blob: 549dcbeff2bc050ec7eef34e5954b5afda1ba272 [file] [log] [blame]
Brian Silvermana6f7ce02018-07-07 15:04:00 -07001///////////////////////////////////////////////////////////////////////////////
2//
3// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
4//
5// This code is licensed under the MIT License (MIT).
6//
7// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
8// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
9// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
10// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
11// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
12// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
13// THE SOFTWARE.
14//
15///////////////////////////////////////////////////////////////////////////////
16
17#include <catch/catch.hpp> // for AssertionHandler, StringRef, CHECK, CHECK...
18
19#include <gsl/gsl_byte> // for byte
20#include <gsl/gsl_util> // for narrow_cast
21#include <gsl/multi_span> // for multi_span, contiguous_span_iterator, dim
22
23#include <algorithm> // for fill, for_each
24#include <array> // for array
25#include <iostream> // for ptrdiff_t, size_t
26#include <iterator> // for reverse_iterator, begin, end, operator!=
27#include <numeric> // for iota
28#include <stddef.h> // for ptrdiff_t
29#include <string> // for string
30#include <vector> // for vector
31
32namespace gsl {
33struct fail_fast;
34} // namespace gsl
35
36using namespace std;
37using namespace gsl;
38
39namespace
40{
41struct BaseClass
42{
43};
44struct DerivedClass : BaseClass
45{
46};
47}
48
49TEST_CASE("default_constructor")
50{
51 {
52 multi_span<int> s;
53 CHECK((s.length() == 0 && s.data() == nullptr));
54
55 multi_span<const int> cs;
56 CHECK((cs.length() == 0 && cs.data() == nullptr));
57 }
58
59 {
60 multi_span<int, 0> s;
61 CHECK((s.length() == 0 && s.data() == nullptr));
62
63 multi_span<const int, 0> cs;
64 CHECK((cs.length() == 0 && cs.data() == nullptr));
65 }
66
67 {
68#ifdef CONFIRM_COMPILATION_ERRORS
69 multi_span<int, 1> s;
70 CHECK((s.length() == 1 && s.data() == nullptr)); // explains why it can't compile
71#endif
72 }
73
74 {
75 multi_span<int> s{};
76 CHECK((s.length() == 0 && s.data() == nullptr));
77
78 multi_span<const int> cs{};
79 CHECK((cs.length() == 0 && cs.data() == nullptr));
80 }
81}
82
83TEST_CASE("from_nullptr_constructor")
84{
85 {
86 multi_span<int> s = nullptr;
87 CHECK((s.length() == 0 && s.data() == nullptr));
88
89 multi_span<const int> cs = nullptr;
90 CHECK((cs.length() == 0 && cs.data() == nullptr));
91 }
92
93 {
94 multi_span<int, 0> s = nullptr;
95 CHECK((s.length() == 0 && s.data() == nullptr));
96
97 multi_span<const int, 0> cs = nullptr;
98 CHECK((cs.length() == 0 && cs.data() == nullptr));
99 }
100
101 {
102#ifdef CONFIRM_COMPILATION_ERRORS
103 multi_span<int, 1> s = nullptr;
104 CHECK((s.length() == 1 && s.data() == nullptr)); // explains why it can't compile
105#endif
106 }
107
108 {
109 multi_span<int> s{nullptr};
110 CHECK((s.length() == 0 && s.data() == nullptr));
111
112 multi_span<const int> cs{nullptr};
113 CHECK((cs.length() == 0 && cs.data() == nullptr));
114 }
115
116 {
117 multi_span<int*> s{nullptr};
118 CHECK((s.length() == 0 && s.data() == nullptr));
119
120 multi_span<const int*> cs{nullptr};
121 CHECK((cs.length() == 0 && cs.data() == nullptr));
122 }
123}
124
125TEST_CASE("from_nullptr_length_constructor")
126{
127 {
128 multi_span<int> s{nullptr, 0};
129 CHECK((s.length() == 0 && s.data() == nullptr));
130
131 multi_span<const int> cs{nullptr, 0};
132 CHECK((cs.length() == 0 && cs.data() == nullptr));
133 }
134
135 {
136 multi_span<int, 0> s{nullptr, 0};
137 CHECK((s.length() == 0 && s.data() == nullptr));
138
139 multi_span<const int, 0> cs{nullptr, 0};
140 CHECK((cs.length() == 0 && cs.data() == nullptr));
141 }
142
143 {
144#ifdef CONFIRM_COMPILATION_ERRORS
145 multi_span<int, 1> s{nullptr, 0};
146 CHECK((s.length() == 1 && s.data() == nullptr)); // explains why it can't compile
147#endif
148 }
149
150 {
151 auto workaround_macro = []() { multi_span<int> s{nullptr, 1}; };
152 CHECK_THROWS_AS(workaround_macro(), fail_fast);
153
154 auto const_workaround_macro = []() { multi_span<const int> cs{nullptr, 1}; };
155 CHECK_THROWS_AS(const_workaround_macro(), fail_fast);
156 }
157
158 {
159 auto workaround_macro = []() { multi_span<int, 0> s{nullptr, 1}; };
160 CHECK_THROWS_AS(workaround_macro(), fail_fast);
161
162 auto const_workaround_macro = []() { multi_span<const int, 0> s{nullptr, 1}; };
163 CHECK_THROWS_AS(const_workaround_macro(), fail_fast);
164 }
165
166 {
167 multi_span<int*> s{nullptr, 0};
168 CHECK((s.length() == 0 && s.data() == nullptr));
169
170 multi_span<const int*> cs{nullptr, 0};
171 CHECK((cs.length() == 0 && cs.data() == nullptr));
172 }
173}
174
175TEST_CASE("from_element_constructor")
176{
177 int i = 5;
178
179 {
180 multi_span<int> s = i;
181 CHECK((s.length() == 1 && s.data() == &i));
182 CHECK(s[0] == 5);
183
184 multi_span<const int> cs = i;
185 CHECK((cs.length() == 1 && cs.data() == &i));
186 CHECK(cs[0] == 5);
187 }
188
189 {
190#ifdef CONFIRM_COMPILATION_ERRORS
191 const j = 1;
192 multi_span<int, 0> s = j;
193#endif
194 }
195
196 {
197#ifdef CONFIRM_COMPILATION_ERRORS
