Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame] | 1 | /* |
| 2 | * transupp.c |
| 3 | * |
| 4 | * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This file contains image transformation routines and other utility code |
| 9 | * used by the jpegtran sample application. These are NOT part of the core |
| 10 | * JPEG library. But we keep these routines separate from jpegtran.c to |
| 11 | * ease the task of maintaining jpegtran-like programs that have other user |
| 12 | * interfaces. |
| 13 | */ |
| 14 | |
| 15 | /* Although this file really shouldn't have access to the library internals, |
| 16 | * it's helpful to let it call jround_up() and jcopy_block_row(). |
| 17 | */ |
| 18 | #define JPEG_INTERNALS |
| 19 | |
| 20 | #include "jinclude.h" |
| 21 | #include "jpeglib.h" |
| 22 | #include "transupp.h" /* My own external interface */ |
| 23 | #include <ctype.h> /* to declare isdigit() */ |
| 24 | |
| 25 | |
| 26 | #if TRANSFORMS_SUPPORTED |
| 27 | |
| 28 | /* |
| 29 | * Lossless image transformation routines. These routines work on DCT |
| 30 | * coefficient arrays and thus do not require any lossy decompression |
| 31 | * or recompression of the image. |
| 32 | * Thanks to Guido Vollbeding for the initial design and code of this feature, |
| 33 | * and to Ben Jackson for introducing the cropping feature. |
| 34 | * |
| 35 | * Horizontal flipping is done in-place, using a single top-to-bottom |
| 36 | * pass through the virtual source array. It will thus be much the |
| 37 | * fastest option for images larger than main memory. |
| 38 | * |
| 39 | * The other routines require a set of destination virtual arrays, so they |
| 40 | * need twice as much memory as jpegtran normally does. The destination |
| 41 | * arrays are always written in normal scan order (top to bottom) because |
| 42 | * the virtual array manager expects this. The source arrays will be scanned |
| 43 | * in the corresponding order, which means multiple passes through the source |
| 44 | * arrays for most of the transforms. That could result in much thrashing |
| 45 | * if the image is larger than main memory. |
| 46 | * |
| 47 | * If cropping or trimming is involved, the destination arrays may be smaller |
| 48 | * than the source arrays. Note it is not possible to do horizontal flip |
| 49 | * in-place when a nonzero Y crop offset is specified, since we'd have to move |
| 50 | * data from one block row to another but the virtual array manager doesn't |
| 51 | * guarantee we can touch more than one row at a time. So in that case, |
| 52 | * we have to use a separate destination array. |
| 53 | * |
| 54 | * Some notes about the operating environment of the individual transform |
| 55 | * routines: |
| 56 | * 1. Both the source and destination virtual arrays are allocated from the |
| 57 | * source JPEG object, and therefore should be manipulated by calling the |
| 58 | * source's memory manager. |
| 59 | * 2. The destination's component count should be used. It may be smaller |
| 60 | * than the source's when forcing to grayscale. |
| 61 | * 3. Likewise the destination's sampling factors should be used. When |
| 62 | * forcing to grayscale the destination's sampling factors will be all 1, |
| 63 | * and we may as well take that as the effective iMCU size. |
| 64 | * 4. When "trim" is in effect, the destination's dimensions will be the |
| 65 | * trimmed values but the source's will be untrimmed. |
| 66 | * 5. When "crop" is in effect, the destination's dimensions will be the |
| 67 | * cropped values but the source's will be uncropped. Each transform |
| 68 | * routine is responsible for picking up source data starting at the |
| 69 | * correct X and Y offset for the crop region. (The X and Y offsets |
| 70 | * passed to the transform routines are measured in iMCU blocks of the |
| 71 | * destination.) |
| 72 | * 6. All the routines assume that the source and destination buffers are |
| 73 | * padded out to a full iMCU boundary. This is true, although for the |
| 74 | * source buffer it is an undocumented property of jdcoefct.c. |
| 75 | */ |
| 76 | |
| 77 | |
| 78 | LOCAL(void) |
| 79 | do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 80 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 81 | jvirt_barray_ptr *src_coef_arrays, |
| 82 | jvirt_barray_ptr *dst_coef_arrays) |
| 83 | /* Crop. This is only used when no rotate/flip is requested with the crop. */ |
| 84 | { |
| 85 | JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; |
| 86 | int ci, offset_y; |
| 87 | JBLOCKARRAY src_buffer, dst_buffer; |
| 88 | jpeg_component_info *compptr; |
| 89 | |
| 90 | /* We simply have to copy the right amount of data (the destination's |
| 91 | * image size) starting at the given X and Y offsets in the source. |
| 92 | */ |
| 93 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 94 | compptr = dstinfo->comp_info + ci; |
| 95 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 96 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 97 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 98 | dst_blk_y += compptr->v_samp_factor) { |
| 99 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 100 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 101 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 102 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 103 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 104 | dst_blk_y + y_crop_blocks, |
| 105 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 106 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 107 | jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| 108 | dst_buffer[offset_y], |
| 109 | compptr->width_in_blocks); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | |
| 116 | LOCAL(void) |
| 117 | do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 118 | JDIMENSION x_crop_offset, |
| 119 | jvirt_barray_ptr *src_coef_arrays) |
| 120 | /* Horizontal flip; done in-place, so no separate dest array is required. |
| 121 | * NB: this only works when y_crop_offset is zero. |
| 122 | */ |
| 123 | { |
| 124 | JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; |
| 125 | int ci, k, offset_y; |
| 126 | JBLOCKARRAY buffer; |
| 127 | JCOEFPTR ptr1, ptr2; |
| 128 | JCOEF temp1, temp2; |
| 129 | jpeg_component_info *compptr; |
| 130 | |
| 131 | /* Horizontal mirroring of DCT blocks is accomplished by swapping |
| 132 | * pairs of blocks in-place. Within a DCT block, we perform horizontal |
| 133 | * mirroring by changing the signs of odd-numbered columns. |
| 134 | * Partial iMCUs at the right edge are left untouched. |
| 135 | */ |
| 136 | MCU_cols = srcinfo->output_width / |
| 137 | (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 138 | |
| 139 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 140 | compptr = dstinfo->comp_info + ci; |
| 141 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 142 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 143 | for (blk_y = 0; blk_y < compptr->height_in_blocks; |
| 144 | blk_y += compptr->v_samp_factor) { |
| 145 | buffer = (*srcinfo->mem->access_virt_barray) |
| 146 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y, |
| 147 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 148 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 149 | /* Do the mirroring */ |
| 150 | for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { |
| 151 | ptr1 = buffer[offset_y][blk_x]; |
| 152 | ptr2 = buffer[offset_y][comp_width - blk_x - 1]; |
| 153 | /* this unrolled loop doesn't need to know which row it's on... */ |
| 154 | for (k = 0; k < DCTSIZE2; k += 2) { |
| 155 | temp1 = *ptr1; /* swap even column */ |
| 156 | temp2 = *ptr2; |
| 157 | *ptr1++ = temp2; |
| 158 | *ptr2++ = temp1; |
| 159 | temp1 = *ptr1; /* swap odd column with sign change */ |
| 160 | temp2 = *ptr2; |
| 161 | *ptr1++ = -temp2; |
| 162 | *ptr2++ = -temp1; |
| 163 | } |
| 164 | } |
| 165 | if (x_crop_blocks > 0) { |
| 166 | /* Now left-justify the portion of the data to be kept. |
| 167 | * We can't use a single jcopy_block_row() call because that routine |
| 168 | * depends on memcpy(), whose behavior is unspecified for overlapping |
| 169 | * source and destination areas. Sigh. |
| 170 | */ |
| 171 | for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { |
| 172 | jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, |
| 173 | buffer[offset_y] + blk_x, |
