blob: 8719336af4aacd9f3d7c298a79309dc8a47b8a12 [file] [log] [blame]
Brian Silvermana6f7ce02018-07-07 15:04:00 -07001///////////////////////////////////////////////////////////////////////////////
2//
3// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
4//
5// This code is licensed under the MIT License (MIT).
6//
7// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
13// THE SOFTWARE.
14//
15///////////////////////////////////////////////////////////////////////////////
16
17#include <catch/catch.hpp> // for AssertionHandler, StringRef, CHECK, CHECK...
18
19#include <gsl/gsl_byte> // for byte
20#include <gsl/gsl_util> // for narrow_cast
21#include <gsl/multi_span> // for strided_span, index, multi_span, strided_...
22
23#include <iostream> // for size_t
24#include <iterator> // for begin, end
25#include <numeric> // for iota
26#include <type_traits> // for integral_constant<>::value, is_convertible
27#include <vector> // for vector
28
29namespace gsl {
30struct fail_fast;
31} // namespace gsl
32
33using namespace std;
34using namespace gsl;
35
36namespace
37{
38struct BaseClass
39{
40};
41struct DerivedClass : BaseClass
42{
43};
44}
45
46TEST_CASE("span_section_test")
47{
48 int a[30][4][5];
49
50 const auto av = as_multi_span(a);
51 const auto sub = av.section({15, 0, 0}, gsl::multi_span_index<3>{2, 2, 2});
52 const auto subsub = sub.section({1, 0, 0}, gsl::multi_span_index<3>{1, 1, 1});
53 (void) subsub;
54}
55
56TEST_CASE("span_section")
57{
58 std::vector<int> data(5 * 10);
59 std::iota(begin(data), end(data), 0);
60 const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
61
62 const strided_span<int, 2> av_section_1 = av.section({1, 2}, {3, 4});
63 CHECK((av_section_1[{0, 0}] == 12));
64 CHECK((av_section_1[{0, 1}] == 13));
65 CHECK((av_section_1[{1, 0}] == 22));
66 CHECK((av_section_1[{2, 3}] == 35));
67
68 const strided_span<int, 2> av_section_2 = av_section_1.section({1, 2}, {2, 2});
69 CHECK((av_section_2[{0, 0}] == 24));
70 CHECK((av_section_2[{0, 1}] == 25));
71 CHECK((av_section_2[{1, 0}] == 34));
72}
73
74TEST_CASE("strided_span_constructors")
75{
76 // Check stride constructor
77 {
78 int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
79 const int carr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
80
81 strided_span<int, 1> sav1{arr, {{9}, {1}}}; // T -> T
82 CHECK(sav1.bounds().index_bounds() == multi_span_index<1>{9});
83 CHECK(sav1.bounds().stride() == 1);
84 CHECK((sav1[0] == 1 && sav1[8] == 9));
85
86 strided_span<const int, 1> sav2{carr, {{4}, {2}}}; // const T -> const T
87 CHECK(sav2.bounds().index_bounds() == multi_span_index<1>{4});
88 CHECK(sav2.bounds().strides() == multi_span_index<1>{2});
89 CHECK((sav2[0] == 1 && sav2[3] == 7));
90
91 strided_span<int, 2> sav3{arr, {{2, 2}, {6, 2}}}; // T -> const T
92 CHECK((sav3.bounds().index_bounds() == multi_span_index<2>{2, 2}));
93 CHECK((sav3.bounds().strides() == multi_span_index<2>{6, 2}));
94 CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7));
95 }
96
97 // Check multi_span constructor
98 {
99 int arr[] = {1, 2};
100
101 // From non-cv-qualified source
102 {
103 const multi_span<int> src = arr;
104
105 strided_span<int, 1> sav{src, {2, 1}};
106 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{2});