198 multi_span<int, 0> s = i;
199 CHECK((s.length() == 0 && s.data() == &i));
200#endif
201 }
202
203 {
204 multi_span<int, 1> s = i;
205 CHECK((s.length() == 1 && s.data() == &i));
206 CHECK(s[0] == 5);
207 }
208
209 {
210#ifdef CONFIRM_COMPILATION_ERRORS
211 multi_span<int, 2> s = i;
212 CHECK((s.length() == 2 && s.data() == &i));
213#endif
214 }
215
216 {
217#ifdef CONFIRM_COMPILATION_ERRORS
218 auto get_a_temp = []() -> int { return 4; };
219 auto use_a_span = [](multi_span<int> s) { (void) s; };
220 use_a_span(get_a_temp());
221#endif
222 }
223}
224
225TEST_CASE("from_pointer_length_constructor")
226{
227 int arr[4] = {1, 2, 3, 4};
228
229 {
230 multi_span<int> s{&arr[0], 2};
231 CHECK((s.length() == 2 && s.data() == &arr[0]));
232 CHECK((s[0] == 1 && s[1] == 2));
233 }
234
235 {
236 multi_span<int, 2> s{&arr[0], 2};
237 CHECK((s.length() == 2 && s.data() == &arr[0]));
238 CHECK((s[0] == 1 && s[1] == 2));
239 }
240
241 {
242 int* p = nullptr;
243 multi_span<int> s{p, 0};
244 CHECK((s.length() == 0 && s.data() == nullptr));
245 }
246
247 {
248 int* p = nullptr;
249 auto workaround_macro = [=]() { multi_span<int> s{p, 2}; };
250 CHECK_THROWS_AS(workaround_macro(), fail_fast);
251 }
252}
253
254TEST_CASE("from_pointer_pointer_constructor")
255{
256 int arr[4] = {1, 2, 3, 4};
257
258 {
259 multi_span<int> s{&arr[0], &arr[2]};
260 CHECK((s.length() == 2 && s.data() == &arr[0]));
261 CHECK((s[0] == 1 && s[1] == 2));
262 }
263
264 {
265 multi_span<int, 2> s{&arr[0], &arr[2]};
266 CHECK((s.length() == 2 && s.data() == &arr[0]));
267 CHECK((s[0] == 1 && s[1] == 2));
268 }
269
270 {
271 multi_span<int> s{&arr[0], &arr[0]};
272 CHECK((s.length() == 0 && s.data() == &arr[0]));
273 }
274
275 {
276 multi_span<int, 0> s{&arr[0], &arr[0]};
277 CHECK((s.length() == 0 && s.data() == &arr[0]));
278 }
279
280 {
281 auto workaround_macro = [&]() { multi_span<int> s{&arr[1], &arr[0]}; };
282 CHECK_THROWS_AS(workaround_macro(), fail_fast);
283 }
284
285 {
286 int* p = nullptr;
287 auto workaround_macro = [&]() { multi_span<int> s{&arr[0], p}; };
288 CHECK_THROWS_AS(workaround_macro(), fail_fast);
289 }
290
291 {
292 int* p = nullptr;
293 auto workaround_macro = [&]() { multi_span<int> s{p, p}; };
294 CHECK_THROWS_AS(workaround_macro(), fail_fast);
295 }
296
297 {
298 int* p = nullptr;
299 auto workaround_macro = [&]() { multi_span<int> s{&arr[0], p}; };
300 CHECK_THROWS_AS(workaround_macro(), fail_fast);
301 }
302}
303
304TEST_CASE("from_array_constructor")
305{
306 int arr[5] = {1, 2, 3, 4, 5};
307
308 {
309 multi_span<int> s{arr};
310 CHECK((s.length() == 5 && s.data() == &arr[0]));
311 }
312
313 {
314 multi_span<int, 5> s{arr};
315 CHECK((s.length() == 5 && s.data() == &arr[0]));
316 }
317
318 {
319#ifdef CONFIRM_COMPILATION_ERRORS
320 multi_span<int, 6> s{arr};
321#endif
322 }
323
324 {
325 multi_span<int, 0> s{arr};
326 CHECK((s.length() == 0 && s.data() == &arr[0]));
327 }
328
329 int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
330
331 {
332 multi_span<int> s{arr2d};
333 CHECK((s.length() == 6 && s.data() == &arr2d[0][0]));
334 CHECK((s[0] == 1 && s[5] == 6));
335 }
336
337 {
338 multi_span<int, 0> s{arr2d};
339 CHECK((s.length() == 0 && s.data() == &arr2d[0][0]));
340 }
341
342 {
343#ifdef CONFIRM_COMPILATION_ERRORS
344 multi_span<int, 5> s{arr2d};
345#endif
346 }
347
348 {
349 multi_span<int, 6> s{arr2d};
350 CHECK((s.length() == 6 && s.data() == &arr2d[0][0]));
351 CHECK((s[0] == 1 && s[5] == 6));
352 }
353
354 {
355#ifdef CONFIRM_COMPILATION_ERRORS
356 multi_span<int, 7> s{arr2d};
357#endif
358 }
359
360 {
361 multi_span<int[3]> s{arr2d[0]};
362 CHECK((s.length() == 1 && s.data() == &arr2d[0]));
363 }
364
365 {
366 multi_span<int, 2, 3> s{arr2d};
367 CHECK((s.length() == 6 && s.data() == &arr2d[0][0]));
368 auto workaround_macro = [&]() { return s[{1, 2}] == 6; };
369 CHECK(workaround_macro());
370 }
371
372 {
373#ifdef CONFIRM_COMPILATION_ERRORS
374 multi_span<int, 3, 3> s{arr2d};
375#endif
376 }
377
378 int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
379
380 {
381 multi_span<int> s{arr3d};
382 CHECK((s.length() == 12 && s.data() == &arr3d[0][0][0]));
383 CHECK((s[0] == 1 && s[11] == 12));
384 }
385
386 {
387 multi_span<int, 0> s{arr3d};
388 CHECK((s.length() == 0 && s.data() == &arr3d[0][0][0]));
389 }
390
391 {
392#ifdef CONFIRM_COMPILATION_ERRORS
393 multi_span<int, 11> s{arr3d};
394#endif
395 }
396
397 {
398 multi_span<int, 12> s{arr3d};
399 CHECK((s.length() == 12 && s.data() == &arr3d[0][0][0]));
400 CHECK((s[0] == 1 && s[5] == 6));
401 }
402
403 {
404#ifdef CONFIRM_COMPILATION_ERRORS
405 multi_span<int, 13> s{arr3d};
406#endif
407 }
408
409 {
410 multi_span<int[3][2]> s{arr3d[0]};
411 CHECK((s.length() == 1 && s.data() == &arr3d[0]));
412 }
413
414 {
415 multi_span<int, 3, 2, 2> s{arr3d};
416 CHECK((s.length() == 12 && s.data() == &arr3d[0][0][0]));
417 auto workaround_macro = [&]() { return s[{2, 1, 0}] == 11; };
418 CHECK(workaround_macro());
419 }
420
421 {
422#ifdef CONFIRM_COMPILATION_ERRORS
423 multi_span<int, 3, 3, 3> s{arr3d};
424#endif
425 }
426}
427
428TEST_CASE("from_dynamic_array_constructor")
429{
430 double(*arr)[3][4] = new double[100][3][4];
