this_thread::sleep_for(::std::chrono::milliseconds(1));
266 reset_->Set(true);
267
268 state_ = State::kWaitForReset;
269 // Datasheet says it takes 193 ms to come out of reset, so give it some
270 // margin on top of that.
271 initialize_timer_->Setup(event_loop_->monotonic_now() +
272 std::chrono::milliseconds(250));
273 }
274 break;
275
276 case State::kWaitForReset: {
277 flatbuffers::Offset<ADIS16470DiagStat> start_diag_stat;
278 flatbuffers::Offset<ADIS16470DiagStat> self_test_diag_stat;
279 bool success = false;
280 auto builder = imu_values_sender_.MakeBuilder();
281
282 // Configure the IMU the way we want it.
283 const uint16_t product_id = ReadRegister(registers::PROD_ID, 0);
284 if (product_id == kExpectedProductId ||
285 product_id == kObservedProductId) {
286 const uint16_t start_diag_stat_value =
287 ReadRegister(registers::DIAG_STAT, 0);
288 start_diag_stat = PackDiagStat(builder.fbb(), start_diag_stat_value);
289 if (!DiagStatHasError(
290 *GetTemporaryPointer(*builder.fbb(), start_diag_stat))) {
291 WriteRegister(registers::FILT_CTRL, 0 /* no filtering */);
292 WriteRegister(
293 registers::MSC_CTRL,
294 (1 << 7) /* enable gyro linear g compensation */ |
295 (1 << 6) /* enable point of percussion alignment */ |
296 (0 << 2) /* internal clock mode */ |
297 (0 << 1) /* sync polarity, doesn't matter */ |
298 (1 << 0) /* data ready is active high */);
299 WriteRegister(registers::DEC_RATE,
300 0 /* no internal decimation (averaging) */);
301
302 // Start a sensor self test.
303 WriteRegister(registers::GLOB_CMD, 1 << 2);
304 // Datasheet says it takes 14ms, so give it some margin.
305 std::this_thread::sleep_for(std::chrono::milliseconds(25));
306 // Read DIAG_STAT again, and queue up a read of the first part of the
307 // autospi data packet.
308 const uint16_t self_test_diag_stat_value =
309 ReadRegister(registers::DIAG_STAT, kAutospiPacket[0]);
310 self_test_diag_stat =
311 PackDiagStat(builder.fbb(), self_test_diag_stat_value);
312 if (!DiagStatHasError(
313 *GetTemporaryPointer(*builder.fbb(), self_test_diag_stat))) {
314 // Initialize automatic mode, but don't start it yet.
315 spi_->InitAuto(kAutospiDataSize * 100);
316 spi_->SetAutoTransmitData(kAutospiPacket,
317 0 /* no extra 0s at the end */);
318 // No idea what units the "stall period" is in. This value is just
319 // bigger than the 16us min from the datasheet. It does not appear
320 // to scale with SPICLK frequency. Empirically, this value comes out
321 // to 16.7us.
322 spi_->ConfigureAutoStall(
Brian Silverman7be68ba2020-01-08 22:08:40 -0800323 0 /* the minimum CS delay is enough for this IMU */, 670,
324 1 /* toggle CS every 2 8-bit bytes */);
325
326 // Read any data queued up by the FPGA.
327 while (true){
328 uint32_t buffer;
329 if (spi_->ReadAutoReceivedData(&buffer, 1, 0 /* don't block */) ==
330 0) {
331 break;
332 }
333 }
334
335 // Finally, enable automatic mode so it starts reading data.