107 CHECK(sav.bounds().strides() == multi_span_index<1>{1});
108 CHECK(sav[1] == 2);
109
110#if _MSC_VER > 1800
111 // strided_span<const int, 1> sav_c{ {src}, {2, 1} };
112 strided_span<const int, 1> sav_c{multi_span<const int>{src},
113 strided_bounds<1>{2, 1}};
114#else
115 strided_span<const int, 1> sav_c{multi_span<const int>{src},
116 strided_bounds<1>{2, 1}};
117#endif
118 CHECK(sav_c.bounds().index_bounds() == multi_span_index<1>{2});
119 CHECK(sav_c.bounds().strides() == multi_span_index<1>{1});
120 CHECK(sav_c[1] == 2);
121
122#if _MSC_VER > 1800
123 strided_span<volatile int, 1> sav_v{src, {2, 1}};
124#else
125 strided_span<volatile int, 1> sav_v{multi_span<volatile int>{src},
126 strided_bounds<1>{2, 1}};
127#endif
128 CHECK(sav_v.bounds().index_bounds() == multi_span_index<1>{2});
129 CHECK(sav_v.bounds().strides() == multi_span_index<1>{1});
130 CHECK(sav_v[1] == 2);
131
132#if _MSC_VER > 1800
133 strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
134#else
135 strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
136 strided_bounds<1>{2, 1}};
137#endif
138 CHECK(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
139 CHECK(sav_cv.bounds().strides() == multi_span_index<1>{1});
140 CHECK(sav_cv[1] == 2);
141 }
142
143 // From const-qualified source
144 {
145 const multi_span<const int> src{arr};
146
147 strided_span<const int, 1> sav_c{src, {2, 1}};
148 CHECK(sav_c.bounds().index_bounds() == multi_span_index<1>{2});
149 CHECK(sav_c.bounds().strides() == multi_span_index<1>{1});
150 CHECK(sav_c[1] == 2);
151
152#if _MSC_VER > 1800
153 strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
154#else
155 strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
156 strided_bounds<1>{2, 1}};
157#endif
158
159 CHECK(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
160 CHECK(sav_cv.bounds().strides() == multi_span_index<1>{1});
161 CHECK(sav_cv[1] == 2);
162 }
163
164 // From volatile-qualified source
165 {
166 const multi_span<volatile int> src{arr};
167
168 strided_span<volatile int, 1> sav_v{src, {2, 1}};
169 CHECK(sav_v.bounds().index_bounds() == multi_span_index<1>{2});
170 CHECK(sav_v.bounds().strides() == multi_span_index<1>{1});
171 CHECK(sav_v[1] == 2);
172
173#if _MSC_VER > 1800
174 strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
175#else
176 strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
177 strided_bounds<1>{2, 1}};
178#endif
179 CHECK(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
180 CHECK(sav_cv.bounds().strides() == multi_span_index<1>{1});
181 CHECK(sav_cv[1] == 2);
182 }
183
184 // From cv-qualified source
185 {
186 const multi_span<const volatile int> src{arr};
187
188 strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
189 CHECK(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
190 CHECK(sav_cv.bounds().strides() == multi_span_index<1>{1});
191 CHECK(sav_cv[1] == 2);
192 }
193 }
194
195 // Check const-casting constructor
196 {
197 int arr[2] = {4, 5};
198
199 const multi_span<int, 2> av(arr, 2);
200 multi_span<const int, 2> av2{av};
201 CHECK(av2[1] == 5);
202
203 static_assert(
204 std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value,
205 "ctor is not implicit!");
206
207 const strided_span<int, 1> src{arr, {2, 1}};
208 strided_span<const int, 1> sav{src};