431
432 {
433 multi_span<double, dynamic_range, 3, 4> s(arr, 10);
434 CHECK((s.length() == 120 && s.data() == &arr[0][0][0]));
435 CHECK_THROWS_AS(s[10][3][4], fail_fast);
436 }
437
438 {
439 multi_span<double, dynamic_range, 4, 3> s(arr, 10);
440 CHECK((s.length() == 120 && s.data() == &arr[0][0][0]));
441 }
442
443 {
444 multi_span<double> s(arr, 10);
445 CHECK((s.length() == 120 && s.data() == &arr[0][0][0]));
446 }
447
448 {
449 multi_span<double, dynamic_range, 3, 4> s(arr, 0);
450 CHECK((s.length() == 0 && s.data() == &arr[0][0][0]));
451 }
452
453 delete[] arr;
454}
455
456TEST_CASE("from_std_array_constructor")
457{
458 std::array<int, 4> arr = {1, 2, 3, 4};
459
460 {
461 multi_span<int> s{arr};
462 CHECK((s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data()));
463
464 multi_span<const int> cs{arr};
465 CHECK((cs.size() == narrow_cast<ptrdiff_t>(arr.size()) && cs.data() == arr.data()));
466 }
467
468 {
469 multi_span<int, 4> s{arr};
470 CHECK((s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data()));
471
472 multi_span<const int, 4> cs{arr};
473 CHECK((cs.size() == narrow_cast<ptrdiff_t>(arr.size()) && cs.data() == arr.data()));
474 }
475
476 {
477 multi_span<int, 2> s{arr};
478 CHECK((s.size() == 2 && s.data() == arr.data()));
479
480 multi_span<const int, 2> cs{arr};
481 CHECK((cs.size() == 2 && cs.data() == arr.data()));
482 }
483
484 {
485 multi_span<int, 0> s{arr};
486 CHECK((s.size() == 0 && s.data() == arr.data()));
487
488 multi_span<const int, 0> cs{arr};
489 CHECK((cs.size() == 0 && cs.data() == arr.data()));
490 }
491
492 // TODO This is currently an unsupported scenario. We will come back to it as we revise
493 // the multidimensional interface and what transformations between dimensionality look like
494 //{
495 // multi_span<int, 2, 2> s{arr};
496 // CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
497 //}
498
499 {
500#ifdef CONFIRM_COMPILATION_ERRORS
501 multi_span<int, 5> s{arr};
502#endif
503 }
504
505 {
506#ifdef CONFIRM_COMPILATION_ERRORS
507 auto get_an_array = []() { return std::array<int, 4>{1, 2, 3, 4}; };
508 auto take_a_span = [](multi_span<int> s) { (void) s; };
509 // try to take a temporary std::array
510 take_a_span(get_an_array());
511#endif
512 }
513}
514
515TEST_CASE("from_const_std_array_constructor")
516{
517 const std::array<int, 4> arr = {1, 2, 3, 4};
518
519 {
520 multi_span<const int> s{arr};
521 CHECK((s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data()));
522 }
523
524 {
525 multi_span<const int, 4> s{arr};
526 CHECK((s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data()));
527 }
528
529 {
530 multi_span<const int, 2> s{arr};
531 CHECK((s.size() == 2 && s.data() == arr.data()));
532 }
533
534 {
535 multi_span<const int, 0> s{arr};
536 CHECK((s.size() == 0 && s.data() == arr.data()));
537 }
538
539 // TODO This is currently an unsupported scenario. We will come back to it as we revise
540 // the multidimensional interface and what transformations between dimensionality look like
541 //{
542 // multi_span<int, 2, 2> s{arr};
543 // CHECK(s.size() == narrow_cast<ptrdiff_t>(arr.size()) && s.data() == arr.data());
544 //}
545
546 {
547#ifdef CONFIRM_COMPILATION_ERRORS
548 multi_span<const int, 5> s{arr};
549#endif
550 }
551
552 {
553#ifdef CONFIRM_COMPILATION_ERRORS
554 auto get_an_array = []() -> const std::array<int, 4> { return {1, 2, 3, 4}; };
555 auto take_a_span = [](multi_span<const int> s) { (void) s; };
556 // try to take a temporary std::array
557 take_a_span(get_an_array());
558#endif
559 }
560}
561
562TEST_CASE("from_container_constructor")
563{
564 std::vector<int> v = {1, 2, 3};
565 const std::vector<int> cv = v;
566
567 {
568 multi_span<int> s{v};
569 CHECK((s.size() == narrow_cast<std::ptrdiff_t>(v.size()) && s.data() == v.data()));
570
571 multi_span<const int> cs{v};
572 CHECK((cs.size() == narrow_cast<std::ptrdiff_t>(v.size()) && cs.data() == v.data()));
573 }
574
575 std::string str = "hello";
576 const std::string cstr = "hello";
577
578 {
579#ifdef CONFIRM_COMPILATION_ERRORS
580 multi_span<char> s{str};
581 CHECK((s.size() == narrow_cast<std::ptrdiff_t>(str.size()) && s.data() == str.data()));
582#endif
583 multi_span<const char> cs{str};
584 CHECK((cs.size() == narrow_cast<std::ptrdiff_t>(str.size()) && cs.data() == str.data()));
585 }
586
587 {
588#ifdef CONFIRM_COMPILATION_ERRORS
589 multi_span<char> s{cstr};
590#endif
591 multi_span<const char> cs{cstr};
592 CHECK((cs.size() == narrow_cast<std::ptrdiff_t>(cstr.size()) &&
593 cs.data() == cstr.data()));
594 }
595
596 {
597#ifdef CONFIRM_COMPILATION_ERRORS
598 auto get_temp_vector = []() -> std::vector<int> { return {}; };
599 auto use_span = [](multi_span<int> s) { (void) s; };
600 use_span(get_temp_vector());
601#endif
602 }
603
604 {
605#ifdef CONFIRM_COMPILATION_ERRORS
606 auto get_temp_string = []() -> std::string { return {}; };
607 auto use_span = [](multi_span<char> s) { (void) s; };
608 use_span(get_temp_string());
609#endif
610 }
611
612 {
613#ifdef CONFIRM_COMPILATION_ERRORS
614 auto get_temp_vector = []() -> const std::vector<int> { return {}; };
615 auto use_span = [](multi_span<const char> s) { (void) s; };
616 use_span(get_temp_vector());