| 174 | (JDIMENSION) 1); |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | |
| 183 | LOCAL(void) |
| 184 | do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 185 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 186 | jvirt_barray_ptr *src_coef_arrays, |
| 187 | jvirt_barray_ptr *dst_coef_arrays) |
| 188 | /* Horizontal flip in general cropping case */ |
| 189 | { |
| 190 | JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 191 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 192 | int ci, k, offset_y; |
| 193 | JBLOCKARRAY src_buffer, dst_buffer; |
| 194 | JBLOCKROW src_row_ptr, dst_row_ptr; |
| 195 | JCOEFPTR src_ptr, dst_ptr; |
| 196 | jpeg_component_info *compptr; |
| 197 | |
| 198 | /* Here we must output into a separate array because we can't touch |
| 199 | * different rows of a single virtual array simultaneously. Otherwise, |
| 200 | * this is essentially the same as the routine above. |
| 201 | */ |
| 202 | MCU_cols = srcinfo->output_width / |
| 203 | (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 204 | |
| 205 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 206 | compptr = dstinfo->comp_info + ci; |
| 207 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 208 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 209 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 210 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 211 | dst_blk_y += compptr->v_samp_factor) { |
| 212 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 213 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 214 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 215 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 216 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 217 | dst_blk_y + y_crop_blocks, |
| 218 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 219 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 220 | dst_row_ptr = dst_buffer[offset_y]; |
| 221 | src_row_ptr = src_buffer[offset_y]; |
| 222 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 223 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 224 | /* Do the mirrorable blocks */ |
| 225 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 226 | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 227 | /* this unrolled loop doesn't need to know which row it's on... */ |
| 228 | for (k = 0; k < DCTSIZE2; k += 2) { |
| 229 | *dst_ptr++ = *src_ptr++; /* copy even column */ |
| 230 | *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */ |
| 231 | } |
| 232 | } else { |
| 233 | /* Copy last partial block(s) verbatim */ |
| 234 | jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| 235 | dst_row_ptr + dst_blk_x, |
| 236 | (JDIMENSION) 1); |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | |
| 245 | LOCAL(void) |
| 246 | do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 247 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 248 | jvirt_barray_ptr *src_coef_arrays, |
| 249 | jvirt_barray_ptr *dst_coef_arrays) |
| 250 | /* Vertical flip */ |
| 251 | { |
| 252 | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 253 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 254 | int ci, i, j, offset_y; |
| 255 | JBLOCKARRAY src_buffer, dst_buffer; |
| 256 | JBLOCKROW src_row_ptr, dst_row_ptr; |
| 257 | JCOEFPTR src_ptr, dst_ptr; |
| 258 | jpeg_component_info *compptr; |
| 259 | |
| 260 | /* We output into a separate array because we can't touch different |
| 261 | * rows of the source virtual array simultaneously. Otherwise, this |
| 262 | * is a pretty straightforward analog of horizontal flip. |
| 263 | * Within a DCT block, vertical mirroring is done by changing the signs |
| 264 | * of odd-numbered rows. |
| 265 | * Partial iMCUs at the bottom edge are copied verbatim. |
| 266 | */ |
| 267 | MCU_rows = srcinfo->output_height / |
| 268 | (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 269 | |
| 270 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 271 | compptr = dstinfo->comp_info + ci; |
| 272 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 273 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 274 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 275 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 276 | dst_blk_y += compptr->v_samp_factor) { |
| 277 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 278 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 279 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 280 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 281 | /* Row is within the mirrorable area. */ |
| 282 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 283 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 284 | comp_height - y_crop_blocks - dst_blk_y - |
| 285 | (JDIMENSION) compptr->v_samp_factor, |
| 286 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 287 | } else { |
| 288 | /* Bottom-edge blocks will be copied verbatim. */ |
| 289 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 290 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 291 | dst_blk_y + y_crop_blocks, |
| 292 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 293 | } |
| 294 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 295 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 296 | /* Row is within the mirrorable area. */ |
| 297 | dst_row_ptr = dst_buffer[offset_y]; |
| 298 | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 299 | src_row_ptr += x_crop_blocks; |
| 300 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 301 | dst_blk_x++) { |
| 302 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 303 | src_ptr = src_row_ptr[dst_blk_x]; |
| 304 | for (i = 0; i < DCTSIZE; i += 2) { |
| 305 | /* copy even row */ |
| 306 | for (j = 0; j < DCTSIZE; j++) |
| 307 | *dst_ptr++ = *src_ptr++; |
| 308 | /* copy odd row with sign change */ |
| 309 | for (j = 0; j < DCTSIZE; j++) |
| 310 | *dst_ptr++ = - *src_ptr++; |
| 311 | } |
| 312 | } |
| 313 | } else { |
| 314 | /* Just copy row verbatim. */ |
| 315 | jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, |
| 316 | dst_buffer[offset_y], |
| 317 | compptr->width_in_blocks); |
| 318 | } |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | |
| 325 | LOCAL(void) |
| 326 | do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 327 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 328 | jvirt_barray_ptr *src_coef_arrays, |
| 329 | jvirt_barray_ptr *dst_coef_arrays) |
| 330 | /* Transpose source into destination */ |
| 331 | { |
| 332 | JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; |
| 333 | int ci, i, j, offset_x, offset_y; |
| 334 | JBLOCKARRAY src_buffer, dst_buffer; |
| 335 | JCOEFPTR src_ptr, dst_ptr; |
| 336 | jpeg_component_info *compptr; |
| 337 | |
| 338 | /* Transposing pixels within a block just requires transposing the |
| 339 | * DCT coefficients. |
| 340 | * Partial iMCUs at the edges require no special treatment; we simply |
| 341 | * process all the available DCT blocks for every component. |
| 342 | */ |
| 343 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 344 | compptr = dstinfo->comp_info + ci; |
| 345 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 346 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 347 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 348 | dst_blk_y += compptr->v_samp_factor) { |
| 349 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 350 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 351 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 352 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 353 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 354 | dst_blk_x += compptr->h_samp_factor) { |
| 355 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 356 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 357 | dst_blk_x + x_crop_blocks, |
| 358 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 359 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 360 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 361 | src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; |
| 362 | for (i = 0; i < DCTSIZE; i++) |
| 363 | for (j = 0; j < DCTSIZE; j++) |
| 364 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | |
| 373 | LOCAL(void) |
| 374 | do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 375 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 376 | jvirt_barray_ptr *src_coef_arrays, |
