blob: a5054c627235c95dd57517e3831b1376919ea01b [file] [log] [blame]
Austin Schuhdace2a62020-08-18 10:56:48 -07001/* Generate perfect square testing data.
2
3Copyright 2002-2004, 2012, 2014 Free Software Foundation, Inc.
4
5This file is part of the GNU MP Library.
6
7The GNU MP Library is free software; you can redistribute it and/or modify
8it under the terms of either:
9
10 * the GNU Lesser General Public License as published by the Free
11 Software Foundation; either version 3 of the License, or (at your
12 option) any later version.
13
14or
15
16 * the GNU General Public License as published by the Free Software
17 Foundation; either version 2 of the License, or (at your option) any
18 later version.
19
20or both in parallel, as here.
21
22The GNU MP Library is distributed in the hope that it will be useful, but
23WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
24or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25for more details.
26
27You should have received copies of the GNU General Public License and the
28GNU Lesser General Public License along with the GNU MP Library. If not,
29see https://www.gnu.org/licenses/. */
30
31#include <stdio.h>
32#include <stdlib.h>
33
34#include "bootstrap.c"
35
36
37/* The aim of this program is to choose either mpn_mod_34lsub1 or mpn_mod_1
38 (plus a PERFSQR_PP modulus), and generate tables indicating quadratic
39 residues and non-residues modulo small factors of that modulus.
40
41 For the usual 32 or 64 bit cases mpn_mod_34lsub1 gets used. That
42 function exists specifically because 2^24-1 and 2^48-1 have nice sets of
43 prime factors. For other limb sizes it's considered, but if it doesn't
44 have good factors then mpn_mod_1 will be used instead.
45
46 When mpn_mod_1 is used, the modulus PERFSQR_PP is created from a
47 selection of small primes, chosen to fill PERFSQR_MOD_BITS of a limb,
48 with that bit count chosen so (2*GMP_LIMB_BITS)*2^PERFSQR_MOD_BITS <=
49 GMP_LIMB_MAX, allowing PERFSQR_MOD_IDX in mpn/generic/perfsqr.c to do its
50 calculation within a single limb.
51
52 In either case primes can be combined to make divisors. The table data
53 then effectively indicates remainders which are quadratic residues mod
54 all the primes. This sort of combining reduces the number of steps
55 needed after mpn_mod_34lsub1 or mpn_mod_1, saving code size and time.
56 Nothing is gained or lost in terms of detections, the same total fraction
57 of non-residues will be identified.
58
59 Nothing particularly sophisticated is attempted for combining factors to
60 make divisors. This is probably a kind of knapsack problem so it'd be
61 too hard to attempt anything completely general. For the usual 32 and 64
62 bit limbs we get a good enough result just pairing the biggest and
63 smallest which fit together, repeatedly.
64
65 Another aim is to get powerful combinations, ie. divisors which identify
66 biggest fraction of non-residues, and have those run first. Again for
67 the usual 32 and 64 bits it seems good enough just to pair for big
68 divisors then sort according to the resulting fraction of non-residues
69 identified.
70
71 Also in this program, a table sq_res_0x100 of residues modulo 256 is
72 generated. This simply fills bits into limbs of the appropriate
73 build-time GMP_LIMB_BITS each.