617#endif
618 }
619
620 {
621#ifdef CONFIRM_COMPILATION_ERRORS
622 auto get_temp_string = []() -> const std::string { return {}; };
623 auto use_span = [](multi_span<const char> s) { (void) s; };
624 use_span(get_temp_string());
625#endif
626 }
627
628 {
629#ifdef CONFIRM_COMPILATION_ERRORS
630 std::map<int, int> m;
631 multi_span<int> s{m};
632#endif
633 }
634}
635
636TEST_CASE("from_convertible_span_constructor")
637{
638#ifdef CONFIRM_COMPILATION_ERRORS
639 multi_span<int, 7, 4, 2> av1(nullptr, b1);
640
641 auto f = [&]() { multi_span<int, 7, 4, 2> av1(nullptr); };
642 CHECK_THROWS_AS(f(), fail_fast);
643#endif
644
645#ifdef CONFIRM_COMPILATION_ERRORS
646 static_bounds<std::size_t, 7, dynamic_range, 2> b12(b11);
647 b12 = b11;
648 b11 = b12;
649
650 multi_span<int, dynamic_range> av1 = nullptr;
651 multi_span<int, 7, dynamic_range, 2> av2(av1);
652 multi_span<int, 7, 4, 2> av2(av1);
653#endif
654
655 multi_span<DerivedClass> avd;
656#ifdef CONFIRM_COMPILATION_ERRORS
657 multi_span<BaseClass> avb = avd;
658#endif
659 multi_span<const DerivedClass> avcd = avd;
660 (void) avcd;
661}
662
663TEST_CASE("copy_move_and_assignment")
664{
665 multi_span<int> s1;
666 CHECK(s1.empty());
667
668 int arr[] = {3, 4, 5};
669
670 multi_span<const int> s2 = arr;
671 CHECK((s2.length() == 3 && s2.data() == &arr[0]));
672
673 s2 = s1;
674 CHECK(s2.empty());
675
676 auto get_temp_span = [&]() -> multi_span<int> { return {&arr[1], 2}; };
677 auto use_span = [&](multi_span<const int> s) {
678 CHECK((s.length() == 2 && s.data() == &arr[1]));
679 };
680 use_span(get_temp_span());
681
682 s1 = get_temp_span();
683 CHECK((s1.length() == 2 && s1.data() == &arr[1]));
684}
685
686template <class Bounds>
687void fn(const Bounds&)
688{
689 static_assert(Bounds::static_size == 60, "static bounds is wrong size");
690}
691TEST_CASE("as_multi_span_reshape")
692{
693 int a[3][4][5];
694 auto av = as_multi_span(a);
695 fn(av.bounds());
696 auto av2 = as_multi_span(av, dim<60>());
697 auto av3 = as_multi_span(av2, dim<3>(), dim<4>(), dim<5>());
698 auto av4 = as_multi_span(av3, dim<4>(), dim(3), dim<5>());
699 auto av5 = as_multi_span(av4, dim<3>(), dim<4>(), dim<5>());
700 auto av6 = as_multi_span(av5, dim<12>(), dim(5));
701
702 fill(av6.begin(), av6.end(), 1);
703
704 auto av7 = as_bytes(av6);
705
706 auto av8 = as_multi_span<int>(av7);
707
708 CHECK(av8.size() == av6.size());
709 for (auto i = 0; i < av8.size(); i++) {
710 CHECK(av8[i] == 1);
711 }
712}
713
714TEST_CASE("first")
715{
716 int arr[5] = {1, 2, 3, 4, 5};
717
718 {
719 multi_span<int, 5> av = arr;
720 CHECK((av.first<2>().bounds() == static_bounds<2>()));
721 CHECK(av.first<2>().length() == 2);
722 CHECK(av.first(2).length() == 2);
723 }
724
725 {
726 multi_span<int, 5> av = arr;
727 CHECK((av.first<0>().bounds() == static_bounds<0>()));
728 CHECK(av.first<0>().length() == 0);
729 CHECK(av.first(0).length() == 0);
730 }
731
732 {
733 multi_span<int, 5> av = arr;
734 CHECK((av.first<5>().bounds() == static_bounds<5>()));
735 CHECK(av.first<5>().length() == 5);
736 CHECK(av.first(5).length() == 5);
737 }
738
739 {
740 multi_span<int, 5> av = arr;
741#ifdef CONFIRM_COMPILATION_ERRORS
742 CHECK(av.first<6>().bounds() == static_bounds<6>());
743 CHECK(av.first<6>().length() == 6);
744 CHECK(av.first<-1>().length() == -1);
745#endif
746 CHECK_THROWS_AS(av.first(6).length(), fail_fast);
747 }
748
749 {
750 multi_span<int, dynamic_range> av;
751 CHECK((av.first<0>().bounds() == static_bounds<0>()));
752 CHECK(av.first<0>().length() == 0);
753 CHECK(av.first(0).length() == 0);
754 }
755}
756
757TEST_CASE("last")
758{
759 int arr[5] = {1, 2, 3, 4, 5};
760
761 {
762 multi_span<int, 5> av = arr;
763 CHECK((av.last<2>().bounds() == static_bounds<2>()));
764 CHECK(av.last<2>().length() == 2);
765 CHECK(av.last(2).length() == 2);
766 }
767
768 {
769 multi_span<int, 5> av = arr;
770 CHECK((av.last<0>().bounds() == static_bounds<0>()));
771 CHECK(av.last<0>().length() == 0);
772 CHECK(av.last(0).length() == 0);
773 }
774
775 {
776 multi_span<int, 5> av = arr;
777 CHECK((av.last<5>().bounds() == static_bounds<5>()));
778 CHECK(av.last<5>().length() == 5);
779 CHECK(av.last(5).length() == 5);
780 }
781
782 {
783 multi_span<int, 5> av = arr;
784#ifdef CONFIRM_COMPILATION_ERRORS
785 CHECK((av.last<6>().bounds() == static_bounds<6>()));
786 CHECK(av.last<6>().length() == 6);
787#endif
788 CHECK_THROWS_AS(av.last(6).length(), fail_fast);
789 }
790
791 {
792 multi_span<int, dynamic_range> av;
793 CHECK((av.last<0>().bounds() == static_bounds<0>()));
794 CHECK(av.last<0>().length() == 0);
795 CHECK(av.last(0).length() == 0);
796 }
797}
798
799TEST_CASE("subspan")
800{
801 int arr[5] = {1, 2, 3, 4, 5};
802
803 {
804 multi_span<int, 5> av = arr;
805 CHECK((av.subspan<2, 2>().bounds() == static_bounds<2>()));
806 CHECK((av.subspan<2, 2>().length() == 2));
807 CHECK(av.subspan(2, 2).length() == 2);
808 CHECK(av.subspan(2, 3).length() == 3);
809 }
810
811 {
812 multi_span<int, 5> av = arr;
813 CHECK((av.subspan<0, 0>().bounds() == static_bounds<0>()));
814 CHECK((av.subspan<0, 0>().length() == 0));
815 CHECK(av.subspan(0, 0).length() == 0);
816 }
817
818 {
819 multi_span<int, 5> av = arr;