| 377 | jvirt_barray_ptr *dst_coef_arrays) |
| 378 | /* 90 degree rotation is equivalent to |
| 379 | * 1. Transposing the image; |
| 380 | * 2. Horizontal mirroring. |
| 381 | * These two steps are merged into a single processing routine. |
| 382 | */ |
| 383 | { |
| 384 | JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; |
| 385 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 386 | int ci, i, j, offset_x, offset_y; |
| 387 | JBLOCKARRAY src_buffer, dst_buffer; |
| 388 | JCOEFPTR src_ptr, dst_ptr; |
| 389 | jpeg_component_info *compptr; |
| 390 | |
| 391 | /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 392 | * at the (output) right edge properly. They just get transposed and |
| 393 | * not mirrored. |
| 394 | */ |
| 395 | MCU_cols = srcinfo->output_height / |
| 396 | (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 397 | |
| 398 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 399 | compptr = dstinfo->comp_info + ci; |
| 400 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 401 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 402 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 403 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 404 | dst_blk_y += compptr->v_samp_factor) { |
| 405 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 406 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 407 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 408 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 409 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 410 | dst_blk_x += compptr->h_samp_factor) { |
| 411 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 412 | /* Block is within the mirrorable area. */ |
| 413 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 414 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 415 | comp_width - x_crop_blocks - dst_blk_x - |
| 416 | (JDIMENSION) compptr->h_samp_factor, |
| 417 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 418 | } else { |
| 419 | /* Edge blocks are transposed but not mirrored. */ |
| 420 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 421 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 422 | dst_blk_x + x_crop_blocks, |
| 423 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 424 | } |
| 425 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 426 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 427 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 428 | /* Block is within the mirrorable area. */ |
| 429 | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 430 | [dst_blk_y + offset_y + y_crop_blocks]; |
| 431 | for (i = 0; i < DCTSIZE; i++) { |
| 432 | for (j = 0; j < DCTSIZE; j++) |
| 433 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 434 | i++; |
| 435 | for (j = 0; j < DCTSIZE; j++) |
| 436 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 437 | } |
| 438 | } else { |
| 439 | /* Edge blocks are transposed but not mirrored. */ |
| 440 | src_ptr = src_buffer[offset_x] |
| 441 | [dst_blk_y + offset_y + y_crop_blocks]; |
| 442 | for (i = 0; i < DCTSIZE; i++) |
| 443 | for (j = 0; j < DCTSIZE; j++) |
| 444 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 445 | } |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | |
| 454 | LOCAL(void) |
| 455 | do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 456 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 457 | jvirt_barray_ptr *src_coef_arrays, |
| 458 | jvirt_barray_ptr *dst_coef_arrays) |
| 459 | /* 270 degree rotation is equivalent to |
| 460 | * 1. Horizontal mirroring; |
| 461 | * 2. Transposing the image. |
| 462 | * These two steps are merged into a single processing routine. |
| 463 | */ |
| 464 | { |
| 465 | JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; |
| 466 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 467 | int ci, i, j, offset_x, offset_y; |
| 468 | JBLOCKARRAY src_buffer, dst_buffer; |
| 469 | JCOEFPTR src_ptr, dst_ptr; |
| 470 | jpeg_component_info *compptr; |
| 471 | |
| 472 | /* Because of the horizontal mirror step, we can't process partial iMCUs |
| 473 | * at the (output) bottom edge properly. They just get transposed and |
| 474 | * not mirrored. |
| 475 | */ |
| 476 | MCU_rows = srcinfo->output_width / |
| 477 | (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 478 | |
| 479 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 480 | compptr = dstinfo->comp_info + ci; |
| 481 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 482 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 483 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 484 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 485 | dst_blk_y += compptr->v_samp_factor) { |
| 486 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 487 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 488 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 489 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 490 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 491 | dst_blk_x += compptr->h_samp_factor) { |
| 492 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 493 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 494 | dst_blk_x + x_crop_blocks, |
| 495 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 496 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 497 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 498 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 499 | /* Block is within the mirrorable area. */ |
| 500 | src_ptr = src_buffer[offset_x] |
| 501 | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 502 | for (i = 0; i < DCTSIZE; i++) { |
| 503 | for (j = 0; j < DCTSIZE; j++) { |
| 504 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 505 | j++; |
| 506 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 507 | } |
| 508 | } |
| 509 | } else { |
| 510 | /* Edge blocks are transposed but not mirrored. */ |
| 511 | src_ptr = src_buffer[offset_x] |
| 512 | [dst_blk_y + offset_y + y_crop_blocks]; |
| 513 | for (i = 0; i < DCTSIZE; i++) |
| 514 | for (j = 0; j < DCTSIZE; j++) |
| 515 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 516 | } |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | |
| 525 | LOCAL(void) |
| 526 | do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 527 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 528 | jvirt_barray_ptr *src_coef_arrays, |
| 529 | jvirt_barray_ptr *dst_coef_arrays) |
| 530 | /* 180 degree rotation is equivalent to |
| 531 | * 1. Vertical mirroring; |
| 532 | * 2. Horizontal mirroring. |
| 533 | * These two steps are merged into a single processing routine. |
| 534 | */ |
| 535 | { |
| 536 | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 537 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 538 | int ci, i, j, offset_y; |
| 539 | JBLOCKARRAY src_buffer, dst_buffer; |
| 540 | JBLOCKROW src_row_ptr, dst_row_ptr; |
| 541 | JCOEFPTR src_ptr, dst_ptr; |
| 542 | jpeg_component_info *compptr; |
| 543 | |
| 544 | MCU_cols = srcinfo->output_width / |
| 545 | (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 546 | MCU_rows = srcinfo->output_height / |
| 547 | (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 548 | |
| 549 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 550 | compptr = dstinfo->comp_info + ci; |
| 551 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 552 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 553 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 554 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 555 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 556 | dst_blk_y += compptr->v_samp_factor) { |
| 557 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 558 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 559 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 560 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 561 | /* Row is within the vertically mirrorable area. */ |
| 562 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 563 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 564 | comp_height - y_crop_blocks - dst_blk_y - |
| 565 | (JDIMENSION) compptr->v_samp_factor, |
| 566 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 567 | } else { |
| 568 | /* Bottom-edge rows are only mirrored horizontally. */ |
| 569 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 570 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 571 | dst_blk_y + y_crop_blocks, |