209 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{2});
210 CHECK(sav.bounds().stride() == 1);
211 CHECK(sav[1] == 5);
212
213 static_assert(
214 std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value,
215 "ctor is not implicit!");
216 }
217
218 // Check copy constructor
219 {
220 int arr1[2] = {3, 4};
221 const strided_span<int, 1> src1{arr1, {2, 1}};
222 strided_span<int, 1> sav1{src1};
223
224 CHECK(sav1.bounds().index_bounds() == multi_span_index<1>{2});
225 CHECK(sav1.bounds().stride() == 1);
226 CHECK(sav1[0] == 3);
227
228 int arr2[6] = {1, 2, 3, 4, 5, 6};
229 const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
230 strided_span<const int, 2> sav2{src2};
231 CHECK((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2}));
232 CHECK((sav2.bounds().strides() == multi_span_index<2>{2, 1}));
233 CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
234 }
235
236 // Check const-casting assignment operator
237 {
238 int arr1[2] = {1, 2};
239 int arr2[6] = {3, 4, 5, 6, 7, 8};
240
241 const strided_span<int, 1> src{arr1, {{2}, {1}}};
242 strided_span<const int, 1> sav{arr2, {{3}, {2}}};
243 strided_span<const int, 1>& sav_ref = (sav = src);
244 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{2});
245 CHECK(sav.bounds().strides() == multi_span_index<1>{1});
246 CHECK(sav[0] == 1);
247 CHECK(&sav_ref == &sav);
248 }
249
250 // Check copy assignment operator
251 {
252 int arr1[2] = {3, 4};
253 int arr1b[1] = {0};
254 const strided_span<int, 1> src1{arr1, {2, 1}};
255 strided_span<int, 1> sav1{arr1b, {1, 1}};
256 strided_span<int, 1>& sav1_ref = (sav1 = src1);
257 CHECK(sav1.bounds().index_bounds() == multi_span_index<1>{2});
258 CHECK(sav1.bounds().strides() == multi_span_index<1>{1});
259 CHECK(sav1[0] == 3);
260 CHECK(&sav1_ref == &sav1);
261
262 const int arr2[6] = {1, 2, 3, 4, 5, 6};
263 const int arr2b[1] = {0};
264 const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
265 strided_span<const int, 2> sav2{arr2b, {{1, 1}, {1, 1}}};
266 strided_span<const int, 2>& sav2_ref = (sav2 = src2);
267 CHECK((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2}));
268 CHECK((sav2.bounds().strides() == multi_span_index<2>{2, 1}));
269 CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
270 CHECK(&sav2_ref == &sav2);
271 }
272}
273
274TEST_CASE("strided_span_slice")
275{
276 std::vector<int> data(5 * 10);
277 std::iota(begin(data), end(data), 0);
278 const multi_span<int, 5, 10> src =
279 as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
280
281 const strided_span<int, 2> sav{src, {{5, 10}, {10, 1}}};
282#ifdef CONFIRM_COMPILATION_ERRORS
283 const strided_span<const int, 2> csav{{src}, {{5, 10}, {10, 1}}};
284#endif
285 const strided_span<const int, 2> csav{multi_span<const int, 5, 10>{src},
286 {{5, 10}, {10, 1}}};
287
288 strided_span<int, 1> sav_sl = sav[2];
289 CHECK(sav_sl[0] == 20);
290 CHECK(sav_sl[9] == 29);
291
292 strided_span<const int, 1> csav_sl = sav[3];
293 CHECK(csav_sl[0] == 30);
294 CHECK(csav_sl[9] == 39);
295
296 CHECK(sav[4][0] == 40);
297 CHECK(sav[4][9] == 49);
298}
299
300TEST_CASE("strided_span_column_major")
301{
302 // strided_span may be used to accommodate more peculiar
303 // use cases, such as column-major multidimensional array
304 // (aka. "FORTRAN" layout).