820 CHECK((av.subspan<0, 5>().bounds() == static_bounds<5>()));
821 CHECK((av.subspan<0, 5>().length() == 5));
822 CHECK(av.subspan(0, 5).length() == 5);
823 CHECK_THROWS_AS(av.subspan(0, 6).length(), fail_fast);
824 CHECK_THROWS_AS(av.subspan(1, 5).length(), fail_fast);
825 }
826
827 {
828 multi_span<int, 5> av = arr;
829 CHECK((av.subspan<5, 0>().bounds() == static_bounds<0>()));
830 CHECK((av.subspan<5, 0>().length() == 0));
831 CHECK(av.subspan(5, 0).length() == 0);
832 CHECK_THROWS_AS(av.subspan(6, 0).length(), fail_fast);
833 }
834
835 {
836 multi_span<int, dynamic_range> av;
837 CHECK((av.subspan<0, 0>().bounds() == static_bounds<0>()));
838 CHECK((av.subspan<0, 0>().length() == 0));
839 CHECK(av.subspan(0, 0).length() == 0);
840 CHECK_THROWS_AS((av.subspan<1, 0>().length()), fail_fast);
841 }
842
843 {
844 multi_span<int> av;
845 CHECK(av.subspan(0).length() == 0);
846 CHECK_THROWS_AS(av.subspan(1).length(), fail_fast);
847 }
848
849 {
850 multi_span<int> av = arr;
851 CHECK(av.subspan(0).length() == 5);
852 CHECK(av.subspan(1).length() == 4);
853 CHECK(av.subspan(4).length() == 1);
854 CHECK(av.subspan(5).length() == 0);
855 CHECK_THROWS_AS(av.subspan(6).length(), fail_fast);
856 auto av2 = av.subspan(1);
857 for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
858 }
859
860 {
861 multi_span<int, 5> av = arr;
862 CHECK(av.subspan(0).length() == 5);
863 CHECK(av.subspan(1).length() == 4);
864 CHECK(av.subspan(4).length() == 1);
865 CHECK(av.subspan(5).length() == 0);
866 CHECK_THROWS_AS(av.subspan(6).length(), fail_fast);
867 auto av2 = av.subspan(1);
868 for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
869 }
870}
871
872TEST_CASE("rank")
873{
874 int arr[2] = {1, 2};
875
876 {
877 multi_span<int> s;
878 CHECK(s.rank() == 1);
879 }
880
881 {
882 multi_span<int, 2> s = arr;
883 CHECK(s.rank() == 1);
884 }
885
886 int arr2d[1][1] = {};
887 {
888 multi_span<int, 1, 1> s = arr2d;
889 CHECK(s.rank() == 2);
890 }
891}
892
893TEST_CASE("extent")
894{
895 {
896 multi_span<int> s;
897 CHECK(s.extent() == 0);
898 CHECK(s.extent(0) == 0);
899 CHECK_THROWS_AS(s.extent(1), fail_fast);
900#ifdef CONFIRM_COMPILATION_ERRORS
901 CHECK(s.extent<1>() == 0);
902#endif
903 }
904
905 {
906 multi_span<int, 0> s;
907 CHECK(s.extent() == 0);
908 CHECK(s.extent(0) == 0);
909 CHECK_THROWS_AS(s.extent(1), fail_fast);
910 }
911
912 {
913 int arr2d[1][2] = {};
914
915 multi_span<int, 1, 2> s = arr2d;
916 CHECK(s.extent() == 1);
917 CHECK(s.extent<0>() == 1);
918 CHECK(s.extent<1>() == 2);
919 CHECK(s.extent(0) == 1);
920 CHECK(s.extent(1) == 2);
921 CHECK_THROWS_AS(s.extent(3), fail_fast);
922 }
923
924 {
925 int arr2d[1][2] = {};
926
927 multi_span<int, 0, 2> s = arr2d;
928 CHECK(s.extent() == 0);
929 CHECK(s.extent<0>() == 0);
930 CHECK(s.extent<1>() == 2);
931 CHECK(s.extent(0) == 0);
932 CHECK(s.extent(1) == 2);
933 CHECK_THROWS_AS(s.extent(3), fail_fast);
934 }
935}
936
937TEST_CASE("operator_function_call")
938{
939 int arr[4] = {1, 2, 3, 4};
940
941 {
942 multi_span<int> s = arr;
943 CHECK(s(0) == 1);
944 CHECK_THROWS_AS(s(5), fail_fast);
945 }
946
947 int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
948
949 {
950 multi_span<int, 2, 3> s = arr2d;
951 CHECK(s(0, 0) == 1);
952 CHECK(s(0, 1) == 2);
953 CHECK(s(1, 2) == 6);
954 }
955
956 int arr3d[2][2][2] = {1, 2, 3, 4, 5, 6, 7, 8};
957
958 {
959 multi_span<int, 2, 2, 2> s = arr3d;
960 CHECK(s(0, 0, 0) == 1);
961 CHECK(s(1, 1, 1) == 8);
962 }
963}
964
965TEST_CASE("comparison_operators")
966{
967 {
968 int arr[10][2];
969 auto s1 = as_multi_span(arr);
970 multi_span<const int, dynamic_range, 2> s2 = s1;
971
972 CHECK(s1 == s2);
973
974 multi_span<int, 20> s3 = as_multi_span(s1, dim(20));
975 CHECK((s3 == s2 && s3 == s1));
976 }
977
978 {
979 multi_span<int> s1 = nullptr;
980 multi_span<int> s2 = nullptr;
981 CHECK(s1 == s2);
982 CHECK(!(s1 != s2));
983 CHECK(!(s1 < s2));
984 CHECK(s1 <= s2);
985 CHECK(!(s1 > s2));
986 CHECK(s1 >= s2);
987 CHECK(s2 == s1);
988 CHECK(!(s2 != s1));
989 CHECK(!(s2 < s1));
990 CHECK(s2 <= s1);
991 CHECK(!(s2 > s1));
992 CHECK(s2 >= s1);
993 }
994
995 {
996 int arr[] = {2, 1}; // bigger
997
998 multi_span<int> s1 = nullptr;
999 multi_span<int> s2 = arr;
1000
1001 CHECK(s1 != s2);
1002 CHECK(s2 != s1);
1003 CHECK(!(s1 == s2));
1004 CHECK(!(s2 == s1));
1005 CHECK(s1 < s2);
1006 CHECK(!(s2 < s1));
1007 CHECK(s1 <= s2);
1008 CHECK(!(s2 <= s1));
1009 CHECK(s2 > s1);
1010 CHECK(!(s1 > s2));
1011 CHECK(s2 >= s1);
1012 CHECK(!(s1 >= s2));
1013 }
1014
1015 {
1016 int arr1[] = {1, 2};
1017 int arr2[] = {1, 2};
1018 multi_span<int> s1 = arr1;
1019 multi_span<int> s2 = arr2;
1020
1021 CHECK(s1 == s2);
1022 CHECK(!(s1 != s2));
1023 CHECK(!(s1 < s2));
1024 CHECK(s1 <= s2);
1025 CHECK(!(s1 > s2));
1026 CHECK(s1 >= s2);
1027 CHECK(s2 == s1);
1028 CHECK(!(s2 != s1));
1029 CHECK(!(s2 < s1));
1030 CHECK(s2 <= s1);
1031 CHECK(!(s2 > s1));
1032 CHECK(s2 >= s1);
1033 }
1034
1035 {
1036 int arr[] = {1, 2, 3};
1037
1038 multi_span<int> s1 = {&arr[0], 2}; // shorter
1039 multi_span<int> s2 = arr; // longer
1040
1041 CHECK(s1 != s2);
1042 CHECK(s2 != s1);
1043 CHECK(!(s1 == s2));
1044 CHECK(!(s2 == s1));
1045 CHECK(s1 < s2);