| 572 | (JDIMENSION) compptr->v_samp_factor, FALSE); |
| 573 | } |
| 574 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 575 | dst_row_ptr = dst_buffer[offset_y]; |
| 576 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 577 | /* Row is within the mirrorable area. */ |
| 578 | src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; |
| 579 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 580 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 581 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 582 | /* Process the blocks that can be mirrored both ways. */ |
| 583 | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 584 | for (i = 0; i < DCTSIZE; i += 2) { |
| 585 | /* For even row, negate every odd column. */ |
| 586 | for (j = 0; j < DCTSIZE; j += 2) { |
| 587 | *dst_ptr++ = *src_ptr++; |
| 588 | *dst_ptr++ = - *src_ptr++; |
| 589 | } |
| 590 | /* For odd row, negate every even column. */ |
| 591 | for (j = 0; j < DCTSIZE; j += 2) { |
| 592 | *dst_ptr++ = - *src_ptr++; |
| 593 | *dst_ptr++ = *src_ptr++; |
| 594 | } |
| 595 | } |
| 596 | } else { |
| 597 | /* Any remaining right-edge blocks are only mirrored vertically. */ |
| 598 | src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; |
| 599 | for (i = 0; i < DCTSIZE; i += 2) { |
| 600 | for (j = 0; j < DCTSIZE; j++) |
| 601 | *dst_ptr++ = *src_ptr++; |
| 602 | for (j = 0; j < DCTSIZE; j++) |
| 603 | *dst_ptr++ = - *src_ptr++; |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | } else { |
| 608 | /* Remaining rows are just mirrored horizontally. */ |
| 609 | src_row_ptr = src_buffer[offset_y]; |
| 610 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { |
| 611 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 612 | /* Process the blocks that can be mirrored. */ |
| 613 | dst_ptr = dst_row_ptr[dst_blk_x]; |
| 614 | src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; |
| 615 | for (i = 0; i < DCTSIZE2; i += 2) { |
| 616 | *dst_ptr++ = *src_ptr++; |
| 617 | *dst_ptr++ = - *src_ptr++; |
| 618 | } |
| 619 | } else { |
| 620 | /* Any remaining right-edge blocks are only copied. */ |
| 621 | jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, |
| 622 | dst_row_ptr + dst_blk_x, |
| 623 | (JDIMENSION) 1); |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | |
| 633 | LOCAL(void) |
| 634 | do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 635 | JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, |
| 636 | jvirt_barray_ptr *src_coef_arrays, |
| 637 | jvirt_barray_ptr *dst_coef_arrays) |
| 638 | /* Transverse transpose is equivalent to |
| 639 | * 1. 180 degree rotation; |
| 640 | * 2. Transposition; |
| 641 | * or |
| 642 | * 1. Horizontal mirroring; |
| 643 | * 2. Transposition; |
| 644 | * 3. Horizontal mirroring. |
| 645 | * These steps are merged into a single processing routine. |
| 646 | */ |
| 647 | { |
| 648 | JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; |
| 649 | JDIMENSION x_crop_blocks, y_crop_blocks; |
| 650 | int ci, i, j, offset_x, offset_y; |
| 651 | JBLOCKARRAY src_buffer, dst_buffer; |
| 652 | JCOEFPTR src_ptr, dst_ptr; |
| 653 | jpeg_component_info *compptr; |
| 654 | |
| 655 | MCU_cols = srcinfo->output_height / |
| 656 | (dstinfo->max_h_samp_factor * dstinfo->min_DCT_h_scaled_size); |
| 657 | MCU_rows = srcinfo->output_width / |
| 658 | (dstinfo->max_v_samp_factor * dstinfo->min_DCT_v_scaled_size); |
| 659 | |
| 660 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 661 | compptr = dstinfo->comp_info + ci; |
| 662 | comp_width = MCU_cols * compptr->h_samp_factor; |
| 663 | comp_height = MCU_rows * compptr->v_samp_factor; |
| 664 | x_crop_blocks = x_crop_offset * compptr->h_samp_factor; |
| 665 | y_crop_blocks = y_crop_offset * compptr->v_samp_factor; |
| 666 | for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; |
| 667 | dst_blk_y += compptr->v_samp_factor) { |
| 668 | dst_buffer = (*srcinfo->mem->access_virt_barray) |
| 669 | ((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y, |
| 670 | (JDIMENSION) compptr->v_samp_factor, TRUE); |
| 671 | for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { |
| 672 | for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; |
| 673 | dst_blk_x += compptr->h_samp_factor) { |
| 674 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 675 | /* Block is within the mirrorable area. */ |
| 676 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 677 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 678 | comp_width - x_crop_blocks - dst_blk_x - |
| 679 | (JDIMENSION) compptr->h_samp_factor, |
| 680 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 681 | } else { |
| 682 | src_buffer = (*srcinfo->mem->access_virt_barray) |
| 683 | ((j_common_ptr) srcinfo, src_coef_arrays[ci], |
| 684 | dst_blk_x + x_crop_blocks, |
| 685 | (JDIMENSION) compptr->h_samp_factor, FALSE); |
| 686 | } |
| 687 | for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { |
| 688 | dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; |
| 689 | if (y_crop_blocks + dst_blk_y < comp_height) { |
| 690 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 691 | /* Block is within the mirrorable area. */ |
| 692 | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 693 | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 694 | for (i = 0; i < DCTSIZE; i++) { |
| 695 | for (j = 0; j < DCTSIZE; j++) { |
| 696 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 697 | j++; |
| 698 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 699 | } |
| 700 | i++; |
| 701 | for (j = 0; j < DCTSIZE; j++) { |
| 702 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 703 | j++; |
| 704 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 705 | } |
| 706 | } |
| 707 | } else { |
| 708 | /* Right-edge blocks are mirrored in y only */ |
| 709 | src_ptr = src_buffer[offset_x] |
| 710 | [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; |
| 711 | for (i = 0; i < DCTSIZE; i++) { |
| 712 | for (j = 0; j < DCTSIZE; j++) { |
| 713 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 714 | j++; |
| 715 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | } else { |
| 720 | if (x_crop_blocks + dst_blk_x < comp_width) { |
| 721 | /* Bottom-edge blocks are mirrored in x only */ |
| 722 | src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] |
| 723 | [dst_blk_y + offset_y + y_crop_blocks]; |
| 724 | for (i = 0; i < DCTSIZE; i++) { |
| 725 | for (j = 0; j < DCTSIZE; j++) |
| 726 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 727 | i++; |
| 728 | for (j = 0; j < DCTSIZE; j++) |
| 729 | dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j]; |
| 730 | } |
| 731 | } else { |
| 732 | /* At lower right corner, just transpose, no mirroring */ |
| 733 | src_ptr = src_buffer[offset_x] |
| 734 | [dst_blk_y + offset_y + y_crop_blocks]; |
| 735 | for (i = 0; i < DCTSIZE; i++) |
| 736 | for (j = 0; j < DCTSIZE; j++) |
| 737 | dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j]; |
| 738 | } |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | |
| 748 | /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. |
| 749 | * Returns TRUE if valid integer found, FALSE if not. |
| 750 | * *strptr is advanced over the digit string, and *result is set to its value. |
| 751 | */ |
| 752 | |
| 753 | LOCAL(boolean) |
| 754 | jt_read_integer (const char ** strptr, JDIMENSION * result) |
| 755 | { |
| 756 | const char * ptr = *strptr; |
| 757 | JDIMENSION val = 0; |
| 758 | |
| 759 | for (; isdigit(*ptr); ptr++) { |
| 760 | val = val * 10 + (JDIMENSION) (*ptr - '0'); |
| 761 | } |
| 762 | *result = val; |
| 763 | if (ptr == *strptr) |
| 764 | return FALSE; /* oops, no digits */ |
| 765 | *strptr = ptr; |
| 766 | return TRUE; |
| 767 | } |
| 768 | |
| 769 | |
| 770 | /* Parse a crop specification (written in X11 geometry style). |
| 771 | * The routine returns TRUE if the spec string is valid, FALSE if not. |
| 772 | * |
| 773 | * The crop spec string should have the format |
| 774 | * <width>[f]x<height>[f]{+-}<xoffset>{+-}<yoffset> |
| 775 | * where width, height, xoffset, and yoffset are unsigned integers. |
| 776 | * Each of the elements can be omitted to indicate a default value. |
| 777 | * (A weakness of this style is that it is not possible to omit xoffset |
| 778 | * while specifying yoffset, since they look alike.) |
| 779 | * |