305
306 int cm_array[3 * 5] = {1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15};
307 strided_span<int, 2> cm_sav{cm_array, {{5, 3}, {1, 5}}};
308
309 // Accessing elements
310 CHECK((cm_sav[{0, 0}] == 1));
311 CHECK((cm_sav[{0, 1}] == 2));
312 CHECK((cm_sav[{1, 0}] == 4));
313 CHECK((cm_sav[{4, 2}] == 15));
314
315 // Slice
316 strided_span<int, 1> cm_sl = cm_sav[3];
317
318 CHECK(cm_sl[0] == 10);
319 CHECK(cm_sl[1] == 11);
320 CHECK(cm_sl[2] == 12);
321
322 // Section
323 strided_span<int, 2> cm_sec = cm_sav.section({2, 1}, {3, 2});
324
325 CHECK((cm_sec.bounds().index_bounds() == multi_span_index<2>{3, 2}));
326 CHECK((cm_sec[{0, 0}] == 8));
327 CHECK((cm_sec[{0, 1}] == 9));
328 CHECK((cm_sec[{1, 0}] == 11));
329 CHECK((cm_sec[{2, 1}] == 15));
330}
331
332TEST_CASE("strided_span_bounds")
333{
334 int arr[] = {0, 1, 2, 3};
335 multi_span<int> av(arr);
336
337 {
338 // incorrect sections
339
340 CHECK_THROWS_AS(av.section(0, 0)[0], fail_fast);
341 CHECK_THROWS_AS(av.section(1, 0)[0], fail_fast);
342 CHECK_THROWS_AS(av.section(1, 1)[1], fail_fast);
343
344 CHECK_THROWS_AS(av.section(2, 5), fail_fast);
345 CHECK_THROWS_AS(av.section(5, 2), fail_fast);
346 CHECK_THROWS_AS(av.section(5, 0), fail_fast);
347 CHECK_THROWS_AS(av.section(0, 5), fail_fast);
348 CHECK_THROWS_AS(av.section(5, 5), fail_fast);
349 }
350
351 {
352 // zero stride
353 strided_span<int, 1> sav{av, {{4}, {}}};
354 CHECK(sav[0] == 0);
355 CHECK(sav[3] == 0);
356 CHECK_THROWS_AS(sav[4], fail_fast);
357 }
358
359 {
360 // zero extent
361 strided_span<int, 1> sav{av, {{}, {1}}};
362 CHECK_THROWS_AS(sav[0], fail_fast);
363 }
364
365 {
366 // zero extent and stride
367 strided_span<int, 1> sav{av, {{}, {}}};
368 CHECK_THROWS_AS(sav[0], fail_fast);
369 }
370
371 {
372 // strided array ctor with matching strided bounds
373 strided_span<int, 1> sav{arr, {4, 1}};
374 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{4});
375 CHECK(sav[3] == 3);
376 CHECK_THROWS_AS(sav[4], fail_fast);
377 }
378
379 {
380 // strided array ctor with smaller strided bounds
381 strided_span<int, 1> sav{arr, {2, 1}};
382 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{2});
383 CHECK(sav[1] == 1);
384 CHECK_THROWS_AS(sav[2], fail_fast);
385 }
386
387 {
388 // strided array ctor with fitting irregular bounds
389 strided_span<int, 1> sav{arr, {2, 3}};
390 CHECK(sav.bounds().index_bounds() == multi_span_index<1>{2});
391 CHECK(sav[0] == 0);
392 CHECK(sav[1] == 3);
393 CHECK_THROWS_AS(sav[2], fail_fast);
394 }
395
396 {
397 // bounds cross data boundaries - from static arrays
398 CHECK_THROWS_AS((strided_span<int, 1>{arr, {3, 2}}), fail_fast);
399 CHECK_THROWS_AS((strided_span<int, 1>{arr, {3, 3}}), fail_fast);
400 CHECK_THROWS_AS((strided_span<int, 1>{arr, {4, 5}}), fail_fast);
401 CHECK_THROWS_AS((strided_span<int, 1>{arr, {5, 1}}), fail_fast);
402 CHECK_THROWS_AS((strided_span<int, 1>{arr, {5, 5}}), fail_fast);
403 }
404
405 {
406 // bounds cross data boundaries - from array view
407 CHECK_THROWS_AS((strided_span<int, 1>{av, {3, 2}}), fail_fast);
408 CHECK_THROWS_AS((strided_span<int, 1>{av, {3, 3}}), fail_fast);
409 CHECK_THROWS_AS((strided_span<int, 1>{av, {4, 5}}), fail_fast);
410 CHECK_THROWS_AS((strided_span<int, 1>{av, {5, 1}}), fail_fast);
411 CHECK_THROWS_AS((strided_span<int, 1>{av, {5, 5}}), fail_fast);
412 }
413
414 {
415 // bounds cross data boundaries - from dynamic arrays
416 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {3, 2}}), fail_fast);
417 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {3, 3}}), fail_fast);