1046 CHECK(!(s2 < s1));
1047 CHECK(s1 <= s2);
1048 CHECK(!(s2 <= s1));
1049 CHECK(s2 > s1);
1050 CHECK(!(s1 > s2));
1051 CHECK(s2 >= s1);
1052 CHECK(!(s1 >= s2));
1053 }
1054
1055 {
1056 int arr1[] = {1, 2}; // smaller
1057 int arr2[] = {2, 1}; // bigger
1058
1059 multi_span<int> s1 = arr1;
1060 multi_span<int> s2 = arr2;
1061
1062 CHECK(s1 != s2);
1063 CHECK(s2 != s1);
1064 CHECK(!(s1 == s2));
1065 CHECK(!(s2 == s1));
1066 CHECK(s1 < s2);
1067 CHECK(!(s2 < s1));
1068 CHECK(s1 <= s2);
1069 CHECK(!(s2 <= s1));
1070 CHECK(s2 > s1);
1071 CHECK(!(s1 > s2));
1072 CHECK(s2 >= s1);
1073 CHECK(!(s1 >= s2));
1074 }
1075}
1076
1077TEST_CASE("basics")
1078{
1079 auto ptr = as_multi_span(new int[10], 10);
1080 fill(ptr.begin(), ptr.end(), 99);
1081 for (int num : ptr) {
1082 CHECK(num == 99);
1083 }
1084
1085 delete[] ptr.data();
1086}
1087
1088TEST_CASE("bounds_checks")
1089{
1090 int arr[10][2];
1091 auto av = as_multi_span(arr);
1092
1093 fill(begin(av), end(av), 0);
1094
1095 av[2][0] = 1;
1096 av[1][1] = 3;
1097
1098 // out of bounds
1099 CHECK_THROWS_AS(av[1][3] = 3, fail_fast);
1100 CHECK_THROWS_AS((av[{1, 3}] = 3), fail_fast);
1101
1102 CHECK_THROWS_AS(av[10][2], fail_fast);
1103 CHECK_THROWS_AS((av[{10, 2}]), fail_fast);
1104
1105 CHECK_THROWS_AS(av[-1][0], fail_fast);
1106 CHECK_THROWS_AS((av[{-1, 0}]), fail_fast);
1107
1108 CHECK_THROWS_AS(av[0][-1], fail_fast);
1109 CHECK_THROWS_AS((av[{0, -1}]), fail_fast);
1110}
1111
1112void overloaded_func(multi_span<const int, dynamic_range, 3, 5> exp, int expected_value)
1113{
1114 for (auto val : exp) {
1115 CHECK(val == expected_value);
1116 }
1117}
1118
1119void overloaded_func(multi_span<const char, dynamic_range, 3, 5> exp, char expected_value)
1120{
1121 for (auto val : exp) {
1122 CHECK(val == expected_value);
1123 }
1124}
1125
1126void fixed_func(multi_span<int, 3, 3, 5> exp, int expected_value)
1127{
1128 for (auto val : exp) {
1129 CHECK(val == expected_value);
1130 }
1131}
1132
1133TEST_CASE("span_parameter_test")
1134{
1135 auto data = new int[4][3][5];
1136
1137 auto av = as_multi_span(data, 4);
1138
1139 CHECK(av.size() == 60);
1140
1141 fill(av.begin(), av.end(), 34);
1142
1143 int count = 0;
1144 for_each(av.rbegin(), av.rend(), [&](int val) { count += val; });
1145 CHECK(count == 34 * 60);
1146 overloaded_func(av, 34);
1147
1148 overloaded_func(as_multi_span(av, dim(4), dim(3), dim(5)), 34);
1149
1150 // fixed_func(av, 34);
1151 delete[] data;
1152}
1153
1154TEST_CASE("md_access")
1155{
1156 auto width = 5, height = 20;
1157
1158 auto imgSize = width * height;
1159 auto image_ptr = new int[static_cast<std::size_t>(imgSize)][3];
1160
1161 // size check will be done
1162 auto image_view =
1163 as_multi_span(as_multi_span(image_ptr, imgSize), dim(height), dim(width), dim<3>());
1164
1165 iota(image_view.begin(), image_view.end(), 1);
1166
1167 int expected = 0;
1168 for (auto i = 0; i < height; i++) {
1169 for (auto j = 0; j < width; j++) {
1170 CHECK(expected + 1 == image_view[i][j][0]);
1171 CHECK(expected + 2 == image_view[i][j][1]);
1172 CHECK(expected + 3 == image_view[i][j][2]);
1173
1174 auto val = image_view[{i, j, 0}];
1175 CHECK(expected + 1 == val);
1176 val = image_view[{i, j, 1}];
1177 CHECK(expected + 2 == val);
1178 val = image_view[{i, j, 2}];
1179 CHECK(expected + 3 == val);
1180
1181 expected += 3;
1182 }
1183 }
1184}
1185
1186TEST_CASE("as_multi_span")
1187{
1188 {
1189 int* arr = new int[150];
1190
1191 auto av = as_multi_span(arr, dim<10>(), dim(3), dim<5>());
1192
1193 fill(av.begin(), av.end(), 24);
1194 overloaded_func(av, 24);
1195
1196 delete[] arr;
1197
1198 array<int, 15> stdarr{0};
1199 auto av2 = as_multi_span(stdarr);
1200 overloaded_func(as_multi_span(av2, dim(1), dim<3>(), dim<5>()), 0);
1201
1202 string str = "ttttttttttttttt"; // size = 15
1203 auto t = str.data();
1204 (void) t;
1205 auto av3 = as_multi_span(str);
1206 overloaded_func(as_multi_span(av3, dim(1), dim<3>(), dim<5>()), 't');
1207 }
1208
1209 {
1210 string str;
1211 multi_span<char> strspan = as_multi_span(str);
1212 (void) strspan;
1213 const string cstr;
1214 multi_span<const char> cstrspan = as_multi_span(cstr);
1215 (void) cstrspan;
1216 }
1217
1218 {
1219 int a[3][4][5];
1220 auto av = as_multi_span(a);
1221 const int(*b)[4][5];
1222 b = a;
1223 auto bv = as_multi_span(b, 3);
1224
1225 CHECK(av == bv);
1226
1227 const std::array<double, 3> arr = {0.0, 0.0, 0.0};
1228 auto cv = as_multi_span(arr);
1229 (void) cv;
1230
1231 vector<float> vec(3);
1232 auto dv = as_multi_span(vec);
1233 (void) dv;
1234
1235#ifdef CONFIRM_COMPILATION_ERRORS
1236 auto dv2 = as_multi_span(std::move(vec));
1237#endif
1238 }
1239}
1240
1241TEST_CASE("empty_spans")
1242{
1243 {
1244 multi_span<int, 0> empty_av(nullptr);
1245
1246 CHECK(empty_av.bounds().index_bounds() == multi_span_index<1>{0});
1247 CHECK_THROWS_AS(empty_av[0], fail_fast);
1248 CHECK_THROWS_AS(empty_av.begin()[0], fail_fast);
1249 CHECK_THROWS_AS(empty_av.cbegin()[0], fail_fast);
1250 for (auto& v : empty_av) {
1251 (void) v;
1252 CHECK(false);
1253 }
1254 }
1255
1256 {
1257 multi_span<int> empty_av = {};
1258 CHECK(empty_av.bounds().index_bounds() == multi_span_index<1>{0});
1259 CHECK_THROWS_AS(empty_av[0], fail_fast);