| 780 | * This code is loosely based on XParseGeometry from the X11 distribution. |
| 781 | */ |
| 782 | |
| 783 | GLOBAL(boolean) |
| 784 | jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec) |
| 785 | { |
| 786 | info->crop = FALSE; |
| 787 | info->crop_width_set = JCROP_UNSET; |
| 788 | info->crop_height_set = JCROP_UNSET; |
| 789 | info->crop_xoffset_set = JCROP_UNSET; |
| 790 | info->crop_yoffset_set = JCROP_UNSET; |
| 791 | |
| 792 | if (isdigit(*spec)) { |
| 793 | /* fetch width */ |
| 794 | if (! jt_read_integer(&spec, &info->crop_width)) |
| 795 | return FALSE; |
| 796 | if (*spec == 'f' || *spec == 'F') { |
| 797 | spec++; |
| 798 | info->crop_width_set = JCROP_FORCE; |
| 799 | } else |
| 800 | info->crop_width_set = JCROP_POS; |
| 801 | } |
| 802 | if (*spec == 'x' || *spec == 'X') { |
| 803 | /* fetch height */ |
| 804 | spec++; |
| 805 | if (! jt_read_integer(&spec, &info->crop_height)) |
| 806 | return FALSE; |
| 807 | if (*spec == 'f' || *spec == 'F') { |
| 808 | spec++; |
| 809 | info->crop_height_set = JCROP_FORCE; |
| 810 | } else |
| 811 | info->crop_height_set = JCROP_POS; |
| 812 | } |
| 813 | if (*spec == '+' || *spec == '-') { |
| 814 | /* fetch xoffset */ |
| 815 | info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| 816 | spec++; |
| 817 | if (! jt_read_integer(&spec, &info->crop_xoffset)) |
| 818 | return FALSE; |
| 819 | } |
| 820 | if (*spec == '+' || *spec == '-') { |
| 821 | /* fetch yoffset */ |
| 822 | info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; |
| 823 | spec++; |
| 824 | if (! jt_read_integer(&spec, &info->crop_yoffset)) |
| 825 | return FALSE; |
| 826 | } |
| 827 | /* We had better have gotten to the end of the string. */ |
| 828 | if (*spec != '\0') |
| 829 | return FALSE; |
| 830 | info->crop = TRUE; |
| 831 | return TRUE; |
| 832 | } |
| 833 | |
| 834 | |
| 835 | /* Trim off any partial iMCUs on the indicated destination edge */ |
| 836 | |
| 837 | LOCAL(void) |
| 838 | trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width) |
| 839 | { |
| 840 | JDIMENSION MCU_cols; |
| 841 | |
| 842 | MCU_cols = info->output_width / info->iMCU_sample_width; |
| 843 | if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == |
| 844 | full_width / info->iMCU_sample_width) |
| 845 | info->output_width = MCU_cols * info->iMCU_sample_width; |
| 846 | } |
| 847 | |
| 848 | LOCAL(void) |
| 849 | trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height) |
| 850 | { |
| 851 | JDIMENSION MCU_rows; |
| 852 | |
| 853 | MCU_rows = info->output_height / info->iMCU_sample_height; |
| 854 | if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == |
| 855 | full_height / info->iMCU_sample_height) |
| 856 | info->output_height = MCU_rows * info->iMCU_sample_height; |
| 857 | } |
| 858 | |
| 859 | |
| 860 | /* Request any required workspace. |
| 861 | * |
| 862 | * This routine figures out the size that the output image will be |
| 863 | * (which implies that all the transform parameters must be set before |
| 864 | * it is called). |
| 865 | * |
| 866 | * We allocate the workspace virtual arrays from the source decompression |
| 867 | * object, so that all the arrays (both the original data and the workspace) |
| 868 | * will be taken into account while making memory management decisions. |
| 869 | * Hence, this routine must be called after jpeg_read_header (which reads |
| 870 | * the image dimensions) and before jpeg_read_coefficients (which realizes |
| 871 | * the source's virtual arrays). |
| 872 | * |
| 873 | * This function returns FALSE right away if -perfect is given |
| 874 | * and transformation is not perfect. Otherwise returns TRUE. |
| 875 | */ |
| 876 | |
| 877 | GLOBAL(boolean) |
| 878 | jtransform_request_workspace (j_decompress_ptr srcinfo, |
| 879 | jpeg_transform_info *info) |
| 880 | { |
| 881 | jvirt_barray_ptr *coef_arrays; |
| 882 | boolean need_workspace, transpose_it; |
| 883 | jpeg_component_info *compptr; |
| 884 | JDIMENSION xoffset, yoffset; |
| 885 | JDIMENSION width_in_iMCUs, height_in_iMCUs; |
| 886 | JDIMENSION width_in_blocks, height_in_blocks; |
| 887 | int ci, h_samp_factor, v_samp_factor; |
| 888 | |
| 889 | /* Determine number of components in output image */ |
| 890 | if (info->force_grayscale && |
| 891 | srcinfo->jpeg_color_space == JCS_YCbCr && |
| 892 | srcinfo->num_components == 3) |
| 893 | /* We'll only process the first component */ |
| 894 | info->num_components = 1; |
| 895 | else |
| 896 | /* Process all the components */ |
| 897 | info->num_components = srcinfo->num_components; |
| 898 | |
| 899 | /* Compute output image dimensions and related values. */ |
| 900 | jpeg_core_output_dimensions(srcinfo); |
| 901 | |
| 902 | /* Return right away if -perfect is given and transformation is not perfect. |
| 903 | */ |
| 904 | if (info->perfect) { |
| 905 | if (info->num_components == 1) { |
| 906 | if (!jtransform_perfect_transform(srcinfo->output_width, |
| 907 | srcinfo->output_height, |
| 908 | srcinfo->min_DCT_h_scaled_size, |
| 909 | srcinfo->min_DCT_v_scaled_size, |
| 910 | info->transform)) |
| 911 | return FALSE; |
| 912 | } else { |
| 913 | if (!jtransform_perfect_transform(srcinfo->output_width, |
| 914 | srcinfo->output_height, |
| 915 | srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size, |
| 916 | srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size, |
| 917 | info->transform)) |
| 918 | return FALSE; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | /* If there is only one output component, force the iMCU size to be 1; |
| 923 | * else use the source iMCU size. (This allows us to do the right thing |
| 924 | * when reducing color to grayscale, and also provides a handy way of |
| 925 | * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) |
| 926 | */ |
| 927 | switch (info->transform) { |
| 928 | case JXFORM_TRANSPOSE: |
| 929 | case JXFORM_TRANSVERSE: |
| 930 | case JXFORM_ROT_90: |
| 931 | case JXFORM_ROT_270: |
| 932 | info->output_width = srcinfo->output_height; |
| 933 | info->output_height = srcinfo->output_width; |
| 934 | if (info->num_components == 1) { |
| 935 | info->iMCU_sample_width = srcinfo->min_DCT_v_scaled_size; |
| 936 | info->iMCU_sample_height = srcinfo->min_DCT_h_scaled_size; |
| 937 | } else { |
| 938 | info->iMCU_sample_width = |
| 939 | srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| 940 | info->iMCU_sample_height = |
| 941 | srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| 942 | } |
| 943 | break; |
| 944 | default: |
| 945 | info->output_width = srcinfo->output_width; |
| 946 | info->output_height = srcinfo->output_height; |
| 947 | if (info->num_components == 1) { |
| 948 | info->iMCU_sample_width = srcinfo->min_DCT_h_scaled_size; |
| 949 | info->iMCU_sample_height = srcinfo->min_DCT_v_scaled_size; |
| 950 | } else { |
| 951 | info->iMCU_sample_width = |
| 952 | srcinfo->max_h_samp_factor * srcinfo->min_DCT_h_scaled_size; |
| 953 | info->iMCU_sample_height = |
| 954 | srcinfo->max_v_samp_factor * srcinfo->min_DCT_v_scaled_size; |
| 955 | } |
| 956 | break; |
| 957 | } |
| 958 | |
| 959 | /* If cropping has been requested, compute the crop area's position and |
| 960 | * dimensions, ensuring that its upper left corner falls at an iMCU boundary. |
| 961 | */ |
| 962 | if (info->crop) { |
| 963 | /* Insert default values for unset crop parameters */ |
| 964 | if (info->crop_xoffset_set == JCROP_UNSET) |
| 965 | info->crop_xoffset = 0; /* default to +0 */ |
| 966 | if (info->crop_yoffset_set == JCROP_UNSET) |
| 967 | info->crop_yoffset = 0; /* default to +0 */ |
| 968 | if (info->crop_xoffset >= info->output_width || |
| 969 | info->crop_yoffset >= info->output_height) |
| 970 | ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| 971 | if (info->crop_width_set == JCROP_UNSET) |
| 972 | info->crop_width = info->output_width - info->crop_xoffset; |
| 973 | if (info->crop_height_set == JCROP_UNSET) |
| 974 | info->crop_height = info->output_height - info->crop_yoffset; |
| 975 | /* Ensure parameters are valid */ |
| 976 | if (info->crop_width <= 0 || info->crop_width > info->output_width || |
| 977 | info->crop_height <= 0 || info->crop_height > info->output_height || |
| 978 | info->crop_xoffset > info->output_width - info->crop_width || |
| 979 | info->crop_yoffset > info->output_height - info->crop_height) |
| 980 | ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); |
| 981 | /* Convert negative crop offsets into regular offsets */ |
