blob: 5f557f1d79ef08baf6f450569bcd14db2f460b26 [file] [log] [blame]
Austin Schuh48d60c12017-02-04 21:58:58 -08001#!/usr/bin/python
2
3from aos.common.util.trapezoid_profile import TrapezoidProfile
4from frc971.control_loops.python import control_loop
5from frc971.control_loops.python import controls
6import numpy
7import sys
Austin Schuh48d60c12017-02-04 21:58:58 -08008from matplotlib import pylab
9import gflags
10import glog
11
12FLAGS = gflags.FLAGS
13
14try:
15 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
16except gflags.DuplicateFlagError:
17 pass
18
19class Intake(control_loop.ControlLoop):
20 def __init__(self, name='Intake'):
21 super(Intake, self).__init__(name)
22 # Stall Torque in N m
23 self.stall_torque = 0.71
24 # Stall Current in Amps
25 self.stall_current = 134.0
Brian Silverman052e69d2017-02-12 16:19:55 -080026 self.free_speed_rpm = 18730.0
27 # Free Speed in rotations/second.
28 self.free_speed = self.free_speed_rpm / 60.0
Austin Schuh48d60c12017-02-04 21:58:58 -080029 # Free Current in Amps
30 self.free_current = 0.7
31
32 # Resistance of the motor
33 self.R = 12.0 / self.stall_current
34 # Motor velocity constant
Brian Silverman052e69d2017-02-12 16:19:55 -080035 self.Kv = ((self.free_speed * 2.0 * numpy.pi) /
Austin Schuh48d60c12017-02-04 21:58:58 -080036 (12.0 - self.R * self.free_current))
37 # Torque constant
38 self.Kt = self.stall_torque / self.stall_current
39
40 # (1 / 35.0) * (20.0 / 40.0) -> 16 tooth sprocket on #25 chain
41 # Gear ratio
42 self.G = (1.0 / 35.0) * (20.0 / 40.0)
43 self.r = 16.0 * 0.25 / (2.0 * numpy.pi) * 0.0254
44
45 # Motor inertia in kg m^2
46 self.motor_inertia = 0.00001187
47
48 # 5.4 kg of moving mass for the intake
49 self.mass = 5.4 + self.motor_inertia / ((self.G * self.r) ** 2.0)
50
51 # Control loop time step
52 self.dt = 0.005
53
54 # State is [position, velocity]
55 # Input is [Voltage]
56
57 C1 = self.Kt / (self.G * self.G * self.r * self.r * self.R * self.mass * self.Kv)
58 C2 = self.Kt / (self.G * self.r * self.R * self.mass)
59
60 self.A_continuous = numpy.matrix(
61 [[0, 1],
62 [0, -C1]])
63
64 # Start with the unmodified input
65 self.B_continuous = numpy.matrix(
66 [[0],
67 [C2]])
68 glog.debug(repr(self.A_continuous))
69 glog.debug(repr(self.B_continuous))
70
71 self.C = numpy.matrix([[1, 0]])
72 self.D = numpy.matrix([[0]])
73
74 self.A, self.B = self.ContinuousToDiscrete(
75 self.A_continuous, self.B_continuous, self.dt)
76
77 controllability = controls.ctrb(self.A, self.B)
78
79 glog.debug('Free speed is %f',
80 -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
81
82 q_pos = 0.015
83 q_vel = 0.3
84 self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
85 [0.0, (1.0 / (q_vel ** 2.0))]])
86
87 self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
88 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
89
90 q_pos_ff = 0.005
91 q_vel_ff = 1.0
92 self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
93 [0.0, (1.0 / (q_vel_ff ** 2.0))]])
94
95 self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
96
97 glog.debug('K %s', repr(self.K))
98 glog.debug('Poles are %s',
99 repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
100
Austin Schuh48d60c12017-02-04 21:58:58 -0800101 q_pos = 0.10
102 q_vel = 1.65
103 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
104 [0.0, (q_vel ** 2.0)]])
105
106 r_volts = 0.025
107 self.R = numpy.matrix([[(r_volts ** 2.0)]])
108
109 self.KalmanGain, self.Q_steady = controls.kalman(
110 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
111
112 glog.debug('Kal %s', repr(self.KalmanGain))
113 self.L = self.A * self.KalmanGain
114 glog.debug('KalL is %s', repr(self.L))
115
116 # The box formed by U_min and U_max must encompass all possible values,
117 # or else Austin's code gets angry.
118 self.U_max = numpy.matrix([[12.0]])
119 self.U_min = numpy.matrix([[-12.0]])
120
121 self.InitializeState()
122
123class IntegralIntake(Intake):
124 def __init__(self, name='IntegralIntake'):
125 super(IntegralIntake, self).__init__(name=name)
126
127 self.A_continuous_unaugmented = self.A_continuous
128 self.B_continuous_unaugmented = self.B_continuous
129
130 self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
131 self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
132 self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
133
134 self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
135 self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
136
137 self.C_unaugmented = self.C
138 self.C = numpy.matrix(numpy.zeros((1, 3)))
139 self.C[0:1, 0:2] = self.C_unaugmented
140
141 self.A, self.B = self.ContinuousToDiscrete(
142 self.A_continuous, self.B_continuous, self.dt)
143
144 q_pos = 0.12
145 q_vel = 2.00
146 q_voltage = 40.0
147 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
148 [0.0, (q_vel ** 2.0), 0.0],
149 [0.0, 0.0, (q_voltage ** 2.0)]])
150
151 r_pos = 0.05
152 self.R = numpy.matrix([[(r_pos ** 2.0)]])
153
154 self.KalmanGain, self.Q_steady = controls.kalman(
155 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
156 self.L = self.A * self.KalmanGain
157
158 self.K_unaugmented = self.K
159 self.K = numpy.matrix(numpy.zeros((1, 3)))
160 self.K[0, 0:2] = self.K_unaugmented
161 self.K[0, 2] = 1
162
163 self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
164
165 self.InitializeState()
166
167class ScenarioPlotter(object):
168 def __init__(self):
169 # Various lists for graphing things.