336 spi_->StartAutoTrigger(*data_ready_, true, false);
337 success = true;
338 }
339 }
340 }
341
342 IMUValues::Builder imu_builder = builder.MakeBuilder<IMUValues>();
343 imu_builder.add_product_id(product_id);
344 if (!start_diag_stat.IsNull()) {
345 imu_builder.add_start_diag_stat(start_diag_stat);
346 }
347 if (!self_test_diag_stat.IsNull()) {
348 imu_builder.add_self_test_diag_stat(self_test_diag_stat);
349 }
Austin Schuhac17fba2020-03-28 15:55:33 -0700350
351 const flatbuffers::Offset<IMUValues> readings_offsets =
352 imu_builder.Finish();
353 const flatbuffers::Offset<
354 flatbuffers::Vector<flatbuffers::Offset<IMUValues>>>
355 readings_offset = builder.fbb()->CreateVector(&readings_offsets, 1);
356
357 IMUValuesBatch::Builder imu_batch_builder =
358 builder.MakeBuilder<IMUValuesBatch>();
359 imu_batch_builder.add_readings(readings_offset);
360 builder.Send(imu_batch_builder.Finish());
Brian Silverman7be68ba2020-01-08 22:08:40 -0800361 if (success) {
362 state_ = State::kRunning;
363 } else {
364 BeginInitialization();
365 }
366 }
367 break;
368
369 case State::kRunning:
370 LOG(FATAL) << "Not a reset state";
371 }
372}
373
Austin Schuhac17fba2020-03-28 15:55:33 -0700374flatbuffers::Offset<IMUValues> ADIS16470::ProcessReading(
375 flatbuffers::FlatBufferBuilder *fbb) {
Brian Silverman7be68ba2020-01-08 22:08:40 -0800376 // If we ever see this, we'll need to decide how to handle it. Probably reset
377 // everything and try again.
378 CHECK_EQ(0, spi_->GetAutoDroppedCount());
379
Brian Silverman7be68ba2020-01-08 22:08:40 -0800380 absl::Span<const uint32_t> to_process = read_data_;
381 hal::fpga_clock::time_point fpga_time;
382 {
383 int32_t status = 0;
384 const uint64_t fpga_expanded = HAL_ExpandFPGATime(to_process[0], &status);
385 CHECK_EQ(0, status);
386 fpga_time =
387 hal::fpga_clock::time_point(hal::fpga_clock::duration(fpga_expanded));
388 }
389 to_process = to_process.subspan(1);
390
391 const uint16_t diag_stat_value = (static_cast<uint16_t>(to_process[0]) << 8) |
392 static_cast<uint16_t>(to_process[1]);
Austin Schuhac17fba2020-03-28 15:55:33 -0700393 const auto diag_stat = PackDiagStat(fbb, diag_stat_value);
Brian Silverman7be68ba2020-01-08 22:08:40 -0800394 to_process = to_process.subspan(2);
395
Austin Schuhac17fba2020-03-28 15:55:33 -0700396 IMUValues::Builder imu_builder(*fbb);
Brian Silverman7be68ba2020-01-08 22:08:40 -0800397 imu_builder.add_fpga_timestamp(
398 aos::time::DurationInSeconds(fpga_time.time_since_epoch()));
399 imu_builder.add_monotonic_timestamp_ns(
400 time_converter_.FpgaToMonotonic(fpga_time).time_since_epoch().count());
401 imu_builder.add_previous_reading_diag_stat(diag_stat);
402
403 imu_builder.add_gyro_x(ConvertValue16(to_process, kGyroLsbRadianSecond));
404 to_process = to_process.subspan(2);
405 imu_builder.add_accelerometer_x(
406 ConvertValue32(to_process, kAccelerometerLsbG));
407 to_process = to_process.subspan(4);
408 imu_builder.add_gyro_y(ConvertValue16(to_process, kGyroLsbRadianSecond));
409 to_process = to_process.subspan(2);
410 imu_builder.add_accelerometer_y(
411 ConvertValue32(to_process, kAccelerometerLsbG));
412 to_process = to_process.subspan(4);
413 imu_builder.add_gyro_z(ConvertValue16(to_process, kGyroLsbRadianSecond));
414 to_process = to_process.subspan(2);
415 imu_builder.add_accelerometer_z(