1260 CHECK_THROWS_AS(empty_av.begin()[0], fail_fast);
1261 CHECK_THROWS_AS(empty_av.cbegin()[0], fail_fast);
1262 for (auto& v : empty_av) {
1263 (void) v;
1264 CHECK(false);
1265 }
1266 }
1267}
1268
1269TEST_CASE("index_constructor")
1270{
1271 auto arr = new int[8];
1272 for (int i = 0; i < 4; ++i) {
1273 arr[2 * i] = 4 + i;
1274 arr[2 * i + 1] = i;
1275 }
1276
1277 multi_span<int, dynamic_range> av(arr, 8);
1278
1279 ptrdiff_t a[1] = {0};
1280 multi_span_index<1> i = a;
1281
1282 CHECK(av[i] == 4);
1283
1284 auto av2 = as_multi_span(av, dim<4>(), dim(2));
1285 ptrdiff_t a2[2] = {0, 1};
1286 multi_span_index<2> i2 = a2;
1287
1288 CHECK(av2[i2] == 0);
1289 CHECK(av2[0][i] == 4);
1290
1291 delete[] arr;
1292}
1293
1294TEST_CASE("index_constructors")
1295{
1296 {
1297 // components of the same type
1298 multi_span_index<3> i1(0, 1, 2);
1299 CHECK(i1[0] == 0);
1300
1301 // components of different types
1302 std::size_t c0 = 0;
1303 std::size_t c1 = 1;
1304 multi_span_index<3> i2(c0, c1, 2);
1305 CHECK(i2[0] == 0);
1306
1307 // from array
1308 multi_span_index<3> i3 = {0, 1, 2};
1309 CHECK(i3[0] == 0);
1310
1311 // from other index of the same size type
1312 multi_span_index<3> i4 = i3;
1313 CHECK(i4[0] == 0);
1314
1315 // default
1316 multi_span_index<3> i7;
1317 CHECK(i7[0] == 0);
1318
1319 // default
1320 multi_span_index<3> i9 = {};
1321 CHECK(i9[0] == 0);
1322 }
1323
1324 {
1325 // components of the same type
1326 multi_span_index<1> i1(0);
1327 CHECK(i1[0] == 0);
1328
1329 // components of different types
1330 std::size_t c0 = 0;
1331 multi_span_index<1> i2(c0);
1332 CHECK(i2[0] == 0);
1333
1334 // from array
1335 multi_span_index<1> i3 = {0};
1336 CHECK(i3[0] == 0);
1337
1338 // from int
1339 multi_span_index<1> i4 = 0;
1340 CHECK(i4[0] == 0);
1341
1342 // from other index of the same size type
1343 multi_span_index<1> i5 = i3;
1344 CHECK(i5[0] == 0);
1345
1346 // default
1347 multi_span_index<1> i8;
1348 CHECK(i8[0] == 0);
1349
1350 // default
1351 multi_span_index<1> i9 = {};
1352 CHECK(i9[0] == 0);
1353 }
1354
1355 #ifdef CONFIRM_COMPILATION_ERRORS
1356 {
1357 multi_span_index<3> i1(0, 1);
1358 multi_span_index<3> i2(0, 1, 2, 3);
1359 multi_span_index<3> i3 = {0};
1360 multi_span_index<3> i4 = {0, 1, 2, 3};
1361 multi_span_index<1> i5 = {0, 1};
1362 }
1363 #endif
1364}
1365
1366TEST_CASE("index_operations")
1367{
1368 ptrdiff_t a[3] = {0, 1, 2};
1369 ptrdiff_t b[3] = {3, 4, 5};
1370 multi_span_index<3> i = a;
1371 multi_span_index<3> j = b;
1372
1373 CHECK(i[0] == 0);
1374 CHECK(i[1] == 1);
1375 CHECK(i[2] == 2);
1376
1377 {
1378 multi_span_index<3> k = i + j;
1379
1380 CHECK(i[0] == 0);
1381 CHECK(i[1] == 1);
1382 CHECK(i[2] == 2);
1383 CHECK(k[0] == 3);
1384 CHECK(k[1] == 5);
1385 CHECK(k[2] == 7);
1386 }
1387
1388 {
1389 multi_span_index<3> k = i * 3;
1390
1391 CHECK(i[0] == 0);
1392 CHECK(i[1] == 1);
1393 CHECK(i[2] == 2);
1394 CHECK(k[0] == 0);
1395 CHECK(k[1] == 3);
1396 CHECK(k[2] == 6);
1397 }
1398
1399 {
1400 multi_span_index<3> k = 3 * i;
1401
1402 CHECK(i[0] == 0);
1403 CHECK(i[1] == 1);
1404 CHECK(i[2] == 2);
1405 CHECK(k[0] == 0);
1406 CHECK(k[1] == 3);
1407 CHECK(k[2] == 6);
1408 }
1409
1410 {
1411 multi_span_index<2> k = details::shift_left(i);
1412
1413 CHECK(i[0] == 0);
1414 CHECK(i[1] == 1);
1415 CHECK(i[2] == 2);
1416 CHECK(k[0] == 1);
1417 CHECK(k[1] == 2);
1418 }
1419}
1420
1421void iterate_second_column(multi_span<int, dynamic_range, dynamic_range> av)
1422{
1423 auto length = av.size() / 2;
1424
1425 // view to the second column
1426 auto section = av.section({0, 1}, {length, 1});
1427
1428 CHECK(section.size() == length);
1429 for (auto i = 0; i < section.size(); ++i) {
1430 CHECK(section[i][0] == av[i][1]);
1431 }
1432
1433 for (auto i = 0; i < section.size(); ++i) {
1434 auto idx = multi_span_index<2>{i, 0}; // avoid braces inside the CHECK macro
1435 CHECK(section[idx] == av[i][1]);
1436 }
1437
1438 CHECK(section.bounds().index_bounds()[0] == length);
1439 CHECK(section.bounds().index_bounds()[1] == 1);
1440 for (auto i = 0; i < section.bounds().index_bounds()[0]; ++i) {
1441 for (auto j = 0; j < section.bounds().index_bounds()[1]; ++j) {
1442 auto idx = multi_span_index<2>{i, j}; // avoid braces inside the CHECK macro
1443 CHECK(section[idx] == av[i][1]);
1444 }
1445 }
1446
1447 auto check_sum = 0;
1448 for (auto i = 0; i < length; ++i) {
1449 check_sum += av[i][1];
1450 }
1451
1452 {
1453 auto idx = 0;
1454 auto sum = 0;
1455 for (auto num : section) {
1456 CHECK(num == av[idx][1]);
1457 sum += num;
1458 idx++;
1459 }
1460
1461 CHECK(sum == check_sum);
1462 }
1463 {
1464 auto idx = length - 1;
1465 auto sum = 0;
1466 for (auto iter = section.rbegin(); iter != section.rend(); ++iter) {
1467 CHECK(*iter == av[idx][1]);
1468 sum += *iter;
1469 idx--;
1470 }
1471
1472 CHECK(sum == check_sum);
1473 }
1474}
1475
1476TEST_CASE("span_section_iteration")
1477{
1478 int arr[4][2] = {{4, 0}, {5, 1}, {6, 2}, {7, 3}};
1479
1480 // static bounds
1481 {
1482 multi_span<int, 4, 2> av = arr;
1483 iterate_second_column(av);
1484 }
1485 // first bound is dynamic
1486 {
1487 multi_span<int, dynamic_range, 2> av = arr;
1488 iterate_second_column(av);
1489 }
