Brian Silverman | a8ce4c3 | 2018-08-04 23:57:09 -0700 | [diff] [blame^] | 1 | // Boost.Units - A C++ library for zero-overhead dimensional analysis and |
| 2 | // unit/quantity manipulation and conversion |
| 3 | // |
| 4 | // Copyright (C) 2003-2008 Matthias Christian Schabel |
| 5 | // Copyright (C) 2008 Steven Watanabe |
| 6 | // |
| 7 | // Distributed under the Boost Software License, Version 1.0. (See |
| 8 | // accompanying file LICENSE_1_0.txt or copy at |
| 9 | // http://www.boost.org/LICENSE_1_0.txt) |
| 10 | |
| 11 | /** |
| 12 | \file |
| 13 | |
| 14 | \brief performance.cpp |
| 15 | |
| 16 | \details |
| 17 | Test runtime performance. |
| 18 | |
| 19 | Output: |
| 20 | @verbatim |
| 21 | |
| 22 | multiplying ublas::matrix<double>(1000, 1000) : 25.03 seconds |
| 23 | multiplying ublas::matrix<quantity>(1000, 1000) : 24.49 seconds |
| 24 | tiled_matrix_multiply<double>(1000, 1000) : 1.12 seconds |
| 25 | tiled_matrix_multiply<quantity>(1000, 1000) : 1.16 seconds |
| 26 | solving y' = 1 - x + 4 * y with double: 1.97 seconds |
| 27 | solving y' = 1 - x + 4 * y with quantity: 1.84 seconds |
| 28 | |
| 29 | @endverbatim |
| 30 | **/ |
| 31 | |
| 32 | #define _SCL_SECURE_NO_WARNINGS |
| 33 | |
| 34 | #include <cstdlib> |
| 35 | #include <ctime> |
| 36 | #include <algorithm> |
| 37 | #include <iostream> |
| 38 | #include <iomanip> |
| 39 | |
| 40 | #include <boost/config.hpp> |
| 41 | #include <boost/timer.hpp> |
| 42 | #include <boost/utility/result_of.hpp> |
| 43 | |
| 44 | #ifdef BOOST_MSVC |
| 45 | #pragma warning(push) |
| 46 | #pragma warning(disable:4267; disable:4127; disable:4244; disable:4100) |
| 47 | #endif |
| 48 | |
| 49 | #include <boost/numeric/ublas/matrix.hpp> |
| 50 | |
| 51 | #ifdef BOOST_MSVC |
| 52 | #pragma warning(pop) |
| 53 | #endif |
| 54 | |
| 55 | #include <boost/units/quantity.hpp> |
| 56 | #include <boost/units/systems/si.hpp> |
| 57 | #include <boost/units/cmath.hpp> |
| 58 | #include <boost/units/io.hpp> |
| 59 | |
| 60 | enum { |
| 61 | tile_block_size = 24 |
| 62 | }; |
| 63 | |
| 64 | template<class T0, class T1, class Out> |
| 65 | void tiled_multiply_carray_inner(T0* first, |
| 66 | T1* second, |
| 67 | Out* out, |
| 68 | int totalwidth, |
| 69 | int width2, |
| 70 | int height1, |
| 71 | int common) { |
| 72 | for(int j = 0; j < height1; ++j) { |
| 73 | for(int i = 0; i < width2; ++i) { |
| 74 | Out value = out[j * totalwidth + i]; |
| 75 | for(int k = 0; k < common; ++k) { |
| 76 | value += first[k + totalwidth * j] * second[k * totalwidth + i]; |
| 77 | } |
| 78 | out[j * totalwidth + i] = value; |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | template<class T0, class T1, class Out> |
| 84 | void tiled_multiply_carray_outer(T0* first, |
| 85 | T1* second, |
| 86 | Out* out, |
| 87 | int width2, |
| 88 | int height1, |
| 89 | int common) { |
| 90 | std::fill_n(out, width2 * height1, Out()); |
| 91 | int j = 0; |
| 92 | for(; j < height1 - tile_block_size; j += tile_block_size) { |
| 93 | int i = 0; |
| 94 | for(; i < width2 - tile_block_size; i += tile_block_size) { |
| 95 | int k = 0; |
| 96 | for(; k < common - tile_block_size; k += tile_block_size) { |
| 97 | tiled_multiply_carray_inner( |
| 98 | &first[k + width2 * j], |
| 99 | &second[k * width2 + i], |
| 100 | &out[j * width2 + i], |
| 101 | width2, |
| 102 | tile_block_size, |
| 103 | tile_block_size, |
| 104 | tile_block_size); |