| 982 | if (info->crop_xoffset_set == JCROP_NEG) |
| 983 | xoffset = info->output_width - info->crop_width - info->crop_xoffset; |
| 984 | else |
| 985 | xoffset = info->crop_xoffset; |
| 986 | if (info->crop_yoffset_set == JCROP_NEG) |
| 987 | yoffset = info->output_height - info->crop_height - info->crop_yoffset; |
| 988 | else |
| 989 | yoffset = info->crop_yoffset; |
| 990 | /* Now adjust so that upper left corner falls at an iMCU boundary */ |
| 991 | if (info->crop_width_set == JCROP_FORCE) |
| 992 | info->output_width = info->crop_width; |
| 993 | else |
| 994 | info->output_width = |
| 995 | info->crop_width + (xoffset % info->iMCU_sample_width); |
| 996 | if (info->crop_height_set == JCROP_FORCE) |
| 997 | info->output_height = info->crop_height; |
| 998 | else |
| 999 | info->output_height = |
| 1000 | info->crop_height + (yoffset % info->iMCU_sample_height); |
| 1001 | /* Save x/y offsets measured in iMCUs */ |
| 1002 | info->x_crop_offset = xoffset / info->iMCU_sample_width; |
| 1003 | info->y_crop_offset = yoffset / info->iMCU_sample_height; |
| 1004 | } else { |
| 1005 | info->x_crop_offset = 0; |
| 1006 | info->y_crop_offset = 0; |
| 1007 | } |
| 1008 | |
| 1009 | /* Figure out whether we need workspace arrays, |
| 1010 | * and if so whether they are transposed relative to the source. |
| 1011 | */ |
| 1012 | need_workspace = FALSE; |
| 1013 | transpose_it = FALSE; |
| 1014 | switch (info->transform) { |
| 1015 | case JXFORM_NONE: |
| 1016 | if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| 1017 | need_workspace = TRUE; |
| 1018 | /* No workspace needed if neither cropping nor transforming */ |
| 1019 | break; |
| 1020 | case JXFORM_FLIP_H: |
| 1021 | if (info->trim) |
| 1022 | trim_right_edge(info, srcinfo->output_width); |
| 1023 | if (info->y_crop_offset != 0) |
| 1024 | need_workspace = TRUE; |
| 1025 | /* do_flip_h_no_crop doesn't need a workspace array */ |
| 1026 | break; |
| 1027 | case JXFORM_FLIP_V: |
| 1028 | if (info->trim) |
| 1029 | trim_bottom_edge(info, srcinfo->output_height); |
| 1030 | /* Need workspace arrays having same dimensions as source image. */ |
| 1031 | need_workspace = TRUE; |
| 1032 | break; |
| 1033 | case JXFORM_TRANSPOSE: |
| 1034 | /* transpose does NOT have to trim anything */ |
| 1035 | /* Need workspace arrays having transposed dimensions. */ |
| 1036 | need_workspace = TRUE; |
| 1037 | transpose_it = TRUE; |
| 1038 | break; |
| 1039 | case JXFORM_TRANSVERSE: |
| 1040 | if (info->trim) { |
| 1041 | trim_right_edge(info, srcinfo->output_height); |
| 1042 | trim_bottom_edge(info, srcinfo->output_width); |
| 1043 | } |
| 1044 | /* Need workspace arrays having transposed dimensions. */ |
| 1045 | need_workspace = TRUE; |
| 1046 | transpose_it = TRUE; |
| 1047 | break; |
| 1048 | case JXFORM_ROT_90: |
| 1049 | if (info->trim) |
| 1050 | trim_right_edge(info, srcinfo->output_height); |
| 1051 | /* Need workspace arrays having transposed dimensions. */ |
| 1052 | need_workspace = TRUE; |
| 1053 | transpose_it = TRUE; |
| 1054 | break; |
| 1055 | case JXFORM_ROT_180: |
| 1056 | if (info->trim) { |
| 1057 | trim_right_edge(info, srcinfo->output_width); |
| 1058 | trim_bottom_edge(info, srcinfo->output_height); |
| 1059 | } |
| 1060 | /* Need workspace arrays having same dimensions as source image. */ |
| 1061 | need_workspace = TRUE; |
| 1062 | break; |
| 1063 | case JXFORM_ROT_270: |
| 1064 | if (info->trim) |
| 1065 | trim_bottom_edge(info, srcinfo->output_width); |
| 1066 | /* Need workspace arrays having transposed dimensions. */ |
| 1067 | need_workspace = TRUE; |
| 1068 | transpose_it = TRUE; |
| 1069 | break; |
| 1070 | } |
| 1071 | |
| 1072 | /* Allocate workspace if needed. |
| 1073 | * Note that we allocate arrays padded out to the next iMCU boundary, |
| 1074 | * so that transform routines need not worry about missing edge blocks. |
| 1075 | */ |
| 1076 | if (need_workspace) { |
| 1077 | coef_arrays = (jvirt_barray_ptr *) |
| 1078 | (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE, |
| 1079 | SIZEOF(jvirt_barray_ptr) * info->num_components); |
| 1080 | width_in_iMCUs = (JDIMENSION) |
| 1081 | jdiv_round_up((long) info->output_width, |
| 1082 | (long) info->iMCU_sample_width); |
| 1083 | height_in_iMCUs = (JDIMENSION) |
| 1084 | jdiv_round_up((long) info->output_height, |
| 1085 | (long) info->iMCU_sample_height); |
| 1086 | for (ci = 0; ci < info->num_components; ci++) { |
| 1087 | compptr = srcinfo->comp_info + ci; |
| 1088 | if (info->num_components == 1) { |
| 1089 | /* we're going to force samp factors to 1x1 in this case */ |
| 1090 | h_samp_factor = v_samp_factor = 1; |
| 1091 | } else if (transpose_it) { |
| 1092 | h_samp_factor = compptr->v_samp_factor; |
| 1093 | v_samp_factor = compptr->h_samp_factor; |
| 1094 | } else { |
| 1095 | h_samp_factor = compptr->h_samp_factor; |
| 1096 | v_samp_factor = compptr->v_samp_factor; |
| 1097 | } |
| 1098 | width_in_blocks = width_in_iMCUs * h_samp_factor; |
| 1099 | height_in_blocks = height_in_iMCUs * v_samp_factor; |
| 1100 | coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) |
| 1101 | ((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE, |
| 1102 | width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor); |
| 1103 | } |
| 1104 | info->workspace_coef_arrays = coef_arrays; |
| 1105 | } else |
| 1106 | info->workspace_coef_arrays = NULL; |
| 1107 | |
| 1108 | return TRUE; |
| 1109 | } |
| 1110 | |
| 1111 | |
| 1112 | /* Transpose destination image parameters */ |
| 1113 | |
| 1114 | LOCAL(void) |
| 1115 | transpose_critical_parameters (j_compress_ptr dstinfo) |
| 1116 | { |
| 1117 | int tblno, i, j, ci, itemp; |
| 1118 | jpeg_component_info *compptr; |
| 1119 | JQUANT_TBL *qtblptr; |
| 1120 | JDIMENSION jtemp; |
| 1121 | UINT16 qtemp; |
| 1122 | |
| 1123 | /* Transpose image dimensions */ |
| 1124 | jtemp = dstinfo->image_width; |
| 1125 | dstinfo->image_width = dstinfo->image_height; |
| 1126 | dstinfo->image_height = jtemp; |
| 1127 | itemp = dstinfo->min_DCT_h_scaled_size; |
| 1128 | dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; |
| 1129 | dstinfo->min_DCT_v_scaled_size = itemp; |
| 1130 | |
| 1131 | /* Transpose sampling factors */ |
| 1132 | for (ci = 0; ci < dstinfo->num_components; ci++) { |
| 1133 | compptr = dstinfo->comp_info + ci; |
| 1134 | itemp = compptr->h_samp_factor; |
| 1135 | compptr->h_samp_factor = compptr->v_samp_factor; |
| 1136 | compptr->v_samp_factor = itemp; |
| 1137 | } |
| 1138 | |
| 1139 | /* Transpose quantization tables */ |
| 1140 | for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { |
| 1141 | qtblptr = dstinfo->quant_tbl_ptrs[tblno]; |
| 1142 | if (qtblptr != NULL) { |
| 1143 | for (i = 0; i < DCTSIZE; i++) { |
| 1144 | for (j = 0; j < i; j++) { |
| 1145 | qtemp = qtblptr->quantval[i*DCTSIZE+j]; |
| 1146 | qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i]; |
| 1147 | qtblptr->quantval[j*DCTSIZE+i] = qtemp; |
| 1148 | } |
| 1149 | } |
| 1150 | } |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | |
| 1155 | /* Adjust Exif image parameters. |
| 1156 | * |
| 1157 | * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. |
| 1158 | */ |
| 1159 | |
| 1160 | LOCAL(void) |
| 1161 | adjust_exif_parameters (JOCTET FAR * data, unsigned int length, |
| 1162 | JDIMENSION new_width, JDIMENSION new_height) |
| 1163 | { |
| 1164 | boolean is_motorola; /* Flag for byte order */ |
| 1165 | unsigned int number_of_tags, tagnum; |
| 1166 | unsigned int firstoffset, offset; |
| 1167 | JDIMENSION new_value; |
| 1168 | |
| 1169 | if (length < 12) return; /* Length of an IFD entry */ |
| 1170 | |
| 1171 | /* Discover byte order */ |
| 1172 | if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49) |
| 1173 | is_motorola = FALSE; |
| 1174 | else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D) |
| 1175 | is_motorola = TRUE; |
| 1176 | else |
| 1177 | return; |
| 1178 | |
| 1179 | /* Check Tag Mark */ |
| 1180 | if (is_motorola) { |
| 1181 | if (GETJOCTET(data[2]) != 0) return; |
| 1182 | if (GETJOCTET(data[3]) != 0x2A) return; |
| 1183 | } else { |
| 1184 | if (GETJOCTET(data[3]) != 0) return; |
| 1185 | if (GETJOCTET(data[2]) != 0x2A) return; |
| 1186 | } |
| 1187 | |
| 1188 | /* Get first IFD offset (offset to IFD0) */ |
| 1189 | if (is_motorola) { |
| 1190 | if (GETJOCTET(data[4]) != 0) return; |
| 1191 | if (GETJOCTET(data[5]) != 0) return; |