1490 // second bound is dynamic
1491 {
1492 multi_span<int, 4, dynamic_range> av = arr;
1493 iterate_second_column(av);
1494 }
1495 // both bounds are dynamic
1496 {
1497 multi_span<int, dynamic_range, dynamic_range> av = arr;
1498 iterate_second_column(av);
1499 }
1500}
1501
1502TEST_CASE("dynamic_span_section_iteration")
1503{
1504 auto height = 4, width = 2;
1505 auto size = height * width;
1506
1507 auto arr = new int[static_cast<std::size_t>(size)];
1508 for (auto i = 0; i < size; ++i) {
1509 arr[i] = i;
1510 }
1511
1512 auto av = as_multi_span(arr, size);
1513
1514 // first bound is dynamic
1515 {
1516 multi_span<int, dynamic_range, 2> av2 = as_multi_span(av, dim(height), dim(width));
1517 iterate_second_column(av2);
1518 }
1519 // second bound is dynamic
1520 {
1521 multi_span<int, 4, dynamic_range> av2 = as_multi_span(av, dim(height), dim(width));
1522 iterate_second_column(av2);
1523 }
1524 // both bounds are dynamic
1525 {
1526 multi_span<int, dynamic_range, dynamic_range> av2 =
1527 as_multi_span(av, dim(height), dim(width));
1528 iterate_second_column(av2);
1529 }
1530
1531 delete[] arr;
1532}
1533
1534TEST_CASE("span_structure_size")
1535{
1536 double(*arr)[3][4] = new double[100][3][4];
1537 multi_span<double, dynamic_range, 3, 4> av1(arr, 10);
1538
1539 struct EffectiveStructure
1540 {
1541 double* v1;
1542 ptrdiff_t v2;
1543 };
1544 CHECK(sizeof(av1) == sizeof(EffectiveStructure));
1545
1546 CHECK_THROWS_AS(av1[10][3][4], fail_fast);
1547
1548 multi_span<const double, dynamic_range, 6, 4> av2 =
1549 as_multi_span(av1, dim(5), dim<6>(), dim<4>());
1550 (void) av2;
1551}
1552
1553TEST_CASE("fixed_size_conversions")
1554{
1555 int arr[] = {1, 2, 3, 4};
1556
1557 // converting to an multi_span from an equal size array is ok
1558 multi_span<int, 4> av4 = arr;
1559 CHECK(av4.length() == 4);
1560
1561 // converting to dynamic_range a_v is always ok
1562 {
1563 multi_span<int, dynamic_range> av = av4;
1564 (void) av;
1565 }
1566 {
1567 multi_span<int, dynamic_range> av = arr;
1568 (void) av;
1569 }
1570
1571// initialization or assignment to static multi_span that REDUCES size is NOT ok
1572#ifdef CONFIRM_COMPILATION_ERRORS
1573 {
1574 multi_span<int, 2> av2 = arr;
1575 }
1576 {
1577 multi_span<int, 2> av2 = av4;
1578 }
1579#endif
1580
1581 {
1582 multi_span<int, dynamic_range> av = arr;
1583 multi_span<int, 2> av2 = av;
1584 (void) av2;
1585 }
1586
1587#ifdef CONFIRM_COMPILATION_ERRORS
1588 {
1589 multi_span<int, dynamic_range> av = arr;
1590 multi_span<int, 2, 1> av2 = av.as_multi_span(dim<2>(), dim<2>());
1591 }
1592#endif
1593
1594 {
1595 multi_span<int, dynamic_range> av = arr;
1596 multi_span<int, 2, 1> av2 = as_multi_span(av, dim(2), dim(2));
1597 auto workaround_macro = [&]() { return av2[{1, 0}] == 2; };
1598 CHECK(workaround_macro());
1599 }
1600
1601 // but doing so explicitly is ok
1602
1603 // you can convert statically
1604 {
1605 multi_span<int, 2> av2 = {arr, 2};
1606 (void) av2;
1607 }
1608 {
1609 multi_span<int, 1> av2 = av4.first<1>();
1610 (void) av2;
1611 }
1612
1613 // ...or dynamically
1614 {
1615 // NB: implicit conversion to multi_span<int,2> from multi_span<int,dynamic_range>
1616 multi_span<int, 1> av2 = av4.first(1);
1617 (void) av2;
1618 }
1619
1620 // initialization or assignment to static multi_span that requires size INCREASE is not ok.
1621 int arr2[2] = {1, 2};
1622
1623#ifdef CONFIRM_COMPILATION_ERRORS
1624 {
1625 multi_span<int, 4> av4 = arr2;
1626 }
1627 {
1628 multi_span<int, 2> av2 = arr2;
1629 multi_span<int, 4> av4 = av2;
1630 }
1631#endif
1632 {
1633 auto f = [&]() {
1634 multi_span<int, 4> av9 = {arr2, 2};
1635 (void) av9;
1636 };
1637 CHECK_THROWS_AS(f(), fail_fast);
1638 }
1639
1640 // this should fail - we are trying to assign a small dynamic a_v to a fixed_size larger one
1641 multi_span<int, dynamic_range> av = arr2;
1642 auto f = [&]() {
1643 multi_span<int, 4> av2 = av;
1644 (void) av2;
1645 };
1646 CHECK_THROWS_AS(f(), fail_fast);
1647}
1648
1649TEST_CASE("as_writeable_bytes")
1650{
1651 int a[] = {1, 2, 3, 4};
1652
1653 {
1654#ifdef CONFIRM_COMPILATION_ERRORS
1655 // you should not be able to get writeable bytes for const objects
1656 multi_span<const int, dynamic_range> av = a;
1657 auto wav = av.as_writeable_bytes();
1658#endif
1659 }
1660
1661 {
1662 multi_span<int, dynamic_range> av;
1663 auto wav = as_writeable_bytes(av);
1664 CHECK(wav.length() == av.length());
1665 CHECK(wav.length() == 0);
1666 CHECK(wav.size_bytes() == 0);
1667 }
1668
1669 {
1670 multi_span<int, dynamic_range> av = a;
1671 auto wav = as_writeable_bytes(av);
1672 CHECK(wav.data() == reinterpret_cast<byte*>(&a[0]));
1673 CHECK(static_cast<std::size_t>(wav.length()) == sizeof(a));
1674 }
1675}
1676
1677TEST_CASE("iterator")
1678{
1679 int a[] = {1, 2, 3, 4};
1680
1681 {
1682 multi_span<int, dynamic_range> av = a;
1683 auto wav = as_writeable_bytes(av);
1684 for (auto& b : wav) {
1685 b = byte(0);
1686 }
1687 for (std::size_t i = 0; i < 4; ++i) {
1688 CHECK(a[i] == 0);
1689 }
1690 }
1691
1692 {
1693 multi_span<int, dynamic_range> av = a;
1694 for (auto& n : av) {
1695 n = 1;
1696 }
1697 for (std::size_t i = 0; i < 4; ++i) {
1698 CHECK(a[i] == 1);
1699 }
1700 }
1701}