74
75*/
76
77
78/* Normally we aren't using const in gen*.c programs, so as not to have to
79 bother figuring out if it works, but using it with f_cmp_divisor and
80 f_cmp_fraction avoids warnings from the qsort calls. */
81
82/* Same tests as gmp.h. */
83#if defined (__STDC__) \
84 || defined (__cplusplus) \
85 || defined (_AIX) \
86 || defined (__DECC) \
87 || (defined (__mips) && defined (_SYSTYPE_SVR4)) \
88 || defined (_MSC_VER) \
89 || defined (_WIN32)
90#define HAVE_CONST 1
91#endif
92
93#if ! HAVE_CONST
94#define const
95#endif
96
97
98mpz_t *sq_res_0x100; /* table of limbs */
99int nsq_res_0x100; /* elements in sq_res_0x100 array */
100int sq_res_0x100_num; /* squares in sq_res_0x100 */
101double sq_res_0x100_fraction; /* sq_res_0x100_num / 256 */
102
103int mod34_bits; /* 3*GMP_NUMB_BITS/4 */
104int mod_bits; /* bits from PERFSQR_MOD_34 or MOD_PP */
105int max_divisor; /* all divisors <= max_divisor */
106int max_divisor_bits; /* ceil(log2(max_divisor)) */
107double total_fraction; /* of squares */
108mpz_t pp; /* product of primes, or 0 if mod_34lsub1 used */
109mpz_t pp_norm; /* pp shifted so NUMB high bit set */
110mpz_t pp_inverted; /* invert_limb style inverse */
111mpz_t mod_mask; /* 2^mod_bits-1 */
112char mod34_excuse[128]; /* why mod_34lsub1 not used (if it's not) */
113
114/* raw list of divisors of 2^mod34_bits-1 or pp, just to show in a comment */
115struct rawfactor_t {
116 int divisor;
117 int multiplicity;
118};
119struct rawfactor_t *rawfactor;
120int nrawfactor;
121
122/* factors of 2^mod34_bits-1 or pp and associated data, after combining etc */
123struct factor_t {
124 int divisor;
125 mpz_t inverse; /* 1/divisor mod 2^mod_bits */
126 mpz_t mask; /* indicating squares mod divisor */
127 double fraction; /* squares/total */
128};
129struct factor_t *factor;
130int nfactor; /* entries in use in factor array */
131int factor_alloc; /* entries allocated to factor array */
132
133
134int
135f_cmp_divisor (const void *parg, const void *qarg)
136{
137 const struct factor_t *p, *q;
138 p = (const struct factor_t *) parg;
139 q = (const struct factor_t *) qarg;
140 if (p->divisor > q->divisor)
141 return 1;
142 else if (p->divisor < q->divisor)
143 return -1;
144 else
145 return 0;
146}
147
148int
149f_cmp_fraction (const void *parg, const void *qarg)
150{
151 const struct factor_t *p, *q;
152 p = (const struct factor_t *) parg;
153 q = (const struct factor_t *) qarg;
154 if (p->fraction > q->fraction)
155 return 1;
156 else if (p->fraction < q->fraction)
157 return -1;
158 else
159 return 0;
160}
161
162/* Remove array[idx] by copying the remainder down, and adjust narray
163 accordingly. */
164#define COLLAPSE_ELEMENT(array, idx, narray) \
165 do { \
166 memmove (&(array)[idx], \
167 &(array)[idx+1], \
168 ((narray)-((idx)+1)) * sizeof (array[0])); \
169 (narray)--; \
170 } while (0)
171
172
173/* return n*2^p mod m */
174int
175mul_2exp_mod (int n, int p, int m)
176{
177 while (--p >= 0)
178 n = (2 * n) % m;
179 return n;
180}
181
182/* return -n mod m */
183int
184neg_mod (int n, int m)
185{
186 assert (n >= 0 && n < m);
187 return (n == 0 ? 0 : m-n);
188}
189
190/* Set "mask" to a value such that "mask & (1<<idx)" is non-zero if
191 "-(idx<<mod_bits)" can be a square modulo m. */
192void
193square_mask (mpz_t mask, int m)
194{
195 int p, i, r, idx;
196
197 p = mul_2exp_mod (1, mod_bits, m);
198 p = neg_mod (p, m);
199
200 mpz_set_ui (mask, 0L);
201 for (i = 0; i < m; i++)
202 {
203 r = (i * i) % m;
204 idx = (r * p) % m;
205 mpz_setbit (mask, (unsigned long) idx);
206 }
207}
208
209void
210generate_sq_res_0x100 (int limb_bits)
211{
212 int i, res;
213
214 nsq_res_0x100 = (0x100 + limb_bits - 1) / limb_bits;
215 sq_res_0x100 = (mpz_t *) xmalloc (nsq_res_0x100 * sizeof (*sq_res_0x100));
216
217 for (i = 0; i < nsq_res_0x100; i++)
218 mpz_init_set_ui (sq_res_0x100[i], 0L);
219
220 for (i = 0; i < 0x100; i++)
221 {
222 res = (i * i) % 0x100;
223 mpz_setbit (sq_res_0x100[res / limb_bits],
224 (unsigned long) (res % limb_bits));
225 }
226
227 sq_res_0x100_num = 0;
228 for (i = 0; i < nsq_res_0x100; i++)
229 sq_res_0x100_num += mpz_popcount (sq_res_0x100[i]);
230 sq_res_0x100_fraction = (double) sq_res_0x100_num / 256.0;
231}
232
233void
234generate_mod (int limb_bits, int nail_bits)
235{
236 int numb_bits = limb_bits - nail_bits;
237 int i, divisor;
238
239 mpz_init_set_ui (pp, 0L);
240 mpz_init_set_ui (pp_norm, 0L);
241 mpz_init_set_ui (pp_inverted, 0L);
242
243 /* no more than limb_bits many factors in a one limb modulus (and of
244 course in reality nothing like that many) */
245 factor_alloc = limb_bits;
246 factor = (struct factor_t *) xmalloc (factor_alloc * sizeof (*factor));
247 rawfactor = (struct rawfactor_t *) xmalloc (factor_alloc * sizeof (*rawfactor));
248
249 if (numb_bits % 4 != 0)
250 {
251 strcpy (mod34_excuse, "GMP_NUMB_BITS % 4 != 0");
252 goto use_pp;
253 }
254
255 max_divisor = 2*limb_bits;
256 max_divisor_bits = log2_ceil (max_divisor);
257
258 if (numb_bits / 4 < max_divisor_bits)
259 {
260 /* Wind back to one limb worth of max_divisor, if that will let us use
261 mpn_mod_34lsub1. */
262 max_divisor = limb_bits;
263 max_divisor_bits = log2_ceil (max_divisor);
264
265 if (numb_bits / 4 < max_divisor_bits)
266 {
267 strcpy (mod34_excuse, "GMP_NUMB_BITS / 4 too small");
268 goto use_pp;
269 }
270 }
271
272 {
273 /* Can use mpn_mod_34lsub1, find small factors of 2^mod34_bits-1. */
274 mpz_t m, q, r;
275 int multiplicity;
276
277 mod34_bits = (numb_bits / 4) * 3;
278
279 /* mpn_mod_34lsub1 returns a full limb value, PERFSQR_MOD_34 folds it at
280 the mod34_bits mark, adding the two halves for a remainder of at most
281 mod34_bits+1 many bits */
282 mod_bits = mod34_bits + 1;
283
284 mpz_init_set_ui (m, 1L);
285 mpz_mul_2exp (m, m, mod34_bits);
286 mpz_sub_ui (m, m, 1L);
287
288 mpz_init (q);
289 mpz_init (r);
290
291 for (i = 3; i <= max_divisor; i+=2)
292 {
293 if (! isprime (i))
294 continue;
295
296 mpz_tdiv_qr_ui (q, r, m, (unsigned long) i);
297 if (mpz_sgn (r) != 0)
298 continue;
299
300 /* if a repeated prime is found it's used as an i^n in one factor */
301 divisor = 1;
302 multiplicity = 0;
303 do
304 {
305 if (divisor > max_divisor / i)
306 break;
307 multiplicity++;
308 mpz_set (m, q);
309 mpz_tdiv_qr_ui (q, r, m, (unsigned long) i);
310 }
311 while (mpz_sgn (r) == 0);
312
313 assert (nrawfactor < factor_alloc);
314 rawfactor[nrawfactor].divisor = i;
315 rawfactor[nrawfactor].multiplicity = multiplicity;
316 nrawfactor++;
317 }
318
319 mpz_clear (m);
320 mpz_clear (q);
321 mpz_clear (r);
322 }
323
324 if (nrawfactor <= 2)
325 {
326 mpz_t new_pp;
327
328 sprintf (mod34_excuse, "only %d small factor%s",
329 nrawfactor, nrawfactor == 1 ? "" : "s");
330
331 use_pp:
332 /* reset to two limbs of max_divisor, in case the mpn_mod_34lsub1 code
333 tried with just one */
334 max_divisor = 2*limb_bits;
335 max_divisor_bits = log2_ceil (max_divisor);
336
337 mpz_init (new_pp);
338 nrawfactor = 0;
339 mod_bits = MIN (numb_bits, limb_bits - max_divisor_bits);
340
341 /* one copy of each small prime */
342 mpz_set_ui (pp, 1L);
343 for (i = 3; i <= max_divisor; i+=2)
344 {
345 if (! isprime (i))
346 continue;
347
348 mpz_mul_ui (new_pp, pp, (unsigned long) i);
349 if (mpz_sizeinbase (new_pp, 2) > mod_bits)
350 break;
351 mpz_set (pp, new_pp);
352
353 assert (nrawfactor < factor_alloc);
354 rawfactor[nrawfactor].divisor = i;
355 rawfactor[nrawfactor].multiplicity = 1;
356 nrawfactor++;
357 }
358
359 /* Plus an extra copy of one or more of the primes selected, if that
360 still fits in max_divisor and the total in mod_bits. Usually only
361 3 or 5 will be candidates */
362 for (i = nrawfactor-1; i >= 0; i--)
363 {
364 if (rawfactor[i].divisor > max_divisor / rawfactor[i].divisor)
365 continue;
366 mpz_mul_ui (new_pp, pp, (unsigned long) rawfactor[i].divisor);
367 if (mpz_sizeinbase (new_pp, 2) > mod_bits)
368 continue;
369 mpz_set (pp, new_pp);
370
371 rawfactor[i].multiplicity++;
372 }
373
374 mod_bits = mpz_sizeinbase (pp, 2);
375
376 mpz_set (pp_norm, pp);
377 while (mpz_sizeinbase (pp_norm, 2) < numb_bits)
378 mpz_add (pp_norm, pp_norm, pp_norm);
379
380 mpz_preinv_invert (pp_inverted, pp_norm, numb_bits);
381
382 mpz_clear (new_pp);
383 }
384
385 /* start the factor array */
386 for (i = 0; i < nrawfactor; i++)
387 {
388 int j;
389 assert (nfactor < factor_alloc);
390 factor[nfactor].divisor = 1;
391 for (j = 0; j < rawfactor[i].multiplicity; j++)
392 factor[nfactor].divisor *= rawfactor[i].divisor;
393 nfactor++;
394 }
395
396 combine:
397 /* Combine entries in the factor array. Combine the smallest entry with
398 the biggest one that will fit with it (ie. under max_divisor), then
399 repeat that with the new smallest entry. */
400 qsort (factor, nfactor, sizeof (factor[0]), f_cmp_divisor);
401 for (i = nfactor-1; i >= 1; i--)
402 {
403 if (factor[i].divisor <= max_divisor / factor[0].divisor)
404 {
405 factor[0].divisor *= factor[i].divisor;
406 COLLAPSE_ELEMENT (factor, i, nfactor);
407 goto combine;
408 }
409 }
410
411 total_fraction = 1.0;
412 for (i = 0; i < nfactor; i++)
413 {
414 mpz_init (factor[i].inverse);
415 mpz_invert_ui_2exp (factor[i].inverse,
416 (unsigned long) factor[i].divisor,
417 (unsigned long) mod_bits);
418
419 mpz_init (factor[i].mask);
420 square_mask (factor[i].mask, factor[i].divisor);
421
422 /* fraction of possible squares */
423 factor[i].fraction = (double) mpz_popcount (factor[i].mask)
424 / factor[i].divisor;
425
426 /* total fraction of possible squares */
427 total_fraction *= factor[i].fraction;
428 }
429
430 /* best tests first (ie. smallest fraction) */
431 qsort (factor, nfactor, sizeof (factor[0]), f_cmp_fraction);
432}
433
434void
435print (int limb_bits, int nail_bits)
436{
437 int i;
438 mpz_t mhi, mlo;
439
440 printf ("/* This file generated by gen-psqr.c - DO NOT EDIT. */\n");
441 printf ("\n");
442
443 printf ("#if GMP_LIMB_BITS != %d || GMP_NAIL_BITS != %d\n",
444 limb_bits, nail_bits);
445 printf ("Error, error, this data is for %d bit limb and %d bit nail\n",
446 limb_bits, nail_bits);
447 printf ("#endif\n");
448 printf ("\n");
449
450 printf ("/* Non-zero bit indicates a quadratic residue mod 0x100.\n");
451 printf (" This test identifies %.2f%% as non-squares (%d/256). */\n",
452 (1.0 - sq_res_0x100_fraction) * 100.0,
453 0x100 - sq_res_0x100_num);
454 printf ("static const mp_limb_t\n");
455 printf ("sq_res_0x100[%d] = {\n", nsq_res_0x100);
456 for (i = 0; i < nsq_res_0x100; i++)
457 {
458 printf (" CNST_LIMB(0x");
459 mpz_out_str (stdout, 16, sq_res_0x100[i]);
460 printf ("),\n");
461 }
462 printf ("};\n");
463 printf ("\n");
464
465 if (mpz_sgn (pp) != 0)
466 {
467 printf ("/* mpn_mod_34lsub1 not used due to %s */\n", mod34_excuse);
468 printf ("/* PERFSQR_PP = ");
469 }
470 else
471 printf ("/* 2^%d-1 = ", mod34_bits);
472 for (i = 0; i < nrawfactor; i++)
473 {
474 if (i != 0)
475 printf (" * ");
476 printf ("%d", rawfactor[i].divisor);
477 if (rawfactor[i].multiplicity != 1)
478 printf ("^%d", rawfactor[i].multiplicity);
479 }
480 printf (" %s*/\n", mpz_sgn (pp) == 0 ? "... " : "");
481
482 printf ("#define PERFSQR_MOD_BITS %d\n", mod_bits);
483 if (mpz_sgn (pp) != 0)
484 {
485 printf ("#define PERFSQR_PP CNST_LIMB(0x");
486 mpz_out_str (stdout, 16, pp);
487 printf (")\n");
488 printf ("#define PERFSQR_PP_NORM CNST_LIMB(0x");
489 mpz_out_str (stdout, 16, pp_norm);
490 printf (")\n");
491 printf ("#define PERFSQR_PP_INVERTED CNST_LIMB(0x");
492 mpz_out_str (stdout, 16, pp_inverted);
493 printf (")\n");
494 }
495 printf ("\n");
496
497 mpz_init (mhi);
498 mpz_init (mlo);
499
500 printf ("/* This test identifies %.2f%% as non-squares. */\n",
501 (1.0 - total_fraction) * 100.0);
502 printf ("#define PERFSQR_MOD_TEST(up, usize) \\\n");
503 printf (" do { \\\n");
504 printf (" mp_limb_t r; \\\n");
505 if (mpz_sgn (pp) != 0)
506 printf (" PERFSQR_MOD_PP (r, up, usize); \\\n");
507 else
508 printf (" PERFSQR_MOD_34 (r, up, usize); \\\n");
509
510 for (i = 0; i < nfactor; i++)
511 {
512 printf (" \\\n");
513 printf (" /* %5.2f%% */ \\\n",
514 (1.0 - factor[i].fraction) * 100.0);
515
516 printf (" PERFSQR_MOD_%d (r, CNST_LIMB(%2d), CNST_LIMB(0x",
517 factor[i].divisor <= limb_bits ? 1 : 2,
518 factor[i].divisor);
519 mpz_out_str (stdout, 16, factor[i].inverse);
520 printf ("), \\\n");
521 printf (" CNST_LIMB(0x");
522
523 if ( factor[i].divisor <= limb_bits)
524 {
525 mpz_out_str (stdout, 16, factor[i].mask);
526 }
527 else
528 {
529 mpz_tdiv_r_2exp (mlo, factor[i].mask, (unsigned long) limb_bits);
530 mpz_tdiv_q_2exp (mhi, factor[i].mask, (unsigned long) limb_bits);
531 mpz_out_str (stdout, 16, mhi);
532 printf ("), CNST_LIMB(0x");
533 mpz_out_str (stdout, 16, mlo);
534 }
535 printf (")); \\\n");
536 }
537
538 printf (" } while (0)\n");
539 printf ("\n");
540
541 printf ("/* Grand total sq_res_0x100 and PERFSQR_MOD_TEST, %.2f%% non-squares. */\n",
542 (1.0 - (total_fraction * 44.0/256.0)) * 100.0);
543 printf ("\n");
544
545 printf ("/* helper for tests/mpz/t-perfsqr.c */\n");
546 printf ("#define PERFSQR_DIVISORS { 256,");
547 for (i = 0; i < nfactor; i++)
548 printf (" %d,", factor[i].divisor);
549 printf (" }\n");
550
551
552 mpz_clear (mhi);
553 mpz_clear (mlo);
554}
555
556int
557main (int argc, char *argv[])
558{
559 int limb_bits, nail_bits;
560
561 if (argc != 3)
562 {
563 fprintf (stderr, "Usage: gen-psqr <limbbits> <nailbits>\n");
564 exit (1);
565 }
566
567 limb_bits = atoi (argv[1]);
568 nail_bits = atoi (argv[2]);
569
570 if (limb_bits <= 0
571 || nail_bits < 0
572 || nail_bits >= limb_bits)
573 {
574 fprintf (stderr, "Invalid limb/nail bits: %d %d\n",
575 limb_bits, nail_bits);
576 exit (1);
577 }
578
579 generate_sq_res_0x100 (limb_bits);
580 generate_mod (limb_bits, nail_bits);
581
582 print (limb_bits, nail_bits);
583
584 return 0;
585}