| 1192 | firstoffset = GETJOCTET(data[6]); |
| 1193 | firstoffset <<= 8; |
| 1194 | firstoffset += GETJOCTET(data[7]); |
| 1195 | } else { |
| 1196 | if (GETJOCTET(data[7]) != 0) return; |
| 1197 | if (GETJOCTET(data[6]) != 0) return; |
| 1198 | firstoffset = GETJOCTET(data[5]); |
| 1199 | firstoffset <<= 8; |
| 1200 | firstoffset += GETJOCTET(data[4]); |
| 1201 | } |
| 1202 | if (firstoffset > length - 2) return; /* check end of data segment */ |
| 1203 | |
| 1204 | /* Get the number of directory entries contained in this IFD */ |
| 1205 | if (is_motorola) { |
| 1206 | number_of_tags = GETJOCTET(data[firstoffset]); |
| 1207 | number_of_tags <<= 8; |
| 1208 | number_of_tags += GETJOCTET(data[firstoffset+1]); |
| 1209 | } else { |
| 1210 | number_of_tags = GETJOCTET(data[firstoffset+1]); |
| 1211 | number_of_tags <<= 8; |
| 1212 | number_of_tags += GETJOCTET(data[firstoffset]); |
| 1213 | } |
| 1214 | if (number_of_tags == 0) return; |
| 1215 | firstoffset += 2; |
| 1216 | |
| 1217 | /* Search for ExifSubIFD offset Tag in IFD0 */ |
| 1218 | for (;;) { |
| 1219 | if (firstoffset > length - 12) return; /* check end of data segment */ |
| 1220 | /* Get Tag number */ |
| 1221 | if (is_motorola) { |
| 1222 | tagnum = GETJOCTET(data[firstoffset]); |
| 1223 | tagnum <<= 8; |
| 1224 | tagnum += GETJOCTET(data[firstoffset+1]); |
| 1225 | } else { |
| 1226 | tagnum = GETJOCTET(data[firstoffset+1]); |
| 1227 | tagnum <<= 8; |
| 1228 | tagnum += GETJOCTET(data[firstoffset]); |
| 1229 | } |
| 1230 | if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ |
| 1231 | if (--number_of_tags == 0) return; |
| 1232 | firstoffset += 12; |
| 1233 | } |
| 1234 | |
| 1235 | /* Get the ExifSubIFD offset */ |
| 1236 | if (is_motorola) { |
| 1237 | if (GETJOCTET(data[firstoffset+8]) != 0) return; |
| 1238 | if (GETJOCTET(data[firstoffset+9]) != 0) return; |
| 1239 | offset = GETJOCTET(data[firstoffset+10]); |
| 1240 | offset <<= 8; |
| 1241 | offset += GETJOCTET(data[firstoffset+11]); |
| 1242 | } else { |
| 1243 | if (GETJOCTET(data[firstoffset+11]) != 0) return; |
| 1244 | if (GETJOCTET(data[firstoffset+10]) != 0) return; |
| 1245 | offset = GETJOCTET(data[firstoffset+9]); |
| 1246 | offset <<= 8; |
| 1247 | offset += GETJOCTET(data[firstoffset+8]); |
| 1248 | } |
| 1249 | if (offset > length - 2) return; /* check end of data segment */ |
| 1250 | |
| 1251 | /* Get the number of directory entries contained in this SubIFD */ |
| 1252 | if (is_motorola) { |
| 1253 | number_of_tags = GETJOCTET(data[offset]); |
| 1254 | number_of_tags <<= 8; |
| 1255 | number_of_tags += GETJOCTET(data[offset+1]); |
| 1256 | } else { |
| 1257 | number_of_tags = GETJOCTET(data[offset+1]); |
| 1258 | number_of_tags <<= 8; |
| 1259 | number_of_tags += GETJOCTET(data[offset]); |
| 1260 | } |
| 1261 | if (number_of_tags < 2) return; |
| 1262 | offset += 2; |
| 1263 | |
| 1264 | /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ |
| 1265 | do { |
| 1266 | if (offset > length - 12) return; /* check end of data segment */ |
| 1267 | /* Get Tag number */ |
| 1268 | if (is_motorola) { |
| 1269 | tagnum = GETJOCTET(data[offset]); |
| 1270 | tagnum <<= 8; |
| 1271 | tagnum += GETJOCTET(data[offset+1]); |
| 1272 | } else { |
| 1273 | tagnum = GETJOCTET(data[offset+1]); |
| 1274 | tagnum <<= 8; |
| 1275 | tagnum += GETJOCTET(data[offset]); |
| 1276 | } |
| 1277 | if (tagnum == 0xA002 || tagnum == 0xA003) { |
| 1278 | if (tagnum == 0xA002) |
| 1279 | new_value = new_width; /* ExifImageWidth Tag */ |
| 1280 | else |
| 1281 | new_value = new_height; /* ExifImageHeight Tag */ |
| 1282 | if (is_motorola) { |
| 1283 | data[offset+2] = 0; /* Format = unsigned long (4 octets) */ |
| 1284 | data[offset+3] = 4; |
| 1285 | data[offset+4] = 0; /* Number Of Components = 1 */ |
| 1286 | data[offset+5] = 0; |
| 1287 | data[offset+6] = 0; |
| 1288 | data[offset+7] = 1; |
| 1289 | data[offset+8] = 0; |
| 1290 | data[offset+9] = 0; |
| 1291 | data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF); |
| 1292 | data[offset+11] = (JOCTET)(new_value & 0xFF); |
| 1293 | } else { |
| 1294 | data[offset+2] = 4; /* Format = unsigned long (4 octets) */ |
| 1295 | data[offset+3] = 0; |
| 1296 | data[offset+4] = 1; /* Number Of Components = 1 */ |
| 1297 | data[offset+5] = 0; |
| 1298 | data[offset+6] = 0; |
| 1299 | data[offset+7] = 0; |
| 1300 | data[offset+8] = (JOCTET)(new_value & 0xFF); |
| 1301 | data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF); |
| 1302 | data[offset+10] = 0; |
| 1303 | data[offset+11] = 0; |
| 1304 | } |
| 1305 | } |
| 1306 | offset += 12; |
| 1307 | } while (--number_of_tags); |
| 1308 | } |
| 1309 | |
| 1310 | |
| 1311 | /* Adjust output image parameters as needed. |
| 1312 | * |
| 1313 | * This must be called after jpeg_copy_critical_parameters() |
| 1314 | * and before jpeg_write_coefficients(). |
| 1315 | * |
| 1316 | * The return value is the set of virtual coefficient arrays to be written |
| 1317 | * (either the ones allocated by jtransform_request_workspace, or the |
| 1318 | * original source data arrays). The caller will need to pass this value |
| 1319 | * to jpeg_write_coefficients(). |
| 1320 | */ |
| 1321 | |
| 1322 | GLOBAL(jvirt_barray_ptr *) |
| 1323 | jtransform_adjust_parameters (j_decompress_ptr srcinfo, |
| 1324 | j_compress_ptr dstinfo, |
| 1325 | jvirt_barray_ptr *src_coef_arrays, |
| 1326 | jpeg_transform_info *info) |
| 1327 | { |
| 1328 | /* If force-to-grayscale is requested, adjust destination parameters */ |
| 1329 | if (info->force_grayscale) { |
| 1330 | /* First, ensure we have YCbCr or grayscale data, and that the source's |
| 1331 | * Y channel is full resolution. (No reasonable person would make Y |
| 1332 | * be less than full resolution, so actually coping with that case |
| 1333 | * isn't worth extra code space. But we check it to avoid crashing.) |
| 1334 | */ |
| 1335 | if (((dstinfo->jpeg_color_space == JCS_YCbCr && |
| 1336 | dstinfo->num_components == 3) || |
| 1337 | (dstinfo->jpeg_color_space == JCS_GRAYSCALE && |
| 1338 | dstinfo->num_components == 1)) && |
| 1339 | srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && |
| 1340 | srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { |
| 1341 | /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed |
| 1342 | * properly. Among other things, it sets the target h_samp_factor & |
| 1343 | * v_samp_factor to 1, which typically won't match the source. |
| 1344 | * We have to preserve the source's quantization table number, however. |
| 1345 | */ |
| 1346 | int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; |
| 1347 | jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); |
| 1348 | dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; |
| 1349 | } else { |
| 1350 | /* Sorry, can't do it */ |
| 1351 | ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); |
| 1352 | } |
| 1353 | } else if (info->num_components == 1) { |
| 1354 | /* For a single-component source, we force the destination sampling factors |
| 1355 | * to 1x1, with or without force_grayscale. This is useful because some |
| 1356 | * decoders choke on grayscale images with other sampling factors. |
| 1357 | */ |
| 1358 | dstinfo->comp_info[0].h_samp_factor = 1; |
| 1359 | dstinfo->comp_info[0].v_samp_factor = 1; |
| 1360 | } |
| 1361 | |
| 1362 | /* Correct the destination's image dimensions as necessary |
| 1363 | * for rotate/flip, resize, and crop operations. |
| 1364 | */ |
| 1365 | dstinfo->jpeg_width = info->output_width; |
| 1366 | dstinfo->jpeg_height = info->output_height; |
| 1367 | |
| 1368 | /* Transpose destination image parameters */ |
| 1369 | switch (info->transform) { |
| 1370 | case JXFORM_TRANSPOSE: |
| 1371 | case JXFORM_TRANSVERSE: |
| 1372 | case JXFORM_ROT_90: |
| 1373 | case JXFORM_ROT_270: |
| 1374 | transpose_critical_parameters(dstinfo); |
| 1375 | break; |
| 1376 | default: |
| 1377 | break; |
| 1378 | } |
| 1379 | |
| 1380 | /* Adjust Exif properties */ |
| 1381 | if (srcinfo->marker_list != NULL && |
| 1382 | srcinfo->marker_list->marker == JPEG_APP0+1 && |
| 1383 | srcinfo->marker_list->data_length >= 6 && |
| 1384 | GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 && |
| 1385 | GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 && |
| 1386 | GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 && |
| 1387 | GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 && |