418 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {4, 5}}), fail_fast);
419 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {5, 1}}), fail_fast);
420 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 4, {5, 5}}), fail_fast);
421 CHECK_THROWS_AS((strided_span<int, 1>{av.data(), 2, {2, 2}}), fail_fast);
422 }
423
424#ifdef CONFIRM_COMPILATION_ERRORS
425 {
426 strided_span<int, 1> sav0{av.data(), {3, 2}};
427 strided_span<int, 1> sav1{arr, {1}};
428 strided_span<int, 1> sav2{arr, {1, 1, 1}};
429 strided_span<int, 1> sav3{av, {1}};
430 strided_span<int, 1> sav4{av, {1, 1, 1}};
431 strided_span<int, 2> sav5{av.as_multi_span(dim<2>(), dim<2>()), {1}};
432 strided_span<int, 2> sav6{av.as_multi_span(dim<2>(), dim<2>()), {1, 1, 1}};
433 strided_span<int, 2> sav7{av.as_multi_span(dim<2>(), dim<2>()),
434 {{1, 1}, {1, 1}, {1, 1}}};
435
436 multi_span_index<1> index{0, 1};
437 strided_span<int, 1> sav8{arr, {1, {1, 1}}};
438 strided_span<int, 1> sav9{arr, {{1, 1}, {1, 1}}};
439 strided_span<int, 1> sav10{av, {1, {1, 1}}};
440 strided_span<int, 1> sav11{av, {{1, 1}, {1, 1}}};
441 strided_span<int, 2> sav12{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1}}};
442 strided_span<int, 2> sav13{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1, 1, 1}}};
443 strided_span<int, 2> sav14{av.as_multi_span(dim<2>(), dim<2>()), {{1, 1, 1}, {1}}};
444 }
445#endif
446}
447
448TEST_CASE("strided_span_type_conversion")
449{
450 int arr[] = {0, 1, 2, 3};
451 multi_span<int> av(arr);
452
453 {
454 strided_span<int, 1> sav{av.data(), av.size(), {av.size() / 2, 2}};
455#ifdef CONFIRM_COMPILATION_ERRORS
456 strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
457#endif
458 }
459 {
460 strided_span<int, 1> sav{av, {av.size() / 2, 2}};
461#ifdef CONFIRM_COMPILATION_ERRORS
462 strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
463#endif
464 }
465
466 multi_span<const byte, dynamic_range> bytes = as_bytes(av);
467
468 // retype strided array with regular strides - from raw data
469 {
470 strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
471 strided_span<const byte, 2> sav2{bytes.data(), bytes.size(), bounds};
472 strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
473 CHECK(sav3[0][0] == 0);
474 CHECK(sav3[1][0] == 2);
475 CHECK_THROWS_AS(sav3[1][1], fail_fast);
476 CHECK_THROWS_AS(sav3[0][1], fail_fast);
477 }
478
479 // retype strided array with regular strides - from multi_span
480 {
481 strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
482 multi_span<const byte, 2, dynamic_range> bytes2 =
483 as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
484 strided_span<const byte, 2> sav2{bytes2, bounds};
485 strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
486 CHECK(sav3[0][0] == 0);
487 CHECK(sav3[1][0] == 2);
488 CHECK_THROWS_AS(sav3[1][1], fail_fast);
489 CHECK_THROWS_AS(sav3[0][1], fail_fast);
490 }
491
492 // retype strided array with not enough elements - last dimension of the array is too small
493 {
494 strided_bounds<2> bounds{{4, 2}, {4, 1}};
495 multi_span<const byte, 2, dynamic_range> bytes2 =
496 as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
497 strided_span<const byte, 2> sav2{bytes2, bounds};
498 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
499 }
500
501 // retype strided array with not enough elements - strides are too small
502 {
503 strided_bounds<2> bounds{{4, 2}, {2, 1}};
504 multi_span<const byte, 2, dynamic_range> bytes2 =
505 as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