| 105 | } |
| 106 | tiled_multiply_carray_inner( |
| 107 | &first[k + width2 * j], |
| 108 | &second[k * width2 + i], |
| 109 | &out[j * width2 + i], |
| 110 | width2, |
| 111 | tile_block_size, |
| 112 | tile_block_size, |
| 113 | common - k); |
| 114 | } |
| 115 | int k = 0; |
| 116 | for(; k < common - tile_block_size; k += tile_block_size) { |
| 117 | tiled_multiply_carray_inner( |
| 118 | &first[k + width2 * j], |
| 119 | &second[k * width2 + i], |
| 120 | &out[j * width2 + i], |
| 121 | width2, width2 - i, |
| 122 | tile_block_size, |
| 123 | tile_block_size); |
| 124 | } |
| 125 | tiled_multiply_carray_inner( |
| 126 | &first[k + width2 * j], |
| 127 | &second[k * width2 + i], |
| 128 | &out[j * width2 + i], |
| 129 | width2, width2 - i, |
| 130 | tile_block_size, |
| 131 | common - k); |
| 132 | } |
| 133 | int i = 0; |
| 134 | for(; i < width2 - tile_block_size; i += tile_block_size) { |
| 135 | int k = 0; |
| 136 | for(; k < common - tile_block_size; k += tile_block_size) { |
| 137 | tiled_multiply_carray_inner( |
| 138 | &first[k + width2 * j], |
| 139 | &second[k * width2 + i], |
| 140 | &out[j * width2 + i], |
| 141 | width2, |
| 142 | tile_block_size, |
| 143 | height1 - j, |
| 144 | tile_block_size); |
| 145 | } |
| 146 | tiled_multiply_carray_inner( |
| 147 | &first[k + width2 * j], |
| 148 | &second[k * width2 + i], |
| 149 | &out[j * width2 + i], |
| 150 | width2, |
| 151 | tile_block_size, |
| 152 | height1 - j, |
| 153 | common - k); |
| 154 | } |
| 155 | int k = 0; |
| 156 | for(; k < common - tile_block_size; k += tile_block_size) { |
| 157 | tiled_multiply_carray_inner( |
| 158 | &first[k + width2 * j], |
| 159 | &second[k * width2 + i], |
| 160 | &out[j * width2 + i], |
| 161 | width2, |
| 162 | width2 - i, |
| 163 | height1 - j, |
| 164 | tile_block_size); |
| 165 | } |
| 166 | tiled_multiply_carray_inner( |
| 167 | &first[k + width2 * j], |
| 168 | &second[k * width2 + i], |
| 169 | &out[j * width2 + i], |
| 170 | width2, |
| 171 | width2 - i, |
| 172 | height1 - j, |
| 173 | common - k); |
| 174 | } |
| 175 | |
| 176 | enum { max_value = 1000}; |
| 177 | |
| 178 | template<class F, class T, class N, class R> |
| 179 | BOOST_CXX14_CONSTEXPR |
| 180 | R solve_differential_equation(F f, T lower, T upper, N steps, R start) { |
| 181 | typedef typename F::template result<T, R>::type f_result; |
| 182 | T h = (upper - lower) / (1.0*steps); |
| 183 | for(N i = N(); i < steps; ++i) { |
| 184 | R y = start; |
| 185 | T x = lower + h * (1.0*i); |
| 186 | f_result k1 = f(x, y); |
| 187 | f_result k2 = f(x + h / 2.0, y + h * k1 / 2.0); |
| 188 | f_result k3 = f(x + h / 2.0, y + h * k2 / 2.0); |
| 189 | f_result k4 = f(x + h, y + h * k3); |
| 190 | start = y + h * (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0; |
| 191 | } |
| 192 | return(start); |
| 193 | } |
| 194 | |
| 195 | using namespace boost::units; |
| 196 | |
| 197 | //y' = 1 - x + 4 * y |
| 198 | struct f { |
| 199 | template<class Arg1, class Arg2> struct result; |
| 200 | |
| 201 | BOOST_CONSTEXPR double operator()(const double& x, const double& y) const { |
| 202 | return(1.0 - x + 4.0 * y); |
| 203 | } |
| 204 | |
| 205 | boost::units::quantity<boost::units::si::velocity> |
| 206 | BOOST_CONSTEXPR operator()(const quantity<si::time>& x, |
| 207 | const quantity<si::length>& y) const { |
| 208 | using namespace boost::units; |
| 209 | using namespace si; |