| 1388 | GETJOCTET(srcinfo->marker_list->data[4]) == 0 && |
| 1389 | GETJOCTET(srcinfo->marker_list->data[5]) == 0) { |
| 1390 | /* Suppress output of JFIF marker */ |
| 1391 | dstinfo->write_JFIF_header = FALSE; |
| 1392 | /* Adjust Exif image parameters */ |
| 1393 | if (dstinfo->jpeg_width != srcinfo->image_width || |
| 1394 | dstinfo->jpeg_height != srcinfo->image_height) |
| 1395 | /* Align data segment to start of TIFF structure for parsing */ |
| 1396 | adjust_exif_parameters(srcinfo->marker_list->data + 6, |
| 1397 | srcinfo->marker_list->data_length - 6, |
| 1398 | dstinfo->jpeg_width, dstinfo->jpeg_height); |
| 1399 | } |
| 1400 | |
| 1401 | /* Return the appropriate output data set */ |
| 1402 | if (info->workspace_coef_arrays != NULL) |
| 1403 | return info->workspace_coef_arrays; |
| 1404 | return src_coef_arrays; |
| 1405 | } |
| 1406 | |
| 1407 | |
| 1408 | /* Execute the actual transformation, if any. |
| 1409 | * |
| 1410 | * This must be called *after* jpeg_write_coefficients, because it depends |
| 1411 | * on jpeg_write_coefficients to have computed subsidiary values such as |
| 1412 | * the per-component width and height fields in the destination object. |
| 1413 | * |
| 1414 | * Note that some transformations will modify the source data arrays! |
| 1415 | */ |
| 1416 | |
| 1417 | GLOBAL(void) |
| 1418 | jtransform_execute_transform (j_decompress_ptr srcinfo, |
| 1419 | j_compress_ptr dstinfo, |
| 1420 | jvirt_barray_ptr *src_coef_arrays, |
| 1421 | jpeg_transform_info *info) |
| 1422 | { |
| 1423 | jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; |
| 1424 | |
| 1425 | /* Note: conditions tested here should match those in switch statement |
| 1426 | * in jtransform_request_workspace() |
| 1427 | */ |
| 1428 | switch (info->transform) { |
| 1429 | case JXFORM_NONE: |
| 1430 | if (info->x_crop_offset != 0 || info->y_crop_offset != 0) |
| 1431 | do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1432 | src_coef_arrays, dst_coef_arrays); |
| 1433 | break; |
| 1434 | case JXFORM_FLIP_H: |
| 1435 | if (info->y_crop_offset != 0) |
| 1436 | do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1437 | src_coef_arrays, dst_coef_arrays); |
| 1438 | else |
| 1439 | do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, |
| 1440 | src_coef_arrays); |
| 1441 | break; |
| 1442 | case JXFORM_FLIP_V: |
| 1443 | do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1444 | src_coef_arrays, dst_coef_arrays); |
| 1445 | break; |
| 1446 | case JXFORM_TRANSPOSE: |
| 1447 | do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1448 | src_coef_arrays, dst_coef_arrays); |
| 1449 | break; |
| 1450 | case JXFORM_TRANSVERSE: |
| 1451 | do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1452 | src_coef_arrays, dst_coef_arrays); |
| 1453 | break; |
| 1454 | case JXFORM_ROT_90: |
| 1455 | do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1456 | src_coef_arrays, dst_coef_arrays); |
| 1457 | break; |
| 1458 | case JXFORM_ROT_180: |
| 1459 | do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1460 | src_coef_arrays, dst_coef_arrays); |
| 1461 | break; |
| 1462 | case JXFORM_ROT_270: |
| 1463 | do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, |
| 1464 | src_coef_arrays, dst_coef_arrays); |
| 1465 | break; |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | /* jtransform_perfect_transform |
| 1470 | * |
| 1471 | * Determine whether lossless transformation is perfectly |
| 1472 | * possible for a specified image and transformation. |
| 1473 | * |
| 1474 | * Inputs: |
| 1475 | * image_width, image_height: source image dimensions. |
| 1476 | * MCU_width, MCU_height: pixel dimensions of MCU. |
| 1477 | * transform: transformation identifier. |
| 1478 | * Parameter sources from initialized jpeg_struct |
| 1479 | * (after reading source header): |
| 1480 | * image_width = cinfo.image_width |
| 1481 | * image_height = cinfo.image_height |
| 1482 | * MCU_width = cinfo.max_h_samp_factor * cinfo.block_size |
| 1483 | * MCU_height = cinfo.max_v_samp_factor * cinfo.block_size |
| 1484 | * Result: |
| 1485 | * TRUE = perfect transformation possible |
| 1486 | * FALSE = perfect transformation not possible |
| 1487 | * (may use custom action then) |
| 1488 | */ |
| 1489 | |
| 1490 | GLOBAL(boolean) |
| 1491 | jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, |
| 1492 | int MCU_width, int MCU_height, |
| 1493 | JXFORM_CODE transform) |
| 1494 | { |
| 1495 | boolean result = TRUE; /* initialize TRUE */ |
| 1496 | |
| 1497 | switch (transform) { |
| 1498 | case JXFORM_FLIP_H: |
| 1499 | case JXFORM_ROT_270: |
| 1500 | if (image_width % (JDIMENSION) MCU_width) |
| 1501 | result = FALSE; |
| 1502 | break; |
| 1503 | case JXFORM_FLIP_V: |
| 1504 | case JXFORM_ROT_90: |
| 1505 | if (image_height % (JDIMENSION) MCU_height) |
| 1506 | result = FALSE; |
| 1507 | break; |
| 1508 | case JXFORM_TRANSVERSE: |
| 1509 | case JXFORM_ROT_180: |
| 1510 | if (image_width % (JDIMENSION) MCU_width) |
| 1511 | result = FALSE; |
| 1512 | if (image_height % (JDIMENSION) MCU_height) |
| 1513 | result = FALSE; |
| 1514 | break; |
| 1515 | default: |
| 1516 | break; |
| 1517 | } |
| 1518 | |
| 1519 | return result; |
| 1520 | } |
| 1521 | |
| 1522 | #endif /* TRANSFORMS_SUPPORTED */ |
| 1523 | |
| 1524 | |
| 1525 | /* Setup decompression object to save desired markers in memory. |
| 1526 | * This must be called before jpeg_read_header() to have the desired effect. |
| 1527 | */ |
| 1528 | |
| 1529 | GLOBAL(void) |
| 1530 | jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option) |
| 1531 | { |
| 1532 | #ifdef SAVE_MARKERS_SUPPORTED |
| 1533 | int m; |
| 1534 | |
| 1535 | /* Save comments except under NONE option */ |
| 1536 | if (option != JCOPYOPT_NONE) { |
| 1537 | jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); |
| 1538 | } |
| 1539 | /* Save all types of APPn markers iff ALL option */ |
| 1540 | if (option == JCOPYOPT_ALL) { |
| 1541 | for (m = 0; m < 16; m++) |
| 1542 | jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); |
| 1543 | } |
| 1544 | #endif /* SAVE_MARKERS_SUPPORTED */ |
| 1545 | } |
| 1546 | |
| 1547 | /* Copy markers saved in the given source object to the destination object. |
| 1548 | * This should be called just after jpeg_start_compress() or |
| 1549 | * jpeg_write_coefficients(). |
| 1550 | * Note that those routines will have written the SOI, and also the |
| 1551 | * JFIF APP0 or Adobe APP14 markers if selected. |
| 1552 | */ |
| 1553 | |
| 1554 | GLOBAL(void) |
| 1555 | jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, |
| 1556 | JCOPY_OPTION option) |
| 1557 | { |
| 1558 | jpeg_saved_marker_ptr marker; |
| 1559 | |
| 1560 | /* In the current implementation, we don't actually need to examine the |
| 1561 | * option flag here; we just copy everything that got saved. |
| 1562 | * But to avoid confusion, we do not output JFIF and Adobe APP14 markers |
| 1563 | * if the encoder library already wrote one. |
| 1564 | */ |
| 1565 | for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { |
| 1566 | if (dstinfo->write_JFIF_header && |
| 1567 | marker->marker == JPEG_APP0 && |
| 1568 | marker->data_length >= 5 && |
| 1569 | GETJOCTET(marker->data[0]) == 0x4A && |
| 1570 | GETJOCTET(marker->data[1]) == 0x46 && |
| 1571 | GETJOCTET(marker->data[2]) == 0x49 && |
| 1572 | GETJOCTET(marker->data[3]) == 0x46 && |
| 1573 | GETJOCTET(marker->data[4]) == 0) |
| 1574 | continue; /* reject duplicate JFIF */ |
| 1575 | if (dstinfo->write_Adobe_marker && |
| 1576 | marker->marker == JPEG_APP0+14 && |
| 1577 | marker->data_length >= 5 && |
| 1578 | GETJOCTET(marker->data[0]) == 0x41 && |
| 1579 | GETJOCTET(marker->data[1]) == 0x64 && |
| 1580 | GETJOCTET(marker->data[2]) == 0x6F && |
| 1581 | GETJOCTET(marker->data[3]) == 0x62 && |
| 1582 | GETJOCTET(marker->data[4]) == 0x65) |
| 1583 | continue; /* reject duplicate Adobe */ |
| 1584 | #ifdef NEED_FAR_POINTERS |
| 1585 | /* We could use jpeg_write_marker if the data weren't FAR... */ |
| 1586 | { |
| 1587 | unsigned int i; |
| 1588 | jpeg_write_m_header(dstinfo, marker->marker, marker->data_length); |
| 1589 | for (i = 0; i < marker->data_length; i++) |
| 1590 | jpeg_write_m_byte(dstinfo, marker->data[i]); |
| 1591 | } |
| 1592 | #else |
| 1593 | jpeg_write_marker(dstinfo, marker->marker, |
| 1594 | marker->data, marker->data_length); |
| 1595 | #endif |
| 1596 | } |
| 1597 | } |