506 strided_span<const byte, 2> sav2{bytes2, bounds};
507 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
508 }
509
510 // retype strided array with not enough elements - last dimension does not divide by the new
511 // typesize
512 {
513 strided_bounds<2> bounds{{2, 6}, {4, 1}};
514 multi_span<const byte, 2, dynamic_range> bytes2 =
515 as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
516 strided_span<const byte, 2> sav2{bytes2, bounds};
517 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
518 }
519
520 // retype strided array with not enough elements - strides does not divide by the new
521 // typesize
522 {
523 strided_bounds<2> bounds{{2, 1}, {6, 1}};
524 multi_span<const byte, 2, dynamic_range> bytes2 =
525 as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
526 strided_span<const byte, 2> sav2{bytes2, bounds};
527 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
528 }
529
530 // retype strided array with irregular strides - from raw data
531 {
532 strided_bounds<1> bounds{bytes.size() / 2, 2};
533 strided_span<const byte, 1> sav2{bytes.data(), bytes.size(), bounds};
534 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
535 }
536
537 // retype strided array with irregular strides - from multi_span
538 {
539 strided_bounds<1> bounds{bytes.size() / 2, 2};
540 strided_span<const byte, 1> sav2{bytes, bounds};
541 CHECK_THROWS_AS(sav2.as_strided_span<int>(), fail_fast);
542 }
543}
544
545TEST_CASE("empty_strided_spans")
546{
547 {
548 multi_span<int, 0> empty_av(nullptr);
549 strided_span<int, 1> empty_sav{empty_av, {0, 1}};
550
551 CHECK(empty_sav.bounds().index_bounds() == multi_span_index<1>{0});
552 CHECK_THROWS_AS(empty_sav[0], fail_fast);
553 CHECK_THROWS_AS(empty_sav.begin()[0], fail_fast);
554 CHECK_THROWS_AS(empty_sav.cbegin()[0], fail_fast);
555
556 for (const auto& v : empty_sav) {
557 (void) v;
558 CHECK(false);
559 }
560 }
561
562 {
563 strided_span<int, 1> empty_sav{nullptr, 0, {0, 1}};
564
565 CHECK(empty_sav.bounds().index_bounds() == multi_span_index<1>{0});
566 CHECK_THROWS_AS(empty_sav[0], fail_fast);
567 CHECK_THROWS_AS(empty_sav.begin()[0], fail_fast);
568 CHECK_THROWS_AS(empty_sav.cbegin()[0], fail_fast);
569
570 for (const auto& v : empty_sav) {
571 (void) v;
572 CHECK(false);
573 }
574 }
575}
576
577void iterate_every_other_element(multi_span<int, dynamic_range> av)
578{
579 // pick every other element
580
581 auto length = av.size() / 2;
582#if _MSC_VER > 1800
583 auto bounds = strided_bounds<1>({length}, {2});
584#else
585 auto bounds = strided_bounds<1>(multi_span_index<1>{length}, multi_span_index<1>{2});
586#endif
587 strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds);
588
589 CHECK(strided.size() == length);
590 CHECK(strided.bounds().index_bounds()[0] == length);
591 for (auto i = 0; i < strided.size(); ++i) {
592 CHECK(strided[i] == av[2 * i + 1]);
593 }
594
595 int idx = 0;
596 for (auto num : strided) {
597 CHECK(num == av[2 * idx + 1]);
598 idx++;
599 }
600}
601
602TEST_CASE("strided_span_section_iteration")
603{
604 int arr[8] = {4, 0, 5, 1, 6, 2, 7, 3};
605
606 // static bounds
607 {
608 multi_span<int, 8> av(arr, 8);
609 iterate_every_other_element(av);
610 }
611
612 // dynamic bounds
613 {
614 multi_span<int, dynamic_range> av(arr, 8);
615 iterate_every_other_element(av);
616 }
617}
618
619TEST_CASE("dynamic_strided_span_section_iteration")
620{
621 auto arr = new int[8];
622 for (int i = 0; i < 4; ++i) {
623 arr[2 * i] = 4 + i;
624 arr[2 * i + 1] = i;
625 }
626