416 ConvertValue32(to_process, kAccelerometerLsbG));
417 to_process = to_process.subspan(4);
418
419 imu_builder.add_temperature(
420 ConvertValue16(to_process, kTemperatureLsbDegree));
421 to_process = to_process.subspan(2);
422
423 CHECK(to_process.empty()) << "Have leftover bytes: " << to_process.size();
424
Austin Schuhac17fba2020-03-28 15:55:33 -0700425 return imu_builder.Finish();
Brian Silverman7be68ba2020-01-08 22:08:40 -0800426}
427
428double ADIS16470::ConvertValue32(absl::Span<const uint32_t> data,
429 double lsb_per_output) {
430 const uint32_t unsigned_value = (static_cast<uint32_t>(data[0]) << 24) |
431 (static_cast<uint32_t>(data[1]) << 16) |
432 (static_cast<uint32_t>(data[2]) << 8) |
433 static_cast<uint32_t>(data[3]);
434 int32_t signed_value;
435 memcpy(&signed_value, &unsigned_value, sizeof(unsigned_value));
436 return static_cast<double>(signed_value) * lsb_per_output;
437}
438
439double ADIS16470::ConvertValue16(absl::Span<const uint32_t> data,
440 double lsb_per_output) {
441 const uint16_t unsigned_value =
442 (static_cast<uint16_t>(data[0]) << 8) | static_cast<uint16_t>(data[1]);
443 int16_t signed_value;
444 memcpy(&signed_value, &unsigned_value, sizeof(unsigned_value));
445 return static_cast<double>(signed_value) * lsb_per_output;
446}
447
448flatbuffers::Offset<ADIS16470DiagStat> ADIS16470::PackDiagStat(
449 flatbuffers::FlatBufferBuilder *fbb, uint16_t value) {
450 ADIS16470DiagStat::Builder diag_stat_builder(*fbb);
451 diag_stat_builder.add_clock_error(value & (1 << 7));
452 diag_stat_builder.add_memory_failure(value & (1 << 6));
453 diag_stat_builder.add_sensor_failure(value & (1 << 5));
454 diag_stat_builder.add_standby_mode(value & (1 << 4));
455 diag_stat_builder.add_spi_communication_error(value & (1 << 3));
456 diag_stat_builder.add_flash_memory_update_error(value & (1 << 2));
457 diag_stat_builder.add_data_path_overrun(value & (1 << 1));
458 return diag_stat_builder.Finish();
459}
460
461bool ADIS16470::DiagStatHasError(const ADIS16470DiagStat &diag_stat) {
462 return diag_stat.clock_error() || diag_stat.memory_failure() ||
463 diag_stat.sensor_failure() || diag_stat.standby_mode() ||
464 diag_stat.spi_communication_error() ||
465 diag_stat.flash_memory_update_error() || diag_stat.data_path_overrun();
466}
467
468uint16_t ADIS16470::ReadRegister(uint8_t register_address,
469 uint8_t next_register_address) {
470 uint8_t send_buffer[2] = {static_cast<uint8_t>(register_address & 0x7f), 0};
471 uint8_t dummy[2];
472 spi_->Transaction(send_buffer, dummy, sizeof(send_buffer));
473 uint8_t receive_buffer[2];
474 uint8_t next_send_buffer[2] = {
475 static_cast<uint8_t>(next_register_address & 0x7f), 0};
476 spi_->Transaction(next_send_buffer, receive_buffer, sizeof(receive_buffer));
477 return (static_cast<uint16_t>(receive_buffer[0]) << 8) |
478 static_cast<uint16_t>(receive_buffer[1]);
479}
480
481void ADIS16470::WriteRegister(uint8_t register_address, uint16_t value) {
482 uint8_t buffer1[2] = {static_cast<uint8_t>(register_address | 0x80),
483 static_cast<uint8_t>(value & 0xff)};
484 uint8_t buffer2[2] = {static_cast<uint8_t>(register_address | 0x81),
485 static_cast<uint8_t>(value >> 8)};
486 spi_->Write(buffer1, sizeof(buffer1));
487 spi_->Write(buffer2, sizeof(buffer2));
488}
489
490} // namespace wpilib
491} // namespace frc971