170 self.t = []
171 self.x = []
172 self.v = []
173 self.a = []
174 self.x_hat = []
175 self.u = []
176 self.offset = []
177
178 def run_test(self, intake, end_goal,
179 controller_intake,
180 observer_intake=None,
181 iterations=200):
182 """Runs the intake plant with an initial condition and goal.
183
184 Args:
185 intake: intake object to use.
186 end_goal: end_goal state.
187 controller_intake: Intake object to get K from, or None if we should
188 use intake.
189 observer_intake: Intake object to use for the observer, or None if we should
190 use the actual state.
191 iterations: Number of timesteps to run the model for.
192 """
193
194 if controller_intake is None:
195 controller_intake = intake
196
197 vbat = 12.0
198
199 if self.t:
200 initial_t = self.t[-1] + intake.dt
201 else:
202 initial_t = 0
203
204 goal = numpy.concatenate((intake.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
205
206 profile = TrapezoidProfile(intake.dt)
207 profile.set_maximum_acceleration(10.0)
208 profile.set_maximum_velocity(0.3)
209 profile.SetGoal(goal[0, 0])
210
211 U_last = numpy.matrix(numpy.zeros((1, 1)))
212 for i in xrange(iterations):
213 observer_intake.Y = intake.Y
214 observer_intake.CorrectObserver(U_last)
215
216 self.offset.append(observer_intake.X_hat[2, 0])
217 self.x_hat.append(observer_intake.X_hat[0, 0])
218
219 next_goal = numpy.concatenate(
220 (profile.Update(end_goal[0, 0], end_goal[1, 0]),
221 numpy.matrix(numpy.zeros((1, 1)))),
222 axis=0)
223
224 ff_U = controller_intake.Kff * (next_goal - observer_intake.A * goal)
225
226 U_uncapped = controller_intake.K * (goal - observer_intake.X_hat) + ff_U
227 U_uncapped = controller_intake.K * (end_goal - observer_intake.X_hat)
228 U = U_uncapped.copy()
229 U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
230 self.x.append(intake.X[0, 0])
231
232 if self.v:
233 last_v = self.v[-1]
234 else:
235 last_v = 0
236
237 self.v.append(intake.X[1, 0])
238 self.a.append((self.v[-1] - last_v) / intake.dt)
239
240 offset = 0.0
241 if i > 100:
242 offset = 2.0
243 intake.Update(U + offset)
244
245 observer_intake.PredictObserver(U)
246
247 self.t.append(initial_t + i * intake.dt)
248 self.u.append(U[0, 0])
249
250 ff_U -= U_uncapped - U
251 goal = controller_intake.A * goal + controller_intake.B * ff_U
252
253 if U[0, 0] != U_uncapped[0, 0]:
254 profile.MoveCurrentState(
255 numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
256
257 glog.debug('Time: %f', self.t[-1])
258 glog.debug('goal_error %s', repr(end_goal - goal))
259 glog.debug('error %s', repr(observer_intake.X_hat - end_goal))
260
261 def Plot(self):
262 pylab.subplot(3, 1, 1)
263 pylab.plot(self.t, self.x, label='x')
264 pylab.plot(self.t, self.x_hat, label='x_hat')
265 pylab.legend()
266
267 pylab.subplot(3, 1, 2)
268 pylab.plot(self.t, self.u, label='u')
269 pylab.plot(self.t, self.offset, label='voltage_offset')
270 pylab.legend()
271
272 pylab.subplot(3, 1, 3)
273 pylab.plot(self.t, self.a, label='a')
274 pylab.legend()
275
276 pylab.show()
277
278
279def main(argv):
280 scenario_plotter = ScenarioPlotter()
281
282 intake = Intake()
283 intake_controller = IntegralIntake()
284 observer_intake = IntegralIntake()
285
286 # Test moving the intake with constant separation.
287 initial_X = numpy.matrix([[0.0], [0.0]])
288 R = numpy.matrix([[0.1], [0.0], [0.0]])
289 scenario_plotter.run_test(intake, end_goal=R,
290 controller_intake=intake_controller,
291 observer_intake=observer_intake, iterations=400)
292
293 if FLAGS.plot:
294 scenario_plotter.Plot()
295
296 # Write the generated constants out to a file.
297 if len(argv) != 5:
298 glog.fatal('Expected .h file name and .cc file name for the intake and integral intake.')
299 else:
300 namespaces = ['y2017', 'control_loops', 'superstructure', 'intake']
301 intake = Intake('Intake')
302 loop_writer = control_loop.ControlLoopWriter('Intake', [intake],
303 namespaces=namespaces)
Brian Silverman052e69d2017-02-12 16:19:55 -0800304 loop_writer.AddConstant(control_loop.Constant('kFreeSpeed', '%f',
305 intake.free_speed))
306 loop_writer.AddConstant(control_loop.Constant('kOutputRatio', '%f',
307 intake.G * intake.r))
Austin Schuh48d60c12017-02-04 21:58:58 -0800308 loop_writer.Write(argv[1], argv[2])
309
310 integral_intake = IntegralIntake('IntegralIntake')
311 integral_loop_writer = control_loop.ControlLoopWriter('IntegralIntake', [integral_intake],
312 namespaces=namespaces)
313 integral_loop_writer.Write(argv[3], argv[4])
314
315if __name__ == '__main__':
316 argv = FLAGS(sys.argv)
317 glog.init()
318 sys.exit(main(argv))