627 auto av = as_multi_span(arr, 8);
628 iterate_every_other_element(av);
629
630 delete[] arr;
631}
632
633void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av)
634{
635 const int expected[6] = {2, 3, 10, 11, 18, 19};
636 auto section = av.section({0, 1, 0}, {3, 1, 2});
637
638 for (auto i = 0; i < section.extent<0>(); ++i) {
639 for (auto j = 0; j < section.extent<1>(); ++j)
640 for (auto k = 0; k < section.extent<2>(); ++k) {
641 auto idx = multi_span_index<3>{i, j, k}; // avoid braces in the CHECK macro
642 CHECK(section[idx] == expected[2 * i + 2 * j + k]);
643 }
644 }
645
646 for (auto i = 0; i < section.extent<0>(); ++i) {
647 for (auto j = 0; j < section.extent<1>(); ++j)
648 for (auto k = 0; k < section.extent<2>(); ++k)
649 CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]);
650 }
651
652 int i = 0;
653 for (const auto num : section) {
654 CHECK(num == expected[i]);
655 i++;
656 }
657}
658
659TEST_CASE("strided_span_section_iteration_3d")
660{
661 int arr[3][4][2]{};
662 for (auto i = 0; i < 3; ++i) {
663 for (auto j = 0; j < 4; ++j)
664 for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k;
665 }
666
667 {
668 multi_span<int, 3, 4, 2> av = arr;
669 iterate_second_slice(av);
670 }
671}
672
673TEST_CASE("dynamic_strided_span_section_iteration_3d")
674{
675 const auto height = 12, width = 2;
676 const auto size = height * width;
677
678 auto arr = new int[static_cast<std::size_t>(size)];
679 for (auto i = 0; i < size; ++i) {
680 arr[i] = i;
681 }
682
683 {
684 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>());
685 iterate_second_slice(av);
686 }
687
688 {
689 auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>());
690 iterate_second_slice(av);
691 }
692
693 {
694 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>());
695 iterate_second_slice(av);
696 }
697
698 {
699 auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2));
700 iterate_second_slice(av);
701 }
702 delete[] arr;
703}
704
705TEST_CASE("strided_span_conversion")
706{
707 // get an multi_span of 'c' values from the list of X's
708
709 struct X
710 {
711 int a;
712 int b;
713 int c;
714 };
715
716 X arr[4] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}};
717
718 int s = sizeof(int) / sizeof(byte);
719 auto d2 = 3 * s;
720 auto d1 = narrow_cast<int>(sizeof(int)) * 12 / d2;
721
722 // convert to 4x12 array of bytes
723 auto av = as_multi_span(as_bytes(as_multi_span(arr, 4)), dim(d1), dim(d2));
724
725 CHECK(av.bounds().index_bounds()[0] == 4);
726 CHECK(av.bounds().index_bounds()[1] == 12);
727
728 // get the last 4 columns
729 auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2],
730 // arr[0].c[3] } , { arr[1].c[0], ... } , ...
731 // }
732
733 // convert to array 4x1 array of integers
734 auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... }
735
736 CHECK(cs.bounds().index_bounds()[0] == 4);
737 CHECK(cs.bounds().index_bounds()[1] == 1);
738
739 // transpose to 1x4 array
740 strided_bounds<2> reverse_bounds{
741 {cs.bounds().index_bounds()[1], cs.bounds().index_bounds()[0]},
742 {cs.bounds().strides()[1], cs.bounds().strides()[0]}};
743
744 strided_span<int, 2> transposed{cs.data(), cs.bounds().total_size(), reverse_bounds};
745
746 // slice to get a one-dimensional array of c's
747 strided_span<int, 1> result = transposed[0];
748
749 CHECK(result.bounds().index_bounds()[0] == 4);
750 CHECK_THROWS_AS(result.bounds().index_bounds()[1], fail_fast);
751
752 int i = 0;
753 for (auto& num : result) {
754 CHECK(num == arr[i].c);
755 i++;
756 }
757}