| 210 | return(1.0 * meters / second - |
| 211 | x * meters / pow<2>(seconds) + |
| 212 | 4.0 * y / seconds ); |
| 213 | } |
| 214 | }; |
| 215 | |
| 216 | template<> |
| 217 | struct f::result<double,double> { |
| 218 | typedef double type; |
| 219 | }; |
| 220 | |
| 221 | template<> |
| 222 | struct f::result<quantity<si::time>, quantity<si::length> > { |
| 223 | typedef quantity<si::velocity> type; |
| 224 | }; |
| 225 | |
| 226 | |
| 227 | |
| 228 | //y' = 1 - x + 4 * y |
| 229 | //y' - 4 * y = 1 - x |
| 230 | //e^(-4 * x) * (dy - 4 * y * dx) = e^(-4 * x) * (1 - x) * dx |
| 231 | //d/dx(y * e ^ (-4 * x)) = e ^ (-4 * x) (1 - x) * dx |
| 232 | |
| 233 | //d/dx(y * e ^ (-4 * x)) = e ^ (-4 * x) * dx - x * e ^ (-4 * x) * dx |
| 234 | //d/dx(y * e ^ (-4 * x)) = d/dx((-3/16 + 1/4 * x) * e ^ (-4 * x)) |
| 235 | //y * e ^ (-4 * x) = (-3/16 + 1/4 * x) * e ^ (-4 * x) + C |
| 236 | //y = (-3/16 + 1/4 * x) + C/e ^ (-4 * x) |
| 237 | //y = 1/4 * x - 3/16 + C * e ^ (4 * x) |
| 238 | |
| 239 | //y(0) = 1 |
| 240 | //1 = - 3/16 + C |
| 241 | //C = 19/16 |
| 242 | //y(x) = 1/4 * x - 3/16 + 19/16 * e ^ (4 * x) |
| 243 | |
| 244 | |
| 245 | |
| 246 | int main() { |
| 247 | boost::numeric::ublas::matrix<double> ublas_result; |
| 248 | { |
| 249 | boost::numeric::ublas::matrix<double> m1(max_value, max_value); |
| 250 | boost::numeric::ublas::matrix<double> m2(max_value, max_value); |
| 251 | std::srand(1492); |
| 252 | for(int i = 0; i < max_value; ++i) { |
| 253 | for(int j = 0; j < max_value; ++j) { |
| 254 | m1(i,j) = std::rand(); |
| 255 | m2(i,j) = std::rand(); |
| 256 | } |
| 257 | } |
| 258 | std::cout << "multiplying ublas::matrix<double>(" |
| 259 | << max_value << ", " << max_value << ") : "; |
| 260 | boost::timer timer; |
| 261 | ublas_result = (prod(m1, m2)); |
| 262 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 263 | } |
| 264 | typedef boost::numeric::ublas::matrix< |
| 265 | boost::units::quantity<boost::units::si::dimensionless> |
| 266 | > matrix_type; |
| 267 | matrix_type ublas_resultq; |
| 268 | { |
| 269 | matrix_type m1(max_value, max_value); |
| 270 | matrix_type m2(max_value, max_value); |
| 271 | std::srand(1492); |
| 272 | for(int i = 0; i < max_value; ++i) { |
| 273 | for(int j = 0; j < max_value; ++j) { |
| 274 | m1(i,j) = std::rand(); |
| 275 | m2(i,j) = std::rand(); |
| 276 | } |
| 277 | } |
| 278 | std::cout << "multiplying ublas::matrix<quantity>(" |
| 279 | << max_value << ", " << max_value << ") : "; |
| 280 | boost::timer timer; |
| 281 | ublas_resultq = (prod(m1, m2)); |
| 282 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 283 | } |
| 284 | std::vector<double> cresult(max_value * max_value); |
| 285 | { |
| 286 | std::vector<double> m1(max_value * max_value); |
| 287 | std::vector<double> m2(max_value * max_value); |
| 288 | std::srand(1492); |
| 289 | for(int i = 0; i < max_value * max_value; ++i) { |
| 290 | m1[i] = std::rand(); |
| 291 | m2[i] = std::rand(); |
| 292 | } |
| 293 | std::cout << "tiled_matrix_multiply<double>(" |
| 294 | << max_value << ", " << max_value << ") : "; |
| 295 | boost::timer timer; |
| 296 | tiled_multiply_carray_outer( |
| 297 | &m1[0], |
| 298 | &m2[0], |
| 299 | &cresult[0], |
| 300 | max_value, |
| 301 | max_value, |
| 302 | max_value); |
| 303 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 304 | } |
| 305 | std::vector< |
| 306 | boost::units::quantity<boost::units::si::energy> |
| 307 | > cresultq(max_value * max_value); |
| 308 | { |
| 309 | std::vector< |
| 310 | boost::units::quantity<boost::units::si::force> |
| 311 | > m1(max_value * max_value); |
| 312 | std::vector< |
| 313 | boost::units::quantity<boost::units::si::length> |
| 314 | > m2(max_value * max_value); |
| 315 | std::srand(1492); |
| 316 | for(int i = 0; i < max_value * max_value; ++i) { |
| 317 | m1[i] = std::rand() * boost::units::si::newtons; |
| 318 | m2[i] = std::rand() * boost::units::si::meters; |
| 319 | } |
| 320 | std::cout << "tiled_matrix_multiply<quantity>(" |
| 321 | << max_value << ", " << max_value << ") : "; |
| 322 | boost::timer timer; |
| 323 | tiled_multiply_carray_outer( |
| 324 | &m1[0], |
| 325 | &m2[0], |
| 326 | &cresultq[0], |
| 327 | max_value, |
| 328 | max_value, |
| 329 | max_value); |
| 330 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 331 | } |
| 332 | for(int i = 0; i < max_value; ++i) { |
| 333 | for(int j = 0; j < max_value; ++j) { |
| 334 | const double diff = |
| 335 | std::abs(ublas_result(i,j) - cresult[i * max_value + j]); |
| 336 | if(diff > ublas_result(i,j) /1e14) { |
| 337 | std::cout << std::setprecision(15) << "Uh Oh. ublas_result(" |
| 338 | << i << "," << j << ") = " << ublas_result(i,j) |
| 339 | << std::endl |
| 340 | << "cresult[" << i << " * " << max_value << " + " |
| 341 | << j << "] = " << cresult[i * max_value + j] |
| 342 | << std::endl; |
| 343 | return(EXIT_FAILURE); |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | { |
| 348 | std::vector<double> values(1000); |
| 349 | std::cout << "solving y' = 1 - x + 4 * y with double: "; |
| 350 | boost::timer timer; |
| 351 | for(int i = 0; i < 1000; ++i) { |
| 352 | const double x = .1 * i; |
| 353 | values[i] = solve_differential_equation(f(), 0.0, x, i * 100, 1.0); |
| 354 | } |
| 355 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 356 | for(int i = 0; i < 1000; ++i) { |
| 357 | const double x = .1 * i; |
| 358 | const double value = 1.0/4.0 * x - 3.0/16.0 + 19.0/16.0 * std::exp(4 * x); |
| 359 | if(std::abs(values[i] - value) > value / 1e9) { |
| 360 | std::cout << std::setprecision(15) << "i = : " << i |
| 361 | << ", value = " << value << " approx = " << values[i] |
| 362 | << std::endl; |
| 363 | return(EXIT_FAILURE); |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | { |
| 368 | using namespace boost::units; |
| 369 | using namespace si; |
| 370 | std::vector<quantity<length> > values(1000); |
| 371 | std::cout << "solving y' = 1 - x + 4 * y with quantity: "; |
| 372 | boost::timer timer; |
| 373 | for(int i = 0; i < 1000; ++i) { |
| 374 | const quantity<si::time> x = .1 * i * seconds; |
| 375 | values[i] = solve_differential_equation( |
| 376 | f(), |
| 377 | 0.0 * seconds, |
| 378 | x, |
| 379 | i * 100, |
| 380 | 1.0 * meters); |
| 381 | } |
| 382 | std::cout << timer.elapsed() << " seconds" << std::endl; |
| 383 | for(int i = 0; i < 1000; ++i) { |
| 384 | const double x = .1 * i; |
| 385 | const quantity<si::length> value = |
| 386 | (1.0/4.0 * x - 3.0/16.0 + 19.0/16.0 * std::exp(4 * x)) * meters; |
| 387 | if(abs(values[i] - value) > value / 1e9) { |
| 388 | std::cout << std::setprecision(15) << "i = : " << i |
| 389 | << ", value = " << value << " approx = " |
| 390 | << values[i] << std::endl; |
| 391 | return(EXIT_FAILURE); |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | } |