Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame] | 1 | /* |
| 2 | * jfdctint.c |
| 3 | * |
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane. |
| 5 | * Modification developed 2003-2009 by Guido Vollbeding. |
| 6 | * This file is part of the Independent JPEG Group's software. |
| 7 | * For conditions of distribution and use, see the accompanying README file. |
| 8 | * |
| 9 | * This file contains a slow-but-accurate integer implementation of the |
| 10 | * forward DCT (Discrete Cosine Transform). |
| 11 | * |
| 12 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
| 13 | * on each column. Direct algorithms are also available, but they are |
| 14 | * much more complex and seem not to be any faster when reduced to code. |
| 15 | * |
| 16 | * This implementation is based on an algorithm described in |
| 17 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
| 18 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
| 19 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
| 20 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
| 21 | * We use their alternate method with 12 multiplies and 32 adds. |
| 22 | * The advantage of this method is that no data path contains more than one |
| 23 | * multiplication; this allows a very simple and accurate implementation in |
| 24 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
| 25 | * |
| 26 | * We also provide FDCT routines with various input sample block sizes for |
| 27 | * direct resolution reduction or enlargement and for direct resolving the |
| 28 | * common 2x1 and 1x2 subsampling cases without additional resampling: NxN |
| 29 | * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block. |
| 30 | * |
| 31 | * For N<8 we fill the remaining block coefficients with zero. |
| 32 | * For N>8 we apply a partial N-point FDCT on the input samples, computing |
| 33 | * just the lower 8 frequency coefficients and discarding the rest. |
| 34 | * |
| 35 | * We must scale the output coefficients of the N-point FDCT appropriately |
| 36 | * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling |
| 37 | * is folded into the constant multipliers (pass 2) and/or final/initial |
| 38 | * shifting. |
| 39 | * |
| 40 | * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases |
| 41 | * since there would be too many additional constants to pre-calculate. |
| 42 | */ |
| 43 | |
| 44 | #define JPEG_INTERNALS |
| 45 | #include "jinclude.h" |
| 46 | #include "jpeglib.h" |
| 47 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
| 48 | |
| 49 | #ifdef DCT_ISLOW_SUPPORTED |
| 50 | |
| 51 | |
| 52 | /* |
| 53 | * This module is specialized to the case DCTSIZE = 8. |
| 54 | */ |
| 55 | |
| 56 | #if DCTSIZE != 8 |
| 57 | Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
| 58 | #endif |
| 59 | |
| 60 | |
| 61 | /* |
| 62 | * The poop on this scaling stuff is as follows: |
| 63 | * |
| 64 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
| 65 | * larger than the true DCT outputs. The final outputs are therefore |
| 66 | * a factor of N larger than desired; since N=8 this can be cured by |
| 67 | * a simple right shift at the end of the algorithm. The advantage of |
| 68 | * this arrangement is that we save two multiplications per 1-D DCT, |
| 69 | * because the y0 and y4 outputs need not be divided by sqrt(N). |
| 70 | * In the IJG code, this factor of 8 is removed by the quantization step |
| 71 | * (in jcdctmgr.c), NOT in this module. |
| 72 | * |
| 73 | * We have to do addition and subtraction of the integer inputs, which |
| 74 | * is no problem, and multiplication by fractional constants, which is |
| 75 | * a problem to do in integer arithmetic. We multiply all the constants |
| 76 | * by CONST_SCALE and convert them to integer constants (thus retaining |
| 77 | * CONST_BITS bits of precision in the constants). After doing a |
| 78 | * multiplication we have to divide the product by CONST_SCALE, with proper |
| 79 | * rounding, to produce the correct output. This division can be done |
| 80 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
| 81 | * as long as possible so that partial sums can be added together with |
| 82 | * full fractional precision. |
| 83 | * |
| 84 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
| 85 | * they are represented to better-than-integral precision. These outputs |
| 86 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
| 87 | * with the recommended scaling. (For 12-bit sample data, the intermediate |
| 88 | * array is INT32 anyway.) |
| 89 | * |
| 90 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
| 91 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
| 92 | * shows that the values given below are the most effective. |
| 93 | */ |
| 94 | |
| 95 | #if BITS_IN_JSAMPLE == 8 |
| 96 | #define CONST_BITS 13 |
| 97 | #define PASS1_BITS 2 |
| 98 | #else |
| 99 | #define CONST_BITS 13 |
| 100 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
| 101 | #endif |
| 102 | |
| 103 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
| 104 | * causing a lot of useless floating-point operations at run time. |
| 105 | * To get around this we use the following pre-calculated constants. |
| 106 | * If you change CONST_BITS you may want to add appropriate values. |
| 107 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
| 108 | */ |
| 109 | |
| 110 | #if CONST_BITS == 13 |
| 111 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
| 112 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
| 113 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
| 114 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
| 115 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
| 116 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
| 117 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
| 118 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
| 119 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
| 120 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
| 121 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
| 122 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
| 123 | #else |
| 124 | #define FIX_0_298631336 FIX(0.298631336) |
| 125 | #define FIX_0_390180644 FIX(0.390180644) |
| 126 | #define FIX_0_541196100 FIX(0.541196100) |
| 127 | #define FIX_0_765366865 FIX(0.765366865) |
| 128 | #define FIX_0_899976223 FIX(0.899976223) |
| 129 | #define FIX_1_175875602 FIX(1.175875602) |
| 130 | #define FIX_1_501321110 FIX(1.501321110) |
| 131 | #define FIX_1_847759065 FIX(1.847759065) |
| 132 | #define FIX_1_961570560 FIX(1.961570560) |
| 133 | #define FIX_2_053119869 FIX(2.053119869) |
| 134 | #define FIX_2_562915447 FIX(2.562915447) |
| 135 | #define FIX_3_072711026 FIX(3.072711026) |
| 136 | #endif |
| 137 | |
| 138 | |
| 139 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
| 140 | * For 8-bit samples with the recommended scaling, all the variable |
| 141 | * and constant values involved are no more than 16 bits wide, so a |
| 142 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
| 143 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
| 144 | */ |
| 145 | |
| 146 | #if BITS_IN_JSAMPLE == 8 |
| 147 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
| 148 | #else |
| 149 | #define MULTIPLY(var,const) ((var) * (const)) |
| 150 | #endif |
| 151 | |
| 152 | |
| 153 | /* |
| 154 | * Perform the forward DCT on one block of samples. |
| 155 | */ |
| 156 | |
| 157 | GLOBAL(void) |
| 158 | jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 159 | { |
| 160 | INT32 tmp0, tmp1, tmp2, tmp3; |
| 161 | INT32 tmp10, tmp11, tmp12, tmp13; |
| 162 | INT32 z1; |
| 163 | DCTELEM *dataptr; |
| 164 | JSAMPROW elemptr; |
| 165 | int ctr; |
| 166 | SHIFT_TEMPS |
| 167 | |
| 168 | /* Pass 1: process rows. */ |
| 169 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 170 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 171 | |
| 172 | dataptr = data; |
| 173 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| 174 | elemptr = sample_data[ctr] + start_col; |
| 175 | |
| 176 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 177 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 178 | */ |
| 179 | |
| 180 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
| 181 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
| 182 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
| 183 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
| 184 | |
| 185 | tmp10 = tmp0 + tmp3; |
| 186 | tmp12 = tmp0 - tmp3; |
| 187 | tmp11 = tmp1 + tmp2; |
| 188 | tmp13 = tmp1 - tmp2; |
| 189 | |
| 190 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
| 191 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
| 192 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
| 193 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
| 194 | |
| 195 | /* Apply unsigned->signed conversion */ |
| 196 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
| 197 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
| 198 | |
| 199 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 200 | /* Add fudge factor here for final descale. */ |
| 201 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| 202 | dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
| 203 | CONST_BITS-PASS1_BITS); |
| 204 | dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
| 205 | CONST_BITS-PASS1_BITS); |
| 206 | |
| 207 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 208 | * cK represents sqrt(2) * cos(K*pi/16). |
| 209 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 210 | */ |
| 211 | |
| 212 | tmp10 = tmp0 + tmp3; |
| 213 | tmp11 = tmp1 + tmp2; |
| 214 | tmp12 = tmp0 + tmp2; |
| 215 | tmp13 = tmp1 + tmp3; |
| 216 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 217 | /* Add fudge factor here for final descale. */ |
| 218 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
| 219 | |
| 220 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 221 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 222 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 223 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 224 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 225 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 226 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 227 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 228 | |
| 229 | tmp12 += z1; |
| 230 | tmp13 += z1; |
| 231 | |
| 232 | dataptr[1] = (DCTELEM) |
| 233 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
| 234 | dataptr[3] = (DCTELEM) |
| 235 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
| 236 | dataptr[5] = (DCTELEM) |
| 237 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
| 238 | dataptr[7] = (DCTELEM) |
| 239 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
| 240 | |
| 241 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 242 | } |
| 243 | |
| 244 | /* Pass 2: process columns. |
| 245 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 246 | * by an overall factor of 8. |
| 247 | */ |
| 248 | |
| 249 | dataptr = data; |
| 250 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 251 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 252 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 253 | */ |
| 254 | |
| 255 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
| 256 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
| 257 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
| 258 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
| 259 | |
| 260 | /* Add fudge factor here for final descale. */ |
| 261 | tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
| 262 | tmp12 = tmp0 - tmp3; |
| 263 | tmp11 = tmp1 + tmp2; |
| 264 | tmp13 = tmp1 - tmp2; |
| 265 | |
| 266 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
| 267 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
| 268 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
| 269 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
| 270 | |
| 271 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
| 272 | dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
| 273 | |
| 274 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 275 | /* Add fudge factor here for final descale. */ |
| 276 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 277 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 278 | RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
| 279 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 280 | RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
| 281 | |
| 282 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 283 | * cK represents sqrt(2) * cos(K*pi/16). |
| 284 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 285 | */ |
| 286 | |
| 287 | tmp10 = tmp0 + tmp3; |
| 288 | tmp11 = tmp1 + tmp2; |
| 289 | tmp12 = tmp0 + tmp2; |
| 290 | tmp13 = tmp1 + tmp3; |
| 291 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 292 | /* Add fudge factor here for final descale. */ |
| 293 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 294 | |
| 295 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 296 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 297 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 298 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 299 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 300 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 301 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 302 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 303 | |
| 304 | tmp12 += z1; |
| 305 | tmp13 += z1; |
| 306 | |
| 307 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 308 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
| 309 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 310 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
| 311 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 312 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
| 313 | dataptr[DCTSIZE*7] = (DCTELEM) |
| 314 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
| 315 | |
| 316 | dataptr++; /* advance pointer to next column */ |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | #ifdef DCT_SCALING_SUPPORTED |
| 321 | |
| 322 | |
| 323 | /* |
| 324 | * Perform the forward DCT on a 7x7 sample block. |
| 325 | */ |
| 326 | |
| 327 | GLOBAL(void) |
| 328 | jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 329 | { |
| 330 | INT32 tmp0, tmp1, tmp2, tmp3; |
| 331 | INT32 tmp10, tmp11, tmp12; |
| 332 | INT32 z1, z2, z3; |
| 333 | DCTELEM *dataptr; |
| 334 | JSAMPROW elemptr; |
| 335 | int ctr; |
| 336 | SHIFT_TEMPS |
| 337 | |
| 338 | /* Pre-zero output coefficient block. */ |
| 339 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 340 | |
| 341 | /* Pass 1: process rows. */ |
| 342 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 343 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 344 | /* cK represents sqrt(2) * cos(K*pi/14). */ |
| 345 | |
| 346 | dataptr = data; |
| 347 | for (ctr = 0; ctr < 7; ctr++) { |
| 348 | elemptr = sample_data[ctr] + start_col; |
| 349 | |
| 350 | /* Even part */ |
| 351 | |
| 352 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
| 353 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
| 354 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
| 355 | tmp3 = GETJSAMPLE(elemptr[3]); |
| 356 | |
| 357 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
| 358 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
| 359 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
| 360 | |
| 361 | z1 = tmp0 + tmp2; |
| 362 | /* Apply unsigned->signed conversion */ |
| 363 | dataptr[0] = (DCTELEM) |
| 364 | ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
| 365 | tmp3 += tmp3; |
| 366 | z1 -= tmp3; |
| 367 | z1 -= tmp3; |
| 368 | z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
| 369 | z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
| 370 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
| 371 | dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
| 372 | z1 -= z2; |
| 373 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
| 374 | dataptr[4] = (DCTELEM) |
| 375 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
| 376 | CONST_BITS-PASS1_BITS); |
| 377 | dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
| 378 | |
| 379 | /* Odd part */ |
| 380 | |
| 381 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
| 382 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
| 383 | tmp0 = tmp1 - tmp2; |
| 384 | tmp1 += tmp2; |
| 385 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
| 386 | tmp1 += tmp2; |
| 387 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
| 388 | tmp0 += tmp3; |
| 389 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
| 390 | |
| 391 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
| 392 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
| 393 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
| 394 | |
| 395 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 396 | } |
| 397 | |
| 398 | /* Pass 2: process columns. |
| 399 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 400 | * by an overall factor of 8. |
| 401 | * We must also scale the output by (8/7)**2 = 64/49, which we fold |
| 402 | * into the constant multipliers: |
| 403 | * cK now represents sqrt(2) * cos(K*pi/14) * 64/49. |
| 404 | */ |
| 405 | |
| 406 | dataptr = data; |
| 407 | for (ctr = 0; ctr < 7; ctr++) { |
| 408 | /* Even part */ |
| 409 | |
| 410 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
| 411 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
| 412 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
| 413 | tmp3 = dataptr[DCTSIZE*3]; |
| 414 | |
| 415 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
| 416 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
| 417 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
| 418 | |
| 419 | z1 = tmp0 + tmp2; |
| 420 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 421 | DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
| 422 | CONST_BITS+PASS1_BITS); |
| 423 | tmp3 += tmp3; |
| 424 | z1 -= tmp3; |
| 425 | z1 -= tmp3; |
| 426 | z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
| 427 | z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
| 428 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
| 429 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS); |
| 430 | z1 -= z2; |
| 431 | z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
| 432 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 433 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
| 434 | CONST_BITS+PASS1_BITS); |
| 435 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS); |
| 436 | |
| 437 | /* Odd part */ |
| 438 | |
| 439 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
| 440 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
| 441 | tmp0 = tmp1 - tmp2; |
| 442 | tmp1 += tmp2; |
| 443 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
| 444 | tmp1 += tmp2; |
| 445 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
| 446 | tmp0 += tmp3; |
| 447 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
| 448 | |
| 449 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS); |
| 450 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS); |
| 451 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS); |
| 452 | |
| 453 | dataptr++; /* advance pointer to next column */ |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | |
| 458 | /* |
| 459 | * Perform the forward DCT on a 6x6 sample block. |
| 460 | */ |
| 461 | |
| 462 | GLOBAL(void) |
| 463 | jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 464 | { |
| 465 | INT32 tmp0, tmp1, tmp2; |
| 466 | INT32 tmp10, tmp11, tmp12; |
| 467 | DCTELEM *dataptr; |
| 468 | JSAMPROW elemptr; |
| 469 | int ctr; |
| 470 | SHIFT_TEMPS |
| 471 | |
| 472 | /* Pre-zero output coefficient block. */ |
| 473 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 474 | |
| 475 | /* Pass 1: process rows. */ |
| 476 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 477 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 478 | /* cK represents sqrt(2) * cos(K*pi/12). */ |
| 479 | |
| 480 | dataptr = data; |
| 481 | for (ctr = 0; ctr < 6; ctr++) { |
| 482 | elemptr = sample_data[ctr] + start_col; |
| 483 | |
| 484 | /* Even part */ |
| 485 | |
| 486 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
| 487 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
| 488 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
| 489 | |
| 490 | tmp10 = tmp0 + tmp2; |
| 491 | tmp12 = tmp0 - tmp2; |
| 492 | |
| 493 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
| 494 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
| 495 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
| 496 | |
| 497 | /* Apply unsigned->signed conversion */ |
| 498 | dataptr[0] = (DCTELEM) |
| 499 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
| 500 | dataptr[2] = (DCTELEM) |
| 501 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
| 502 | CONST_BITS-PASS1_BITS); |
| 503 | dataptr[4] = (DCTELEM) |
| 504 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
| 505 | CONST_BITS-PASS1_BITS); |
| 506 | |
| 507 | /* Odd part */ |
| 508 | |
| 509 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
| 510 | CONST_BITS-PASS1_BITS); |
| 511 | |
| 512 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
| 513 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
| 514 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
| 515 | |
| 516 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 517 | } |
| 518 | |
| 519 | /* Pass 2: process columns. |
| 520 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 521 | * by an overall factor of 8. |
| 522 | * We must also scale the output by (8/6)**2 = 16/9, which we fold |
| 523 | * into the constant multipliers: |
| 524 | * cK now represents sqrt(2) * cos(K*pi/12) * 16/9. |
| 525 | */ |
| 526 | |
| 527 | dataptr = data; |
| 528 | for (ctr = 0; ctr < 6; ctr++) { |
| 529 | /* Even part */ |
| 530 | |
| 531 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
| 532 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
| 533 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
| 534 | |
| 535 | tmp10 = tmp0 + tmp2; |
| 536 | tmp12 = tmp0 - tmp2; |
| 537 | |
| 538 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
| 539 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
| 540 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
| 541 | |
| 542 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 543 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
| 544 | CONST_BITS+PASS1_BITS); |
| 545 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 546 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
| 547 | CONST_BITS+PASS1_BITS); |
| 548 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 549 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
| 550 | CONST_BITS+PASS1_BITS); |
| 551 | |
| 552 | /* Odd part */ |
| 553 | |
| 554 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
| 555 | |
| 556 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 557 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
| 558 | CONST_BITS+PASS1_BITS); |
| 559 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 560 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
| 561 | CONST_BITS+PASS1_BITS); |
| 562 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 563 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
| 564 | CONST_BITS+PASS1_BITS); |
| 565 | |
| 566 | dataptr++; /* advance pointer to next column */ |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | |
| 571 | /* |
| 572 | * Perform the forward DCT on a 5x5 sample block. |
| 573 | */ |
| 574 | |
| 575 | GLOBAL(void) |
| 576 | jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 577 | { |
| 578 | INT32 tmp0, tmp1, tmp2; |
| 579 | INT32 tmp10, tmp11; |
| 580 | DCTELEM *dataptr; |
| 581 | JSAMPROW elemptr; |
| 582 | int ctr; |
| 583 | SHIFT_TEMPS |
| 584 | |
| 585 | /* Pre-zero output coefficient block. */ |
| 586 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 587 | |
| 588 | /* Pass 1: process rows. */ |
| 589 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 590 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 591 | /* We scale the results further by 2 as part of output adaption */ |
| 592 | /* scaling for different DCT size. */ |
| 593 | /* cK represents sqrt(2) * cos(K*pi/10). */ |
| 594 | |
| 595 | dataptr = data; |
| 596 | for (ctr = 0; ctr < 5; ctr++) { |
| 597 | elemptr = sample_data[ctr] + start_col; |
| 598 | |
| 599 | /* Even part */ |
| 600 | |
| 601 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
| 602 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
| 603 | tmp2 = GETJSAMPLE(elemptr[2]); |
| 604 | |
| 605 | tmp10 = tmp0 + tmp1; |
| 606 | tmp11 = tmp0 - tmp1; |
| 607 | |
| 608 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
| 609 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
| 610 | |
| 611 | /* Apply unsigned->signed conversion */ |
| 612 | dataptr[0] = (DCTELEM) |
| 613 | ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
| 614 | tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
| 615 | tmp10 -= tmp2 << 2; |
| 616 | tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
| 617 | dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1); |
| 618 | dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1); |
| 619 | |
| 620 | /* Odd part */ |
| 621 | |
| 622 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
| 623 | |
| 624 | dataptr[1] = (DCTELEM) |
| 625 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
| 626 | CONST_BITS-PASS1_BITS-1); |
| 627 | dataptr[3] = (DCTELEM) |
| 628 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
| 629 | CONST_BITS-PASS1_BITS-1); |
| 630 | |
| 631 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 632 | } |
| 633 | |
| 634 | /* Pass 2: process columns. |
| 635 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 636 | * by an overall factor of 8. |
| 637 | * We must also scale the output by (8/5)**2 = 64/25, which we partially |
| 638 | * fold into the constant multipliers (other part was done in pass 1): |
| 639 | * cK now represents sqrt(2) * cos(K*pi/10) * 32/25. |
| 640 | */ |
| 641 | |
| 642 | dataptr = data; |
| 643 | for (ctr = 0; ctr < 5; ctr++) { |
| 644 | /* Even part */ |
| 645 | |
| 646 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
| 647 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
| 648 | tmp2 = dataptr[DCTSIZE*2]; |
| 649 | |
| 650 | tmp10 = tmp0 + tmp1; |
| 651 | tmp11 = tmp0 - tmp1; |
| 652 | |
| 653 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
| 654 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
| 655 | |
| 656 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 657 | DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
| 658 | CONST_BITS+PASS1_BITS); |
| 659 | tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
| 660 | tmp10 -= tmp2 << 2; |
| 661 | tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
| 662 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
| 663 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
| 664 | |
| 665 | /* Odd part */ |
| 666 | |
| 667 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
| 668 | |
| 669 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 670 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
| 671 | CONST_BITS+PASS1_BITS); |
| 672 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 673 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
| 674 | CONST_BITS+PASS1_BITS); |
| 675 | |
| 676 | dataptr++; /* advance pointer to next column */ |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | |
| 681 | /* |
| 682 | * Perform the forward DCT on a 4x4 sample block. |
| 683 | */ |
| 684 | |
| 685 | GLOBAL(void) |
| 686 | jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 687 | { |
| 688 | INT32 tmp0, tmp1; |
| 689 | INT32 tmp10, tmp11; |
| 690 | DCTELEM *dataptr; |
| 691 | JSAMPROW elemptr; |
| 692 | int ctr; |
| 693 | SHIFT_TEMPS |
| 694 | |
| 695 | /* Pre-zero output coefficient block. */ |
| 696 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 697 | |
| 698 | /* Pass 1: process rows. */ |
| 699 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 700 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 701 | /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */ |
| 702 | /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
| 703 | |
| 704 | dataptr = data; |
| 705 | for (ctr = 0; ctr < 4; ctr++) { |
| 706 | elemptr = sample_data[ctr] + start_col; |
| 707 | |
| 708 | /* Even part */ |
| 709 | |
| 710 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
| 711 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
| 712 | |
| 713 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
| 714 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
| 715 | |
| 716 | /* Apply unsigned->signed conversion */ |
| 717 | dataptr[0] = (DCTELEM) |
| 718 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
| 719 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2)); |
| 720 | |
| 721 | /* Odd part */ |
| 722 | |
| 723 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 724 | /* Add fudge factor here for final descale. */ |
| 725 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-3); |
| 726 | |
| 727 | dataptr[1] = (DCTELEM) |
| 728 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 729 | CONST_BITS-PASS1_BITS-2); |
| 730 | dataptr[3] = (DCTELEM) |
| 731 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 732 | CONST_BITS-PASS1_BITS-2); |
| 733 | |
| 734 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 735 | } |
| 736 | |
| 737 | /* Pass 2: process columns. |
| 738 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 739 | * by an overall factor of 8. |
| 740 | */ |
| 741 | |
| 742 | dataptr = data; |
| 743 | for (ctr = 0; ctr < 4; ctr++) { |
| 744 | /* Even part */ |
| 745 | |
| 746 | /* Add fudge factor here for final descale. */ |
| 747 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
| 748 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
| 749 | |
| 750 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
| 751 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
| 752 | |
| 753 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
| 754 | dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
| 755 | |
| 756 | /* Odd part */ |
| 757 | |
| 758 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 759 | /* Add fudge factor here for final descale. */ |
| 760 | tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 761 | |
| 762 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 763 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 764 | CONST_BITS+PASS1_BITS); |
| 765 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 766 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 767 | CONST_BITS+PASS1_BITS); |
| 768 | |
| 769 | dataptr++; /* advance pointer to next column */ |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | |
| 774 | /* |
| 775 | * Perform the forward DCT on a 3x3 sample block. |
| 776 | */ |
| 777 | |
| 778 | GLOBAL(void) |
| 779 | jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 780 | { |
| 781 | INT32 tmp0, tmp1, tmp2; |
| 782 | DCTELEM *dataptr; |
| 783 | JSAMPROW elemptr; |
| 784 | int ctr; |
| 785 | SHIFT_TEMPS |
| 786 | |
| 787 | /* Pre-zero output coefficient block. */ |
| 788 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 789 | |
| 790 | /* Pass 1: process rows. */ |
| 791 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 792 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 793 | /* We scale the results further by 2**2 as part of output adaption */ |
| 794 | /* scaling for different DCT size. */ |
| 795 | /* cK represents sqrt(2) * cos(K*pi/6). */ |
| 796 | |
| 797 | dataptr = data; |
| 798 | for (ctr = 0; ctr < 3; ctr++) { |
| 799 | elemptr = sample_data[ctr] + start_col; |
| 800 | |
| 801 | /* Even part */ |
| 802 | |
| 803 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
| 804 | tmp1 = GETJSAMPLE(elemptr[1]); |
| 805 | |
| 806 | tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
| 807 | |
| 808 | /* Apply unsigned->signed conversion */ |
| 809 | dataptr[0] = (DCTELEM) |
| 810 | ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
| 811 | dataptr[2] = (DCTELEM) |
| 812 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
| 813 | CONST_BITS-PASS1_BITS-2); |
| 814 | |
| 815 | /* Odd part */ |
| 816 | |
| 817 | dataptr[1] = (DCTELEM) |
| 818 | DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
| 819 | CONST_BITS-PASS1_BITS-2); |
| 820 | |
| 821 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 822 | } |
| 823 | |
| 824 | /* Pass 2: process columns. |
| 825 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 826 | * by an overall factor of 8. |
| 827 | * We must also scale the output by (8/3)**2 = 64/9, which we partially |
| 828 | * fold into the constant multipliers (other part was done in pass 1): |
| 829 | * cK now represents sqrt(2) * cos(K*pi/6) * 16/9. |
| 830 | */ |
| 831 | |
| 832 | dataptr = data; |
| 833 | for (ctr = 0; ctr < 3; ctr++) { |
| 834 | /* Even part */ |
| 835 | |
| 836 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
| 837 | tmp1 = dataptr[DCTSIZE*1]; |
| 838 | |
| 839 | tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
| 840 | |
| 841 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 842 | DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
| 843 | CONST_BITS+PASS1_BITS); |
| 844 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 845 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
| 846 | CONST_BITS+PASS1_BITS); |
| 847 | |
| 848 | /* Odd part */ |
| 849 | |
| 850 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 851 | DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
| 852 | CONST_BITS+PASS1_BITS); |
| 853 | |
| 854 | dataptr++; /* advance pointer to next column */ |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | |
| 859 | /* |
| 860 | * Perform the forward DCT on a 2x2 sample block. |
| 861 | */ |
| 862 | |
| 863 | GLOBAL(void) |
| 864 | jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 865 | { |
| 866 | INT32 tmp0, tmp1, tmp2, tmp3; |
| 867 | JSAMPROW elemptr; |
| 868 | |
| 869 | /* Pre-zero output coefficient block. */ |
| 870 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 871 | |
| 872 | /* Pass 1: process rows. */ |
| 873 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 874 | |
| 875 | /* Row 0 */ |
| 876 | elemptr = sample_data[0] + start_col; |
| 877 | |
| 878 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
| 879 | tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
| 880 | |
| 881 | /* Row 1 */ |
| 882 | elemptr = sample_data[1] + start_col; |
| 883 | |
| 884 | tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
| 885 | tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
| 886 | |
| 887 | /* Pass 2: process columns. |
| 888 | * We leave the results scaled up by an overall factor of 8. |
| 889 | * We must also scale the output by (8/2)**2 = 2**4. |
| 890 | */ |
| 891 | |
| 892 | /* Column 0 */ |
| 893 | /* Apply unsigned->signed conversion */ |
| 894 | data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4); |
| 895 | data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4); |
| 896 | |
| 897 | /* Column 1 */ |
| 898 | data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4); |
| 899 | data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4); |
| 900 | } |
| 901 | |
| 902 | |
| 903 | /* |
| 904 | * Perform the forward DCT on a 1x1 sample block. |
| 905 | */ |
| 906 | |
| 907 | GLOBAL(void) |
| 908 | jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 909 | { |
| 910 | /* Pre-zero output coefficient block. */ |
| 911 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 912 | |
| 913 | /* We leave the result scaled up by an overall factor of 8. */ |
| 914 | /* We must also scale the output by (8/1)**2 = 2**6. */ |
| 915 | /* Apply unsigned->signed conversion */ |
| 916 | data[0] = (DCTELEM) |
| 917 | ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6); |
| 918 | } |
| 919 | |
| 920 | |
| 921 | /* |
| 922 | * Perform the forward DCT on a 9x9 sample block. |
| 923 | */ |
| 924 | |
| 925 | GLOBAL(void) |
| 926 | jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 927 | { |
| 928 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
| 929 | INT32 tmp10, tmp11, tmp12, tmp13; |
| 930 | INT32 z1, z2; |
| 931 | DCTELEM workspace[8]; |
| 932 | DCTELEM *dataptr; |
| 933 | DCTELEM *wsptr; |
| 934 | JSAMPROW elemptr; |
| 935 | int ctr; |
| 936 | SHIFT_TEMPS |
| 937 | |
| 938 | /* Pass 1: process rows. */ |
| 939 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 940 | /* we scale the results further by 2 as part of output adaption */ |
| 941 | /* scaling for different DCT size. */ |
| 942 | /* cK represents sqrt(2) * cos(K*pi/18). */ |
| 943 | |
| 944 | dataptr = data; |
| 945 | ctr = 0; |
| 946 | for (;;) { |
| 947 | elemptr = sample_data[ctr] + start_col; |
| 948 | |
| 949 | /* Even part */ |
| 950 | |
| 951 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]); |
| 952 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]); |
| 953 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]); |
| 954 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]); |
| 955 | tmp4 = GETJSAMPLE(elemptr[4]); |
| 956 | |
| 957 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]); |
| 958 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]); |
| 959 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]); |
| 960 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]); |
| 961 | |
| 962 | z1 = tmp0 + tmp2 + tmp3; |
| 963 | z2 = tmp1 + tmp4; |
| 964 | /* Apply unsigned->signed conversion */ |
| 965 | dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1); |
| 966 | dataptr[6] = (DCTELEM) |
| 967 | DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */ |
| 968 | CONST_BITS-1); |
| 969 | z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */ |
| 970 | z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */ |
| 971 | dataptr[2] = (DCTELEM) |
| 972 | DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */ |
| 973 | + z1 + z2, CONST_BITS-1); |
| 974 | dataptr[4] = (DCTELEM) |
| 975 | DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */ |
| 976 | + z1 - z2, CONST_BITS-1); |
| 977 | |
| 978 | /* Odd part */ |
| 979 | |
| 980 | dataptr[3] = (DCTELEM) |
| 981 | DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */ |
| 982 | CONST_BITS-1); |
| 983 | |
| 984 | tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */ |
| 985 | tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */ |
| 986 | tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */ |
| 987 | |
| 988 | dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1); |
| 989 | |
| 990 | tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */ |
| 991 | |
| 992 | dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1); |
| 993 | dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1); |
| 994 | |
| 995 | ctr++; |
| 996 | |
| 997 | if (ctr != DCTSIZE) { |
| 998 | if (ctr == 9) |
| 999 | break; /* Done. */ |
| 1000 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1001 | } else |
| 1002 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1003 | } |
| 1004 | |
| 1005 | /* Pass 2: process columns. |
| 1006 | * We leave the results scaled up by an overall factor of 8. |
| 1007 | * We must also scale the output by (8/9)**2 = 64/81, which we partially |
| 1008 | * fold into the constant multipliers and final/initial shifting: |
| 1009 | * cK now represents sqrt(2) * cos(K*pi/18) * 128/81. |
| 1010 | */ |
| 1011 | |
| 1012 | dataptr = data; |
| 1013 | wsptr = workspace; |
| 1014 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1015 | /* Even part */ |
| 1016 | |
| 1017 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0]; |
| 1018 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7]; |
| 1019 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6]; |
| 1020 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5]; |
| 1021 | tmp4 = dataptr[DCTSIZE*4]; |
| 1022 | |
| 1023 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0]; |
| 1024 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7]; |
| 1025 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6]; |
| 1026 | tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5]; |
| 1027 | |
| 1028 | z1 = tmp0 + tmp2 + tmp3; |
| 1029 | z2 = tmp1 + tmp4; |
| 1030 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1031 | DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */ |
| 1032 | CONST_BITS+2); |
| 1033 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 1034 | DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */ |
| 1035 | CONST_BITS+2); |
| 1036 | z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */ |
| 1037 | z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */ |
| 1038 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1039 | DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */ |
| 1040 | + z1 + z2, CONST_BITS+2); |
| 1041 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 1042 | DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */ |
| 1043 | + z1 - z2, CONST_BITS+2); |
| 1044 | |
| 1045 | /* Odd part */ |
| 1046 | |
| 1047 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 1048 | DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */ |
| 1049 | CONST_BITS+2); |
| 1050 | |
| 1051 | tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */ |
| 1052 | tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */ |
| 1053 | tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */ |
| 1054 | |
| 1055 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 1056 | DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2); |
| 1057 | |
| 1058 | tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */ |
| 1059 | |
| 1060 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 1061 | DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2); |
| 1062 | dataptr[DCTSIZE*7] = (DCTELEM) |
| 1063 | DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2); |
| 1064 | |
| 1065 | dataptr++; /* advance pointer to next column */ |
| 1066 | wsptr++; /* advance pointer to next column */ |
| 1067 | } |
| 1068 | } |
| 1069 | |
| 1070 | |
| 1071 | /* |
| 1072 | * Perform the forward DCT on a 10x10 sample block. |
| 1073 | */ |
| 1074 | |
| 1075 | GLOBAL(void) |
| 1076 | jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1077 | { |
| 1078 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
| 1079 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| 1080 | DCTELEM workspace[8*2]; |
| 1081 | DCTELEM *dataptr; |
| 1082 | DCTELEM *wsptr; |
| 1083 | JSAMPROW elemptr; |
| 1084 | int ctr; |
| 1085 | SHIFT_TEMPS |
| 1086 | |
| 1087 | /* Pass 1: process rows. */ |
| 1088 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 1089 | /* we scale the results further by 2 as part of output adaption */ |
| 1090 | /* scaling for different DCT size. */ |
| 1091 | /* cK represents sqrt(2) * cos(K*pi/20). */ |
| 1092 | |
| 1093 | dataptr = data; |
| 1094 | ctr = 0; |
| 1095 | for (;;) { |
| 1096 | elemptr = sample_data[ctr] + start_col; |
| 1097 | |
| 1098 | /* Even part */ |
| 1099 | |
| 1100 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
| 1101 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
| 1102 | tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
| 1103 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
| 1104 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
| 1105 | |
| 1106 | tmp10 = tmp0 + tmp4; |
| 1107 | tmp13 = tmp0 - tmp4; |
| 1108 | tmp11 = tmp1 + tmp3; |
| 1109 | tmp14 = tmp1 - tmp3; |
| 1110 | |
| 1111 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
| 1112 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
| 1113 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
| 1114 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
| 1115 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
| 1116 | |
| 1117 | /* Apply unsigned->signed conversion */ |
| 1118 | dataptr[0] = (DCTELEM) |
| 1119 | ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1); |
| 1120 | tmp12 += tmp12; |
| 1121 | dataptr[4] = (DCTELEM) |
| 1122 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
| 1123 | MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
| 1124 | CONST_BITS-1); |
| 1125 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
| 1126 | dataptr[2] = (DCTELEM) |
| 1127 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
| 1128 | CONST_BITS-1); |
| 1129 | dataptr[6] = (DCTELEM) |
| 1130 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
| 1131 | CONST_BITS-1); |
| 1132 | |
| 1133 | /* Odd part */ |
| 1134 | |
| 1135 | tmp10 = tmp0 + tmp4; |
| 1136 | tmp11 = tmp1 - tmp3; |
| 1137 | dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1); |
| 1138 | tmp2 <<= CONST_BITS; |
| 1139 | dataptr[1] = (DCTELEM) |
| 1140 | DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
| 1141 | MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
| 1142 | MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
| 1143 | MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
| 1144 | CONST_BITS-1); |
| 1145 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
| 1146 | MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
| 1147 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
| 1148 | (tmp11 << (CONST_BITS - 1)) - tmp2; |
| 1149 | dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1); |
| 1150 | dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1); |
| 1151 | |
| 1152 | ctr++; |
| 1153 | |
| 1154 | if (ctr != DCTSIZE) { |
| 1155 | if (ctr == 10) |
| 1156 | break; /* Done. */ |
| 1157 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1158 | } else |
| 1159 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1160 | } |
| 1161 | |
| 1162 | /* Pass 2: process columns. |
| 1163 | * We leave the results scaled up by an overall factor of 8. |
| 1164 | * We must also scale the output by (8/10)**2 = 16/25, which we partially |
| 1165 | * fold into the constant multipliers and final/initial shifting: |
| 1166 | * cK now represents sqrt(2) * cos(K*pi/20) * 32/25. |
| 1167 | */ |
| 1168 | |
| 1169 | dataptr = data; |
| 1170 | wsptr = workspace; |
| 1171 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1172 | /* Even part */ |
| 1173 | |
| 1174 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
| 1175 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
| 1176 | tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
| 1177 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
| 1178 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
| 1179 | |
| 1180 | tmp10 = tmp0 + tmp4; |
| 1181 | tmp13 = tmp0 - tmp4; |
| 1182 | tmp11 = tmp1 + tmp3; |
| 1183 | tmp14 = tmp1 - tmp3; |
| 1184 | |
| 1185 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
| 1186 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
| 1187 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
| 1188 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
| 1189 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
| 1190 | |
| 1191 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1192 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
| 1193 | CONST_BITS+2); |
| 1194 | tmp12 += tmp12; |
| 1195 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 1196 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
| 1197 | MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
| 1198 | CONST_BITS+2); |
| 1199 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
| 1200 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1201 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
| 1202 | CONST_BITS+2); |
| 1203 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 1204 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
| 1205 | CONST_BITS+2); |
| 1206 | |
| 1207 | /* Odd part */ |
| 1208 | |
| 1209 | tmp10 = tmp0 + tmp4; |
| 1210 | tmp11 = tmp1 - tmp3; |
| 1211 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 1212 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
| 1213 | CONST_BITS+2); |
| 1214 | tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
| 1215 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 1216 | DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
| 1217 | MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
| 1218 | MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
| 1219 | MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
| 1220 | CONST_BITS+2); |
| 1221 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
| 1222 | MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
| 1223 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
| 1224 | MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
| 1225 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2); |
| 1226 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2); |
| 1227 | |
| 1228 | dataptr++; /* advance pointer to next column */ |
| 1229 | wsptr++; /* advance pointer to next column */ |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | |
| 1234 | /* |
| 1235 | * Perform the forward DCT on an 11x11 sample block. |
| 1236 | */ |
| 1237 | |
| 1238 | GLOBAL(void) |
| 1239 | jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1240 | { |
| 1241 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| 1242 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| 1243 | INT32 z1, z2, z3; |
| 1244 | DCTELEM workspace[8*3]; |
| 1245 | DCTELEM *dataptr; |
| 1246 | DCTELEM *wsptr; |
| 1247 | JSAMPROW elemptr; |
| 1248 | int ctr; |
| 1249 | SHIFT_TEMPS |
| 1250 | |
| 1251 | /* Pass 1: process rows. */ |
| 1252 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 1253 | /* we scale the results further by 2 as part of output adaption */ |
| 1254 | /* scaling for different DCT size. */ |
| 1255 | /* cK represents sqrt(2) * cos(K*pi/22). */ |
| 1256 | |
| 1257 | dataptr = data; |
| 1258 | ctr = 0; |
| 1259 | for (;;) { |
| 1260 | elemptr = sample_data[ctr] + start_col; |
| 1261 | |
| 1262 | /* Even part */ |
| 1263 | |
| 1264 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]); |
| 1265 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]); |
| 1266 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]); |
| 1267 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]); |
| 1268 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]); |
| 1269 | tmp5 = GETJSAMPLE(elemptr[5]); |
| 1270 | |
| 1271 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]); |
| 1272 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]); |
| 1273 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]); |
| 1274 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]); |
| 1275 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]); |
| 1276 | |
| 1277 | /* Apply unsigned->signed conversion */ |
| 1278 | dataptr[0] = (DCTELEM) |
| 1279 | ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1); |
| 1280 | tmp5 += tmp5; |
| 1281 | tmp0 -= tmp5; |
| 1282 | tmp1 -= tmp5; |
| 1283 | tmp2 -= tmp5; |
| 1284 | tmp3 -= tmp5; |
| 1285 | tmp4 -= tmp5; |
| 1286 | z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */ |
| 1287 | MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */ |
| 1288 | z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */ |
| 1289 | z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */ |
| 1290 | dataptr[2] = (DCTELEM) |
| 1291 | DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */ |
| 1292 | - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */ |
| 1293 | CONST_BITS-1); |
| 1294 | dataptr[4] = (DCTELEM) |
| 1295 | DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */ |
| 1296 | - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */ |
| 1297 | + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */ |
| 1298 | CONST_BITS-1); |
| 1299 | dataptr[6] = (DCTELEM) |
| 1300 | DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */ |
| 1301 | - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */ |
| 1302 | CONST_BITS-1); |
| 1303 | |
| 1304 | /* Odd part */ |
| 1305 | |
| 1306 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */ |
| 1307 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */ |
| 1308 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */ |
| 1309 | tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */ |
| 1310 | + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */ |
| 1311 | tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */ |
| 1312 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */ |
| 1313 | tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */ |
| 1314 | - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */ |
| 1315 | tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */ |
| 1316 | tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */ |
| 1317 | + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */ |
| 1318 | tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */ |
| 1319 | - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */ |
| 1320 | |
| 1321 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1); |
| 1322 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1); |
| 1323 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1); |
| 1324 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1); |
| 1325 | |
| 1326 | ctr++; |
| 1327 | |
| 1328 | if (ctr != DCTSIZE) { |
| 1329 | if (ctr == 11) |
| 1330 | break; /* Done. */ |
| 1331 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1332 | } else |
| 1333 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1334 | } |
| 1335 | |
| 1336 | /* Pass 2: process columns. |
| 1337 | * We leave the results scaled up by an overall factor of 8. |
| 1338 | * We must also scale the output by (8/11)**2 = 64/121, which we partially |
| 1339 | * fold into the constant multipliers and final/initial shifting: |
| 1340 | * cK now represents sqrt(2) * cos(K*pi/22) * 128/121. |
| 1341 | */ |
| 1342 | |
| 1343 | dataptr = data; |
| 1344 | wsptr = workspace; |
| 1345 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1346 | /* Even part */ |
| 1347 | |
| 1348 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2]; |
| 1349 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1]; |
| 1350 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0]; |
| 1351 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7]; |
| 1352 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6]; |
| 1353 | tmp5 = dataptr[DCTSIZE*5]; |
| 1354 | |
| 1355 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2]; |
| 1356 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1]; |
| 1357 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0]; |
| 1358 | tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7]; |
| 1359 | tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6]; |
| 1360 | |
| 1361 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1362 | DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5, |
| 1363 | FIX(1.057851240)), /* 128/121 */ |
| 1364 | CONST_BITS+2); |
| 1365 | tmp5 += tmp5; |
| 1366 | tmp0 -= tmp5; |
| 1367 | tmp1 -= tmp5; |
| 1368 | tmp2 -= tmp5; |
| 1369 | tmp3 -= tmp5; |
| 1370 | tmp4 -= tmp5; |
| 1371 | z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */ |
| 1372 | MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */ |
| 1373 | z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */ |
| 1374 | z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */ |
| 1375 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1376 | DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */ |
| 1377 | - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */ |
| 1378 | CONST_BITS+2); |
| 1379 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 1380 | DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */ |
| 1381 | - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */ |
| 1382 | + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */ |
| 1383 | CONST_BITS+2); |
| 1384 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 1385 | DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */ |
| 1386 | - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */ |
| 1387 | CONST_BITS+2); |
| 1388 | |
| 1389 | /* Odd part */ |
| 1390 | |
| 1391 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */ |
| 1392 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */ |
| 1393 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */ |
| 1394 | tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */ |
| 1395 | + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */ |
| 1396 | tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */ |
| 1397 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */ |
| 1398 | tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */ |
| 1399 | - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */ |
| 1400 | tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */ |
| 1401 | tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */ |
| 1402 | + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */ |
| 1403 | tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */ |
| 1404 | - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */ |
| 1405 | |
| 1406 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
| 1407 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
| 1408 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
| 1409 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
| 1410 | |
| 1411 | dataptr++; /* advance pointer to next column */ |
| 1412 | wsptr++; /* advance pointer to next column */ |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | |
| 1417 | /* |
| 1418 | * Perform the forward DCT on a 12x12 sample block. |
| 1419 | */ |
| 1420 | |
| 1421 | GLOBAL(void) |
| 1422 | jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1423 | { |
| 1424 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| 1425 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| 1426 | DCTELEM workspace[8*4]; |
| 1427 | DCTELEM *dataptr; |
| 1428 | DCTELEM *wsptr; |
| 1429 | JSAMPROW elemptr; |
| 1430 | int ctr; |
| 1431 | SHIFT_TEMPS |
| 1432 | |
| 1433 | /* Pass 1: process rows. */ |
| 1434 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 1435 | /* cK represents sqrt(2) * cos(K*pi/24). */ |
| 1436 | |
| 1437 | dataptr = data; |
| 1438 | ctr = 0; |
| 1439 | for (;;) { |
| 1440 | elemptr = sample_data[ctr] + start_col; |
| 1441 | |
| 1442 | /* Even part */ |
| 1443 | |
| 1444 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
| 1445 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
| 1446 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
| 1447 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
| 1448 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
| 1449 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
| 1450 | |
| 1451 | tmp10 = tmp0 + tmp5; |
| 1452 | tmp13 = tmp0 - tmp5; |
| 1453 | tmp11 = tmp1 + tmp4; |
| 1454 | tmp14 = tmp1 - tmp4; |
| 1455 | tmp12 = tmp2 + tmp3; |
| 1456 | tmp15 = tmp2 - tmp3; |
| 1457 | |
| 1458 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
| 1459 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
| 1460 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
| 1461 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
| 1462 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
| 1463 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
| 1464 | |
| 1465 | /* Apply unsigned->signed conversion */ |
| 1466 | dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE); |
| 1467 | dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15); |
| 1468 | dataptr[4] = (DCTELEM) |
| 1469 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
| 1470 | CONST_BITS); |
| 1471 | dataptr[2] = (DCTELEM) |
| 1472 | DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
| 1473 | CONST_BITS); |
| 1474 | |
| 1475 | /* Odd part */ |
| 1476 | |
| 1477 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
| 1478 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
| 1479 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
| 1480 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
| 1481 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
| 1482 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
| 1483 | + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
| 1484 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
| 1485 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
| 1486 | + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
| 1487 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
| 1488 | - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
| 1489 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
| 1490 | - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
| 1491 | |
| 1492 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS); |
| 1493 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS); |
| 1494 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS); |
| 1495 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS); |
| 1496 | |
| 1497 | ctr++; |
| 1498 | |
| 1499 | if (ctr != DCTSIZE) { |
| 1500 | if (ctr == 12) |
| 1501 | break; /* Done. */ |
| 1502 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1503 | } else |
| 1504 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1505 | } |
| 1506 | |
| 1507 | /* Pass 2: process columns. |
| 1508 | * We leave the results scaled up by an overall factor of 8. |
| 1509 | * We must also scale the output by (8/12)**2 = 4/9, which we partially |
| 1510 | * fold into the constant multipliers and final shifting: |
| 1511 | * cK now represents sqrt(2) * cos(K*pi/24) * 8/9. |
| 1512 | */ |
| 1513 | |
| 1514 | dataptr = data; |
| 1515 | wsptr = workspace; |
| 1516 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1517 | /* Even part */ |
| 1518 | |
| 1519 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
| 1520 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
| 1521 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
| 1522 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
| 1523 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
| 1524 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
| 1525 | |
| 1526 | tmp10 = tmp0 + tmp5; |
| 1527 | tmp13 = tmp0 - tmp5; |
| 1528 | tmp11 = tmp1 + tmp4; |
| 1529 | tmp14 = tmp1 - tmp4; |
| 1530 | tmp12 = tmp2 + tmp3; |
| 1531 | tmp15 = tmp2 - tmp3; |
| 1532 | |
| 1533 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
| 1534 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
| 1535 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
| 1536 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
| 1537 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
| 1538 | tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
| 1539 | |
| 1540 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1541 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
| 1542 | CONST_BITS+1); |
| 1543 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 1544 | DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
| 1545 | CONST_BITS+1); |
| 1546 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 1547 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
| 1548 | CONST_BITS+1); |
| 1549 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1550 | DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
| 1551 | MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
| 1552 | CONST_BITS+1); |
| 1553 | |
| 1554 | /* Odd part */ |
| 1555 | |
| 1556 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
| 1557 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
| 1558 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
| 1559 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
| 1560 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
| 1561 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
| 1562 | + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
| 1563 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
| 1564 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
| 1565 | + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
| 1566 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
| 1567 | - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
| 1568 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
| 1569 | - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
| 1570 | |
| 1571 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1); |
| 1572 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1); |
| 1573 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1); |
| 1574 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1); |
| 1575 | |
| 1576 | dataptr++; /* advance pointer to next column */ |
| 1577 | wsptr++; /* advance pointer to next column */ |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | |
| 1582 | /* |
| 1583 | * Perform the forward DCT on a 13x13 sample block. |
| 1584 | */ |
| 1585 | |
| 1586 | GLOBAL(void) |
| 1587 | jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1588 | { |
| 1589 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
| 1590 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| 1591 | INT32 z1, z2; |
| 1592 | DCTELEM workspace[8*5]; |
| 1593 | DCTELEM *dataptr; |
| 1594 | DCTELEM *wsptr; |
| 1595 | JSAMPROW elemptr; |
| 1596 | int ctr; |
| 1597 | SHIFT_TEMPS |
| 1598 | |
| 1599 | /* Pass 1: process rows. */ |
| 1600 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 1601 | /* cK represents sqrt(2) * cos(K*pi/26). */ |
| 1602 | |
| 1603 | dataptr = data; |
| 1604 | ctr = 0; |
| 1605 | for (;;) { |
| 1606 | elemptr = sample_data[ctr] + start_col; |
| 1607 | |
| 1608 | /* Even part */ |
| 1609 | |
| 1610 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]); |
| 1611 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]); |
| 1612 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]); |
| 1613 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]); |
| 1614 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]); |
| 1615 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]); |
| 1616 | tmp6 = GETJSAMPLE(elemptr[6]); |
| 1617 | |
| 1618 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]); |
| 1619 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]); |
| 1620 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]); |
| 1621 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]); |
| 1622 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]); |
| 1623 | tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]); |
| 1624 | |
| 1625 | /* Apply unsigned->signed conversion */ |
| 1626 | dataptr[0] = (DCTELEM) |
| 1627 | (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE); |
| 1628 | tmp6 += tmp6; |
| 1629 | tmp0 -= tmp6; |
| 1630 | tmp1 -= tmp6; |
| 1631 | tmp2 -= tmp6; |
| 1632 | tmp3 -= tmp6; |
| 1633 | tmp4 -= tmp6; |
| 1634 | tmp5 -= tmp6; |
| 1635 | dataptr[2] = (DCTELEM) |
| 1636 | DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */ |
| 1637 | MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */ |
| 1638 | MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */ |
| 1639 | MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */ |
| 1640 | MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */ |
| 1641 | MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */ |
| 1642 | CONST_BITS); |
| 1643 | z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */ |
| 1644 | MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */ |
| 1645 | MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */ |
| 1646 | z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */ |
| 1647 | MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */ |
| 1648 | MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */ |
| 1649 | |
| 1650 | dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS); |
| 1651 | dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS); |
| 1652 | |
| 1653 | /* Odd part */ |
| 1654 | |
| 1655 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */ |
| 1656 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */ |
| 1657 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */ |
| 1658 | MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */ |
| 1659 | tmp0 = tmp1 + tmp2 + tmp3 - |
| 1660 | MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */ |
| 1661 | MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */ |
| 1662 | tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */ |
| 1663 | MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */ |
| 1664 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */ |
| 1665 | tmp1 += tmp4 + tmp5 + |
| 1666 | MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */ |
| 1667 | MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */ |
| 1668 | tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */ |
| 1669 | tmp2 += tmp4 + tmp6 - |
| 1670 | MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */ |
| 1671 | MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */ |
| 1672 | tmp3 += tmp5 + tmp6 + |
| 1673 | MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */ |
| 1674 | MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */ |
| 1675 | |
| 1676 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
| 1677 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
| 1678 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
| 1679 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
| 1680 | |
| 1681 | ctr++; |
| 1682 | |
| 1683 | if (ctr != DCTSIZE) { |
| 1684 | if (ctr == 13) |
| 1685 | break; /* Done. */ |
| 1686 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1687 | } else |
| 1688 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1689 | } |
| 1690 | |
| 1691 | /* Pass 2: process columns. |
| 1692 | * We leave the results scaled up by an overall factor of 8. |
| 1693 | * We must also scale the output by (8/13)**2 = 64/169, which we partially |
| 1694 | * fold into the constant multipliers and final shifting: |
| 1695 | * cK now represents sqrt(2) * cos(K*pi/26) * 128/169. |
| 1696 | */ |
| 1697 | |
| 1698 | dataptr = data; |
| 1699 | wsptr = workspace; |
| 1700 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1701 | /* Even part */ |
| 1702 | |
| 1703 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4]; |
| 1704 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3]; |
| 1705 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2]; |
| 1706 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1]; |
| 1707 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0]; |
| 1708 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7]; |
| 1709 | tmp6 = dataptr[DCTSIZE*6]; |
| 1710 | |
| 1711 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4]; |
| 1712 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3]; |
| 1713 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2]; |
| 1714 | tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1]; |
| 1715 | tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0]; |
| 1716 | tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7]; |
| 1717 | |
| 1718 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1719 | DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6, |
| 1720 | FIX(0.757396450)), /* 128/169 */ |
| 1721 | CONST_BITS+1); |
| 1722 | tmp6 += tmp6; |
| 1723 | tmp0 -= tmp6; |
| 1724 | tmp1 -= tmp6; |
| 1725 | tmp2 -= tmp6; |
| 1726 | tmp3 -= tmp6; |
| 1727 | tmp4 -= tmp6; |
| 1728 | tmp5 -= tmp6; |
| 1729 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1730 | DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */ |
| 1731 | MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */ |
| 1732 | MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */ |
| 1733 | MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */ |
| 1734 | MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */ |
| 1735 | MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */ |
| 1736 | CONST_BITS+1); |
| 1737 | z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */ |
| 1738 | MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */ |
| 1739 | MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */ |
| 1740 | z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */ |
| 1741 | MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */ |
| 1742 | MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */ |
| 1743 | |
| 1744 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1); |
| 1745 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1); |
| 1746 | |
| 1747 | /* Odd part */ |
| 1748 | |
| 1749 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */ |
| 1750 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */ |
| 1751 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */ |
| 1752 | MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */ |
| 1753 | tmp0 = tmp1 + tmp2 + tmp3 - |
| 1754 | MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */ |
| 1755 | MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */ |
| 1756 | tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */ |
| 1757 | MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */ |
| 1758 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */ |
| 1759 | tmp1 += tmp4 + tmp5 + |
| 1760 | MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */ |
| 1761 | MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */ |
| 1762 | tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */ |
| 1763 | tmp2 += tmp4 + tmp6 - |
| 1764 | MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */ |
| 1765 | MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */ |
| 1766 | tmp3 += tmp5 + tmp6 + |
| 1767 | MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */ |
| 1768 | MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */ |
| 1769 | |
| 1770 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1); |
| 1771 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1); |
| 1772 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1); |
| 1773 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1); |
| 1774 | |
| 1775 | dataptr++; /* advance pointer to next column */ |
| 1776 | wsptr++; /* advance pointer to next column */ |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | |
| 1781 | /* |
| 1782 | * Perform the forward DCT on a 14x14 sample block. |
| 1783 | */ |
| 1784 | |
| 1785 | GLOBAL(void) |
| 1786 | jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1787 | { |
| 1788 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
| 1789 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| 1790 | DCTELEM workspace[8*6]; |
| 1791 | DCTELEM *dataptr; |
| 1792 | DCTELEM *wsptr; |
| 1793 | JSAMPROW elemptr; |
| 1794 | int ctr; |
| 1795 | SHIFT_TEMPS |
| 1796 | |
| 1797 | /* Pass 1: process rows. */ |
| 1798 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 1799 | /* cK represents sqrt(2) * cos(K*pi/28). */ |
| 1800 | |
| 1801 | dataptr = data; |
| 1802 | ctr = 0; |
| 1803 | for (;;) { |
| 1804 | elemptr = sample_data[ctr] + start_col; |
| 1805 | |
| 1806 | /* Even part */ |
| 1807 | |
| 1808 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
| 1809 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
| 1810 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
| 1811 | tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
| 1812 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
| 1813 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
| 1814 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
| 1815 | |
| 1816 | tmp10 = tmp0 + tmp6; |
| 1817 | tmp14 = tmp0 - tmp6; |
| 1818 | tmp11 = tmp1 + tmp5; |
| 1819 | tmp15 = tmp1 - tmp5; |
| 1820 | tmp12 = tmp2 + tmp4; |
| 1821 | tmp16 = tmp2 - tmp4; |
| 1822 | |
| 1823 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
| 1824 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
| 1825 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
| 1826 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
| 1827 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
| 1828 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
| 1829 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
| 1830 | |
| 1831 | /* Apply unsigned->signed conversion */ |
| 1832 | dataptr[0] = (DCTELEM) |
| 1833 | (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE); |
| 1834 | tmp13 += tmp13; |
| 1835 | dataptr[4] = (DCTELEM) |
| 1836 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
| 1837 | MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
| 1838 | MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
| 1839 | CONST_BITS); |
| 1840 | |
| 1841 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
| 1842 | |
| 1843 | dataptr[2] = (DCTELEM) |
| 1844 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
| 1845 | + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
| 1846 | CONST_BITS); |
| 1847 | dataptr[6] = (DCTELEM) |
| 1848 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
| 1849 | - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
| 1850 | CONST_BITS); |
| 1851 | |
| 1852 | /* Odd part */ |
| 1853 | |
| 1854 | tmp10 = tmp1 + tmp2; |
| 1855 | tmp11 = tmp5 - tmp4; |
| 1856 | dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6); |
| 1857 | tmp3 <<= CONST_BITS; |
| 1858 | tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
| 1859 | tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
| 1860 | tmp10 += tmp11 - tmp3; |
| 1861 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
| 1862 | MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
| 1863 | dataptr[5] = (DCTELEM) |
| 1864 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
| 1865 | + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
| 1866 | CONST_BITS); |
| 1867 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
| 1868 | MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
| 1869 | dataptr[3] = (DCTELEM) |
| 1870 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
| 1871 | - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
| 1872 | CONST_BITS); |
| 1873 | dataptr[1] = (DCTELEM) |
| 1874 | DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
| 1875 | MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
| 1876 | CONST_BITS); |
| 1877 | |
| 1878 | ctr++; |
| 1879 | |
| 1880 | if (ctr != DCTSIZE) { |
| 1881 | if (ctr == 14) |
| 1882 | break; /* Done. */ |
| 1883 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 1884 | } else |
| 1885 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 1886 | } |
| 1887 | |
| 1888 | /* Pass 2: process columns. |
| 1889 | * We leave the results scaled up by an overall factor of 8. |
| 1890 | * We must also scale the output by (8/14)**2 = 16/49, which we partially |
| 1891 | * fold into the constant multipliers and final shifting: |
| 1892 | * cK now represents sqrt(2) * cos(K*pi/28) * 32/49. |
| 1893 | */ |
| 1894 | |
| 1895 | dataptr = data; |
| 1896 | wsptr = workspace; |
| 1897 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 1898 | /* Even part */ |
| 1899 | |
| 1900 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
| 1901 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
| 1902 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
| 1903 | tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
| 1904 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
| 1905 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
| 1906 | tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
| 1907 | |
| 1908 | tmp10 = tmp0 + tmp6; |
| 1909 | tmp14 = tmp0 - tmp6; |
| 1910 | tmp11 = tmp1 + tmp5; |
| 1911 | tmp15 = tmp1 - tmp5; |
| 1912 | tmp12 = tmp2 + tmp4; |
| 1913 | tmp16 = tmp2 - tmp4; |
| 1914 | |
| 1915 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
| 1916 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
| 1917 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
| 1918 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
| 1919 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
| 1920 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
| 1921 | tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
| 1922 | |
| 1923 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 1924 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
| 1925 | FIX(0.653061224)), /* 32/49 */ |
| 1926 | CONST_BITS+1); |
| 1927 | tmp13 += tmp13; |
| 1928 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 1929 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
| 1930 | MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
| 1931 | MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
| 1932 | CONST_BITS+1); |
| 1933 | |
| 1934 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
| 1935 | |
| 1936 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 1937 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
| 1938 | + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
| 1939 | CONST_BITS+1); |
| 1940 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 1941 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
| 1942 | - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
| 1943 | CONST_BITS+1); |
| 1944 | |
| 1945 | /* Odd part */ |
| 1946 | |
| 1947 | tmp10 = tmp1 + tmp2; |
| 1948 | tmp11 = tmp5 - tmp4; |
| 1949 | dataptr[DCTSIZE*7] = (DCTELEM) |
| 1950 | DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
| 1951 | FIX(0.653061224)), /* 32/49 */ |
| 1952 | CONST_BITS+1); |
| 1953 | tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
| 1954 | tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
| 1955 | tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
| 1956 | tmp10 += tmp11 - tmp3; |
| 1957 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
| 1958 | MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
| 1959 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 1960 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
| 1961 | + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
| 1962 | CONST_BITS+1); |
| 1963 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
| 1964 | MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
| 1965 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 1966 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
| 1967 | - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
| 1968 | CONST_BITS+1); |
| 1969 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 1970 | DESCALE(tmp11 + tmp12 + tmp3 |
| 1971 | - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
| 1972 | - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
| 1973 | CONST_BITS+1); |
| 1974 | |
| 1975 | dataptr++; /* advance pointer to next column */ |
| 1976 | wsptr++; /* advance pointer to next column */ |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | |
| 1981 | /* |
| 1982 | * Perform the forward DCT on a 15x15 sample block. |
| 1983 | */ |
| 1984 | |
| 1985 | GLOBAL(void) |
| 1986 | jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 1987 | { |
| 1988 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 1989 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| 1990 | INT32 z1, z2, z3; |
| 1991 | DCTELEM workspace[8*7]; |
| 1992 | DCTELEM *dataptr; |
| 1993 | DCTELEM *wsptr; |
| 1994 | JSAMPROW elemptr; |
| 1995 | int ctr; |
| 1996 | SHIFT_TEMPS |
| 1997 | |
| 1998 | /* Pass 1: process rows. */ |
| 1999 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 2000 | /* cK represents sqrt(2) * cos(K*pi/30). */ |
| 2001 | |
| 2002 | dataptr = data; |
| 2003 | ctr = 0; |
| 2004 | for (;;) { |
| 2005 | elemptr = sample_data[ctr] + start_col; |
| 2006 | |
| 2007 | /* Even part */ |
| 2008 | |
| 2009 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]); |
| 2010 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]); |
| 2011 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]); |
| 2012 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]); |
| 2013 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]); |
| 2014 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]); |
| 2015 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]); |
| 2016 | tmp7 = GETJSAMPLE(elemptr[7]); |
| 2017 | |
| 2018 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]); |
| 2019 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]); |
| 2020 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]); |
| 2021 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]); |
| 2022 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]); |
| 2023 | tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]); |
| 2024 | tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]); |
| 2025 | |
| 2026 | z1 = tmp0 + tmp4 + tmp5; |
| 2027 | z2 = tmp1 + tmp3 + tmp6; |
| 2028 | z3 = tmp2 + tmp7; |
| 2029 | /* Apply unsigned->signed conversion */ |
| 2030 | dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE); |
| 2031 | z3 += z3; |
| 2032 | dataptr[6] = (DCTELEM) |
| 2033 | DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */ |
| 2034 | MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */ |
| 2035 | CONST_BITS); |
| 2036 | tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
| 2037 | z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */ |
| 2038 | MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */ |
| 2039 | z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */ |
| 2040 | MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */ |
| 2041 | z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */ |
| 2042 | MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */ |
| 2043 | MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */ |
| 2044 | |
| 2045 | dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS); |
| 2046 | dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS); |
| 2047 | |
| 2048 | /* Odd part */ |
| 2049 | |
| 2050 | tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
| 2051 | FIX(1.224744871)); /* c5 */ |
| 2052 | tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */ |
| 2053 | MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */ |
| 2054 | tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */ |
| 2055 | tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */ |
| 2056 | MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */ |
| 2057 | MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */ |
| 2058 | tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */ |
| 2059 | MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */ |
| 2060 | MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */ |
| 2061 | tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */ |
| 2062 | MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */ |
| 2063 | MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */ |
| 2064 | |
| 2065 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
| 2066 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
| 2067 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
| 2068 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
| 2069 | |
| 2070 | ctr++; |
| 2071 | |
| 2072 | if (ctr != DCTSIZE) { |
| 2073 | if (ctr == 15) |
| 2074 | break; /* Done. */ |
| 2075 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2076 | } else |
| 2077 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 2078 | } |
| 2079 | |
| 2080 | /* Pass 2: process columns. |
| 2081 | * We leave the results scaled up by an overall factor of 8. |
| 2082 | * We must also scale the output by (8/15)**2 = 64/225, which we partially |
| 2083 | * fold into the constant multipliers and final shifting: |
| 2084 | * cK now represents sqrt(2) * cos(K*pi/30) * 256/225. |
| 2085 | */ |
| 2086 | |
| 2087 | dataptr = data; |
| 2088 | wsptr = workspace; |
| 2089 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2090 | /* Even part */ |
| 2091 | |
| 2092 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6]; |
| 2093 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5]; |
| 2094 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4]; |
| 2095 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3]; |
| 2096 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2]; |
| 2097 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1]; |
| 2098 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0]; |
| 2099 | tmp7 = dataptr[DCTSIZE*7]; |
| 2100 | |
| 2101 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6]; |
| 2102 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5]; |
| 2103 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4]; |
| 2104 | tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3]; |
| 2105 | tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2]; |
| 2106 | tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1]; |
| 2107 | tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0]; |
| 2108 | |
| 2109 | z1 = tmp0 + tmp4 + tmp5; |
| 2110 | z2 = tmp1 + tmp3 + tmp6; |
| 2111 | z3 = tmp2 + tmp7; |
| 2112 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 2113 | DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */ |
| 2114 | CONST_BITS+2); |
| 2115 | z3 += z3; |
| 2116 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 2117 | DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */ |
| 2118 | MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */ |
| 2119 | CONST_BITS+2); |
| 2120 | tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
| 2121 | z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */ |
| 2122 | MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */ |
| 2123 | z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */ |
| 2124 | MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */ |
| 2125 | z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */ |
| 2126 | MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */ |
| 2127 | MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */ |
| 2128 | |
| 2129 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2); |
| 2130 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2); |
| 2131 | |
| 2132 | /* Odd part */ |
| 2133 | |
| 2134 | tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
| 2135 | FIX(1.393487498)); /* c5 */ |
| 2136 | tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */ |
| 2137 | MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */ |
| 2138 | tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */ |
| 2139 | tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */ |
| 2140 | MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */ |
| 2141 | MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */ |
| 2142 | tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */ |
| 2143 | MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */ |
| 2144 | MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */ |
| 2145 | tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */ |
| 2146 | MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */ |
| 2147 | MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */ |
| 2148 | |
| 2149 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
| 2150 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
| 2151 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
| 2152 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
| 2153 | |
| 2154 | dataptr++; /* advance pointer to next column */ |
| 2155 | wsptr++; /* advance pointer to next column */ |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | |
| 2160 | /* |
| 2161 | * Perform the forward DCT on a 16x16 sample block. |
| 2162 | */ |
| 2163 | |
| 2164 | GLOBAL(void) |
| 2165 | jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2166 | { |
| 2167 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 2168 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
| 2169 | DCTELEM workspace[DCTSIZE2]; |
| 2170 | DCTELEM *dataptr; |
| 2171 | DCTELEM *wsptr; |
| 2172 | JSAMPROW elemptr; |
| 2173 | int ctr; |
| 2174 | SHIFT_TEMPS |
| 2175 | |
| 2176 | /* Pass 1: process rows. */ |
| 2177 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 2178 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 2179 | /* cK represents sqrt(2) * cos(K*pi/32). */ |
| 2180 | |
| 2181 | dataptr = data; |
| 2182 | ctr = 0; |
| 2183 | for (;;) { |
| 2184 | elemptr = sample_data[ctr] + start_col; |
| 2185 | |
| 2186 | /* Even part */ |
| 2187 | |
| 2188 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
| 2189 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
| 2190 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
| 2191 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
| 2192 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
| 2193 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
| 2194 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
| 2195 | tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
| 2196 | |
| 2197 | tmp10 = tmp0 + tmp7; |
| 2198 | tmp14 = tmp0 - tmp7; |
| 2199 | tmp11 = tmp1 + tmp6; |
| 2200 | tmp15 = tmp1 - tmp6; |
| 2201 | tmp12 = tmp2 + tmp5; |
| 2202 | tmp16 = tmp2 - tmp5; |
| 2203 | tmp13 = tmp3 + tmp4; |
| 2204 | tmp17 = tmp3 - tmp4; |
| 2205 | |
| 2206 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
| 2207 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
| 2208 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
| 2209 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
| 2210 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
| 2211 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
| 2212 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
| 2213 | tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
| 2214 | |
| 2215 | /* Apply unsigned->signed conversion */ |
| 2216 | dataptr[0] = (DCTELEM) |
| 2217 | ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
| 2218 | dataptr[4] = (DCTELEM) |
| 2219 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
| 2220 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
| 2221 | CONST_BITS-PASS1_BITS); |
| 2222 | |
| 2223 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
| 2224 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
| 2225 | |
| 2226 | dataptr[2] = (DCTELEM) |
| 2227 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
| 2228 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
| 2229 | CONST_BITS-PASS1_BITS); |
| 2230 | dataptr[6] = (DCTELEM) |
| 2231 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
| 2232 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
| 2233 | CONST_BITS-PASS1_BITS); |
| 2234 | |
| 2235 | /* Odd part */ |
| 2236 | |
| 2237 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
| 2238 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
| 2239 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
| 2240 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
| 2241 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
| 2242 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
| 2243 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
| 2244 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
| 2245 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
| 2246 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
| 2247 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
| 2248 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
| 2249 | tmp10 = tmp11 + tmp12 + tmp13 - |
| 2250 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
| 2251 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
| 2252 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
| 2253 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
| 2254 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
| 2255 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
| 2256 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
| 2257 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
| 2258 | |
| 2259 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
| 2260 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
| 2261 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
| 2262 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
| 2263 | |
| 2264 | ctr++; |
| 2265 | |
| 2266 | if (ctr != DCTSIZE) { |
| 2267 | if (ctr == DCTSIZE * 2) |
| 2268 | break; /* Done. */ |
| 2269 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2270 | } else |
| 2271 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 2272 | } |
| 2273 | |
| 2274 | /* Pass 2: process columns. |
| 2275 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 2276 | * by an overall factor of 8. |
| 2277 | * We must also scale the output by (8/16)**2 = 1/2**2. |
| 2278 | */ |
| 2279 | |
| 2280 | dataptr = data; |
| 2281 | wsptr = workspace; |
| 2282 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2283 | /* Even part */ |
| 2284 | |
| 2285 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
| 2286 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
| 2287 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
| 2288 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
| 2289 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
| 2290 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
| 2291 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
| 2292 | tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
| 2293 | |
| 2294 | tmp10 = tmp0 + tmp7; |
| 2295 | tmp14 = tmp0 - tmp7; |
| 2296 | tmp11 = tmp1 + tmp6; |
| 2297 | tmp15 = tmp1 - tmp6; |
| 2298 | tmp12 = tmp2 + tmp5; |
| 2299 | tmp16 = tmp2 - tmp5; |
| 2300 | tmp13 = tmp3 + tmp4; |
| 2301 | tmp17 = tmp3 - tmp4; |
| 2302 | |
| 2303 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
| 2304 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
| 2305 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
| 2306 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
| 2307 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
| 2308 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
| 2309 | tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
| 2310 | tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
| 2311 | |
| 2312 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 2313 | DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2); |
| 2314 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 2315 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
| 2316 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
| 2317 | CONST_BITS+PASS1_BITS+2); |
| 2318 | |
| 2319 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
| 2320 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
| 2321 | |
| 2322 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 2323 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
| 2324 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */ |
| 2325 | CONST_BITS+PASS1_BITS+2); |
| 2326 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 2327 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
| 2328 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
| 2329 | CONST_BITS+PASS1_BITS+2); |
| 2330 | |
| 2331 | /* Odd part */ |
| 2332 | |
| 2333 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
| 2334 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
| 2335 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
| 2336 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
| 2337 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
| 2338 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
| 2339 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
| 2340 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
| 2341 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
| 2342 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
| 2343 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
| 2344 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
| 2345 | tmp10 = tmp11 + tmp12 + tmp13 - |
| 2346 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
| 2347 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
| 2348 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
| 2349 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
| 2350 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
| 2351 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
| 2352 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
| 2353 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
| 2354 | |
| 2355 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2); |
| 2356 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2); |
| 2357 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2); |
| 2358 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2); |
| 2359 | |
| 2360 | dataptr++; /* advance pointer to next column */ |
| 2361 | wsptr++; /* advance pointer to next column */ |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | |
| 2366 | /* |
| 2367 | * Perform the forward DCT on a 16x8 sample block. |
| 2368 | * |
| 2369 | * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
| 2370 | */ |
| 2371 | |
| 2372 | GLOBAL(void) |
| 2373 | jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2374 | { |
| 2375 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 2376 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
| 2377 | INT32 z1; |
| 2378 | DCTELEM *dataptr; |
| 2379 | JSAMPROW elemptr; |
| 2380 | int ctr; |
| 2381 | SHIFT_TEMPS |
| 2382 | |
| 2383 | /* Pass 1: process rows. */ |
| 2384 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 2385 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 2386 | /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ |
| 2387 | |
| 2388 | dataptr = data; |
| 2389 | ctr = 0; |
| 2390 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| 2391 | elemptr = sample_data[ctr] + start_col; |
| 2392 | |
| 2393 | /* Even part */ |
| 2394 | |
| 2395 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
| 2396 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
| 2397 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
| 2398 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
| 2399 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
| 2400 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
| 2401 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
| 2402 | tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
| 2403 | |
| 2404 | tmp10 = tmp0 + tmp7; |
| 2405 | tmp14 = tmp0 - tmp7; |
| 2406 | tmp11 = tmp1 + tmp6; |
| 2407 | tmp15 = tmp1 - tmp6; |
| 2408 | tmp12 = tmp2 + tmp5; |
| 2409 | tmp16 = tmp2 - tmp5; |
| 2410 | tmp13 = tmp3 + tmp4; |
| 2411 | tmp17 = tmp3 - tmp4; |
| 2412 | |
| 2413 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
| 2414 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
| 2415 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
| 2416 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
| 2417 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
| 2418 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
| 2419 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
| 2420 | tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
| 2421 | |
| 2422 | /* Apply unsigned->signed conversion */ |
| 2423 | dataptr[0] = (DCTELEM) |
| 2424 | ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
| 2425 | dataptr[4] = (DCTELEM) |
| 2426 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
| 2427 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
| 2428 | CONST_BITS-PASS1_BITS); |
| 2429 | |
| 2430 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
| 2431 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
| 2432 | |
| 2433 | dataptr[2] = (DCTELEM) |
| 2434 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
| 2435 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
| 2436 | CONST_BITS-PASS1_BITS); |
| 2437 | dataptr[6] = (DCTELEM) |
| 2438 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
| 2439 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
| 2440 | CONST_BITS-PASS1_BITS); |
| 2441 | |
| 2442 | /* Odd part */ |
| 2443 | |
| 2444 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
| 2445 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
| 2446 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
| 2447 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
| 2448 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
| 2449 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
| 2450 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
| 2451 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
| 2452 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
| 2453 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
| 2454 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
| 2455 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
| 2456 | tmp10 = tmp11 + tmp12 + tmp13 - |
| 2457 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
| 2458 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
| 2459 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
| 2460 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
| 2461 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
| 2462 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
| 2463 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
| 2464 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
| 2465 | |
| 2466 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
| 2467 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
| 2468 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
| 2469 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
| 2470 | |
| 2471 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2472 | } |
| 2473 | |
| 2474 | /* Pass 2: process columns. |
| 2475 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 2476 | * by an overall factor of 8. |
| 2477 | * We must also scale the output by 8/16 = 1/2. |
| 2478 | */ |
| 2479 | |
| 2480 | dataptr = data; |
| 2481 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2482 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 2483 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 2484 | */ |
| 2485 | |
| 2486 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
| 2487 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
| 2488 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
| 2489 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
| 2490 | |
| 2491 | tmp10 = tmp0 + tmp3; |
| 2492 | tmp12 = tmp0 - tmp3; |
| 2493 | tmp11 = tmp1 + tmp2; |
| 2494 | tmp13 = tmp1 - tmp2; |
| 2495 | |
| 2496 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
| 2497 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
| 2498 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
| 2499 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
| 2500 | |
| 2501 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); |
| 2502 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); |
| 2503 | |
| 2504 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 2505 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
| 2506 | CONST_BITS+PASS1_BITS+1); |
| 2507 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
| 2508 | CONST_BITS+PASS1_BITS+1); |
| 2509 | |
| 2510 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 2511 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
| 2512 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 2513 | */ |
| 2514 | |
| 2515 | tmp10 = tmp0 + tmp3; |
| 2516 | tmp11 = tmp1 + tmp2; |
| 2517 | tmp12 = tmp0 + tmp2; |
| 2518 | tmp13 = tmp1 + tmp3; |
| 2519 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 2520 | |
| 2521 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 2522 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 2523 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 2524 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 2525 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 2526 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 2527 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 2528 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 2529 | |
| 2530 | tmp12 += z1; |
| 2531 | tmp13 += z1; |
| 2532 | |
| 2533 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, |
| 2534 | CONST_BITS+PASS1_BITS+1); |
| 2535 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, |
| 2536 | CONST_BITS+PASS1_BITS+1); |
| 2537 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, |
| 2538 | CONST_BITS+PASS1_BITS+1); |
| 2539 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, |
| 2540 | CONST_BITS+PASS1_BITS+1); |
| 2541 | |
| 2542 | dataptr++; /* advance pointer to next column */ |
| 2543 | } |
| 2544 | } |
| 2545 | |
| 2546 | |
| 2547 | /* |
| 2548 | * Perform the forward DCT on a 14x7 sample block. |
| 2549 | * |
| 2550 | * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns). |
| 2551 | */ |
| 2552 | |
| 2553 | GLOBAL(void) |
| 2554 | jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2555 | { |
| 2556 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
| 2557 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| 2558 | INT32 z1, z2, z3; |
| 2559 | DCTELEM *dataptr; |
| 2560 | JSAMPROW elemptr; |
| 2561 | int ctr; |
| 2562 | SHIFT_TEMPS |
| 2563 | |
| 2564 | /* Zero bottom row of output coefficient block. */ |
| 2565 | MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); |
| 2566 | |
| 2567 | /* Pass 1: process rows. */ |
| 2568 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 2569 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 2570 | /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ |
| 2571 | |
| 2572 | dataptr = data; |
| 2573 | for (ctr = 0; ctr < 7; ctr++) { |
| 2574 | elemptr = sample_data[ctr] + start_col; |
| 2575 | |
| 2576 | /* Even part */ |
| 2577 | |
| 2578 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
| 2579 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
| 2580 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
| 2581 | tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
| 2582 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
| 2583 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
| 2584 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
| 2585 | |
| 2586 | tmp10 = tmp0 + tmp6; |
| 2587 | tmp14 = tmp0 - tmp6; |
| 2588 | tmp11 = tmp1 + tmp5; |
| 2589 | tmp15 = tmp1 - tmp5; |
| 2590 | tmp12 = tmp2 + tmp4; |
| 2591 | tmp16 = tmp2 - tmp4; |
| 2592 | |
| 2593 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
| 2594 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
| 2595 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
| 2596 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
| 2597 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
| 2598 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
| 2599 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
| 2600 | |
| 2601 | /* Apply unsigned->signed conversion */ |
| 2602 | dataptr[0] = (DCTELEM) |
| 2603 | ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS); |
| 2604 | tmp13 += tmp13; |
| 2605 | dataptr[4] = (DCTELEM) |
| 2606 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
| 2607 | MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
| 2608 | MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
| 2609 | CONST_BITS-PASS1_BITS); |
| 2610 | |
| 2611 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
| 2612 | |
| 2613 | dataptr[2] = (DCTELEM) |
| 2614 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
| 2615 | + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
| 2616 | CONST_BITS-PASS1_BITS); |
| 2617 | dataptr[6] = (DCTELEM) |
| 2618 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
| 2619 | - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
| 2620 | CONST_BITS-PASS1_BITS); |
| 2621 | |
| 2622 | /* Odd part */ |
| 2623 | |
| 2624 | tmp10 = tmp1 + tmp2; |
| 2625 | tmp11 = tmp5 - tmp4; |
| 2626 | dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS); |
| 2627 | tmp3 <<= CONST_BITS; |
| 2628 | tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
| 2629 | tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
| 2630 | tmp10 += tmp11 - tmp3; |
| 2631 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
| 2632 | MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
| 2633 | dataptr[5] = (DCTELEM) |
| 2634 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
| 2635 | + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
| 2636 | CONST_BITS-PASS1_BITS); |
| 2637 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
| 2638 | MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
| 2639 | dataptr[3] = (DCTELEM) |
| 2640 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
| 2641 | - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
| 2642 | CONST_BITS-PASS1_BITS); |
| 2643 | dataptr[1] = (DCTELEM) |
| 2644 | DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
| 2645 | MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
| 2646 | CONST_BITS-PASS1_BITS); |
| 2647 | |
| 2648 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2649 | } |
| 2650 | |
| 2651 | /* Pass 2: process columns. |
| 2652 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 2653 | * by an overall factor of 8. |
| 2654 | * We must also scale the output by (8/14)*(8/7) = 32/49, which we |
| 2655 | * partially fold into the constant multipliers and final shifting: |
| 2656 | * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49. |
| 2657 | */ |
| 2658 | |
| 2659 | dataptr = data; |
| 2660 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2661 | /* Even part */ |
| 2662 | |
| 2663 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
| 2664 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
| 2665 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
| 2666 | tmp3 = dataptr[DCTSIZE*3]; |
| 2667 | |
| 2668 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
| 2669 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
| 2670 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
| 2671 | |
| 2672 | z1 = tmp0 + tmp2; |
| 2673 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 2674 | DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
| 2675 | CONST_BITS+PASS1_BITS+1); |
| 2676 | tmp3 += tmp3; |
| 2677 | z1 -= tmp3; |
| 2678 | z1 -= tmp3; |
| 2679 | z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
| 2680 | z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
| 2681 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
| 2682 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1); |
| 2683 | z1 -= z2; |
| 2684 | z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
| 2685 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 2686 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
| 2687 | CONST_BITS+PASS1_BITS+1); |
| 2688 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1); |
| 2689 | |
| 2690 | /* Odd part */ |
| 2691 | |
| 2692 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
| 2693 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
| 2694 | tmp0 = tmp1 - tmp2; |
| 2695 | tmp1 += tmp2; |
| 2696 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
| 2697 | tmp1 += tmp2; |
| 2698 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
| 2699 | tmp0 += tmp3; |
| 2700 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
| 2701 | |
| 2702 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); |
| 2703 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); |
| 2704 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); |
| 2705 | |
| 2706 | dataptr++; /* advance pointer to next column */ |
| 2707 | } |
| 2708 | } |
| 2709 | |
| 2710 | |
| 2711 | /* |
| 2712 | * Perform the forward DCT on a 12x6 sample block. |
| 2713 | * |
| 2714 | * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
| 2715 | */ |
| 2716 | |
| 2717 | GLOBAL(void) |
| 2718 | jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2719 | { |
| 2720 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| 2721 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| 2722 | DCTELEM *dataptr; |
| 2723 | JSAMPROW elemptr; |
| 2724 | int ctr; |
| 2725 | SHIFT_TEMPS |
| 2726 | |
| 2727 | /* Zero 2 bottom rows of output coefficient block. */ |
| 2728 | MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); |
| 2729 | |
| 2730 | /* Pass 1: process rows. */ |
| 2731 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 2732 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 2733 | /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ |
| 2734 | |
| 2735 | dataptr = data; |
| 2736 | for (ctr = 0; ctr < 6; ctr++) { |
| 2737 | elemptr = sample_data[ctr] + start_col; |
| 2738 | |
| 2739 | /* Even part */ |
| 2740 | |
| 2741 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
| 2742 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
| 2743 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
| 2744 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
| 2745 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
| 2746 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
| 2747 | |
| 2748 | tmp10 = tmp0 + tmp5; |
| 2749 | tmp13 = tmp0 - tmp5; |
| 2750 | tmp11 = tmp1 + tmp4; |
| 2751 | tmp14 = tmp1 - tmp4; |
| 2752 | tmp12 = tmp2 + tmp3; |
| 2753 | tmp15 = tmp2 - tmp3; |
| 2754 | |
| 2755 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
| 2756 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
| 2757 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
| 2758 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
| 2759 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
| 2760 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
| 2761 | |
| 2762 | /* Apply unsigned->signed conversion */ |
| 2763 | dataptr[0] = (DCTELEM) |
| 2764 | ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS); |
| 2765 | dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS); |
| 2766 | dataptr[4] = (DCTELEM) |
| 2767 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
| 2768 | CONST_BITS-PASS1_BITS); |
| 2769 | dataptr[2] = (DCTELEM) |
| 2770 | DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
| 2771 | CONST_BITS-PASS1_BITS); |
| 2772 | |
| 2773 | /* Odd part */ |
| 2774 | |
| 2775 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
| 2776 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
| 2777 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
| 2778 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
| 2779 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
| 2780 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
| 2781 | + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
| 2782 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
| 2783 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
| 2784 | + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
| 2785 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
| 2786 | - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
| 2787 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
| 2788 | - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
| 2789 | |
| 2790 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
| 2791 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
| 2792 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
| 2793 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
| 2794 | |
| 2795 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2796 | } |
| 2797 | |
| 2798 | /* Pass 2: process columns. |
| 2799 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 2800 | * by an overall factor of 8. |
| 2801 | * We must also scale the output by (8/12)*(8/6) = 8/9, which we |
| 2802 | * partially fold into the constant multipliers and final shifting: |
| 2803 | * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
| 2804 | */ |
| 2805 | |
| 2806 | dataptr = data; |
| 2807 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2808 | /* Even part */ |
| 2809 | |
| 2810 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
| 2811 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
| 2812 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
| 2813 | |
| 2814 | tmp10 = tmp0 + tmp2; |
| 2815 | tmp12 = tmp0 - tmp2; |
| 2816 | |
| 2817 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
| 2818 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
| 2819 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
| 2820 | |
| 2821 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 2822 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
| 2823 | CONST_BITS+PASS1_BITS+1); |
| 2824 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 2825 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
| 2826 | CONST_BITS+PASS1_BITS+1); |
| 2827 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 2828 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
| 2829 | CONST_BITS+PASS1_BITS+1); |
| 2830 | |
| 2831 | /* Odd part */ |
| 2832 | |
| 2833 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
| 2834 | |
| 2835 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 2836 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
| 2837 | CONST_BITS+PASS1_BITS+1); |
| 2838 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 2839 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
| 2840 | CONST_BITS+PASS1_BITS+1); |
| 2841 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 2842 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
| 2843 | CONST_BITS+PASS1_BITS+1); |
| 2844 | |
| 2845 | dataptr++; /* advance pointer to next column */ |
| 2846 | } |
| 2847 | } |
| 2848 | |
| 2849 | |
| 2850 | /* |
| 2851 | * Perform the forward DCT on a 10x5 sample block. |
| 2852 | * |
| 2853 | * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns). |
| 2854 | */ |
| 2855 | |
| 2856 | GLOBAL(void) |
| 2857 | jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2858 | { |
| 2859 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
| 2860 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| 2861 | DCTELEM *dataptr; |
| 2862 | JSAMPROW elemptr; |
| 2863 | int ctr; |
| 2864 | SHIFT_TEMPS |
| 2865 | |
| 2866 | /* Zero 3 bottom rows of output coefficient block. */ |
| 2867 | MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); |
| 2868 | |
| 2869 | /* Pass 1: process rows. */ |
| 2870 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 2871 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 2872 | /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ |
| 2873 | |
| 2874 | dataptr = data; |
| 2875 | for (ctr = 0; ctr < 5; ctr++) { |
| 2876 | elemptr = sample_data[ctr] + start_col; |
| 2877 | |
| 2878 | /* Even part */ |
| 2879 | |
| 2880 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
| 2881 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
| 2882 | tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
| 2883 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
| 2884 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
| 2885 | |
| 2886 | tmp10 = tmp0 + tmp4; |
| 2887 | tmp13 = tmp0 - tmp4; |
| 2888 | tmp11 = tmp1 + tmp3; |
| 2889 | tmp14 = tmp1 - tmp3; |
| 2890 | |
| 2891 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
| 2892 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
| 2893 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
| 2894 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
| 2895 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
| 2896 | |
| 2897 | /* Apply unsigned->signed conversion */ |
| 2898 | dataptr[0] = (DCTELEM) |
| 2899 | ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS); |
| 2900 | tmp12 += tmp12; |
| 2901 | dataptr[4] = (DCTELEM) |
| 2902 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
| 2903 | MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
| 2904 | CONST_BITS-PASS1_BITS); |
| 2905 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
| 2906 | dataptr[2] = (DCTELEM) |
| 2907 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
| 2908 | CONST_BITS-PASS1_BITS); |
| 2909 | dataptr[6] = (DCTELEM) |
| 2910 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
| 2911 | CONST_BITS-PASS1_BITS); |
| 2912 | |
| 2913 | /* Odd part */ |
| 2914 | |
| 2915 | tmp10 = tmp0 + tmp4; |
| 2916 | tmp11 = tmp1 - tmp3; |
| 2917 | dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS); |
| 2918 | tmp2 <<= CONST_BITS; |
| 2919 | dataptr[1] = (DCTELEM) |
| 2920 | DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
| 2921 | MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
| 2922 | MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
| 2923 | MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
| 2924 | CONST_BITS-PASS1_BITS); |
| 2925 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
| 2926 | MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
| 2927 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
| 2928 | (tmp11 << (CONST_BITS - 1)) - tmp2; |
| 2929 | dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS); |
| 2930 | dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS); |
| 2931 | |
| 2932 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 2933 | } |
| 2934 | |
| 2935 | /* Pass 2: process columns. |
| 2936 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 2937 | * by an overall factor of 8. |
| 2938 | * We must also scale the output by (8/10)*(8/5) = 32/25, which we |
| 2939 | * fold into the constant multipliers: |
| 2940 | * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25. |
| 2941 | */ |
| 2942 | |
| 2943 | dataptr = data; |
| 2944 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 2945 | /* Even part */ |
| 2946 | |
| 2947 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
| 2948 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
| 2949 | tmp2 = dataptr[DCTSIZE*2]; |
| 2950 | |
| 2951 | tmp10 = tmp0 + tmp1; |
| 2952 | tmp11 = tmp0 - tmp1; |
| 2953 | |
| 2954 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
| 2955 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
| 2956 | |
| 2957 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 2958 | DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
| 2959 | CONST_BITS+PASS1_BITS); |
| 2960 | tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
| 2961 | tmp10 -= tmp2 << 2; |
| 2962 | tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
| 2963 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
| 2964 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
| 2965 | |
| 2966 | /* Odd part */ |
| 2967 | |
| 2968 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
| 2969 | |
| 2970 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 2971 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
| 2972 | CONST_BITS+PASS1_BITS); |
| 2973 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 2974 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
| 2975 | CONST_BITS+PASS1_BITS); |
| 2976 | |
| 2977 | dataptr++; /* advance pointer to next column */ |
| 2978 | } |
| 2979 | } |
| 2980 | |
| 2981 | |
| 2982 | /* |
| 2983 | * Perform the forward DCT on an 8x4 sample block. |
| 2984 | * |
| 2985 | * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
| 2986 | */ |
| 2987 | |
| 2988 | GLOBAL(void) |
| 2989 | jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 2990 | { |
| 2991 | INT32 tmp0, tmp1, tmp2, tmp3; |
| 2992 | INT32 tmp10, tmp11, tmp12, tmp13; |
| 2993 | INT32 z1; |
| 2994 | DCTELEM *dataptr; |
| 2995 | JSAMPROW elemptr; |
| 2996 | int ctr; |
| 2997 | SHIFT_TEMPS |
| 2998 | |
| 2999 | /* Zero 4 bottom rows of output coefficient block. */ |
| 3000 | MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); |
| 3001 | |
| 3002 | /* Pass 1: process rows. */ |
| 3003 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3004 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3005 | /* We must also scale the output by 8/4 = 2, which we add here. */ |
| 3006 | |
| 3007 | dataptr = data; |
| 3008 | for (ctr = 0; ctr < 4; ctr++) { |
| 3009 | elemptr = sample_data[ctr] + start_col; |
| 3010 | |
| 3011 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 3012 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 3013 | */ |
| 3014 | |
| 3015 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
| 3016 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
| 3017 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
| 3018 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
| 3019 | |
| 3020 | tmp10 = tmp0 + tmp3; |
| 3021 | tmp12 = tmp0 - tmp3; |
| 3022 | tmp11 = tmp1 + tmp2; |
| 3023 | tmp13 = tmp1 - tmp2; |
| 3024 | |
| 3025 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
| 3026 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
| 3027 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
| 3028 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
| 3029 | |
| 3030 | /* Apply unsigned->signed conversion */ |
| 3031 | dataptr[0] = (DCTELEM) |
| 3032 | ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
| 3033 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); |
| 3034 | |
| 3035 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 3036 | /* Add fudge factor here for final descale. */ |
| 3037 | z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
| 3038 | dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
| 3039 | CONST_BITS-PASS1_BITS-1); |
| 3040 | dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
| 3041 | CONST_BITS-PASS1_BITS-1); |
| 3042 | |
| 3043 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 3044 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
| 3045 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 3046 | */ |
| 3047 | |
| 3048 | tmp10 = tmp0 + tmp3; |
| 3049 | tmp11 = tmp1 + tmp2; |
| 3050 | tmp12 = tmp0 + tmp2; |
| 3051 | tmp13 = tmp1 + tmp3; |
| 3052 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 3053 | /* Add fudge factor here for final descale. */ |
| 3054 | z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
| 3055 | |
| 3056 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 3057 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 3058 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 3059 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 3060 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 3061 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 3062 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 3063 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 3064 | |
| 3065 | tmp12 += z1; |
| 3066 | tmp13 += z1; |
| 3067 | |
| 3068 | dataptr[1] = (DCTELEM) |
| 3069 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1); |
| 3070 | dataptr[3] = (DCTELEM) |
| 3071 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1); |
| 3072 | dataptr[5] = (DCTELEM) |
| 3073 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1); |
| 3074 | dataptr[7] = (DCTELEM) |
| 3075 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1); |
| 3076 | |
| 3077 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3078 | } |
| 3079 | |
| 3080 | /* Pass 2: process columns. |
| 3081 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3082 | * by an overall factor of 8. |
| 3083 | * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
| 3084 | */ |
| 3085 | |
| 3086 | dataptr = data; |
| 3087 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 3088 | /* Even part */ |
| 3089 | |
| 3090 | /* Add fudge factor here for final descale. */ |
| 3091 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
| 3092 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
| 3093 | |
| 3094 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
| 3095 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
| 3096 | |
| 3097 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
| 3098 | dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
| 3099 | |
| 3100 | /* Odd part */ |
| 3101 | |
| 3102 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 3103 | /* Add fudge factor here for final descale. */ |
| 3104 | tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 3105 | |
| 3106 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 3107 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 3108 | CONST_BITS+PASS1_BITS); |
| 3109 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 3110 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 3111 | CONST_BITS+PASS1_BITS); |
| 3112 | |
| 3113 | dataptr++; /* advance pointer to next column */ |
| 3114 | } |
| 3115 | } |
| 3116 | |
| 3117 | |
| 3118 | /* |
| 3119 | * Perform the forward DCT on a 6x3 sample block. |
| 3120 | * |
| 3121 | * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns). |
| 3122 | */ |
| 3123 | |
| 3124 | GLOBAL(void) |
| 3125 | jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3126 | { |
| 3127 | INT32 tmp0, tmp1, tmp2; |
| 3128 | INT32 tmp10, tmp11, tmp12; |
| 3129 | DCTELEM *dataptr; |
| 3130 | JSAMPROW elemptr; |
| 3131 | int ctr; |
| 3132 | SHIFT_TEMPS |
| 3133 | |
| 3134 | /* Pre-zero output coefficient block. */ |
| 3135 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3136 | |
| 3137 | /* Pass 1: process rows. */ |
| 3138 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3139 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3140 | /* We scale the results further by 2 as part of output adaption */ |
| 3141 | /* scaling for different DCT size. */ |
| 3142 | /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
| 3143 | |
| 3144 | dataptr = data; |
| 3145 | for (ctr = 0; ctr < 3; ctr++) { |
| 3146 | elemptr = sample_data[ctr] + start_col; |
| 3147 | |
| 3148 | /* Even part */ |
| 3149 | |
| 3150 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
| 3151 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
| 3152 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
| 3153 | |
| 3154 | tmp10 = tmp0 + tmp2; |
| 3155 | tmp12 = tmp0 - tmp2; |
| 3156 | |
| 3157 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
| 3158 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
| 3159 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
| 3160 | |
| 3161 | /* Apply unsigned->signed conversion */ |
| 3162 | dataptr[0] = (DCTELEM) |
| 3163 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
| 3164 | dataptr[2] = (DCTELEM) |
| 3165 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
| 3166 | CONST_BITS-PASS1_BITS-1); |
| 3167 | dataptr[4] = (DCTELEM) |
| 3168 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
| 3169 | CONST_BITS-PASS1_BITS-1); |
| 3170 | |
| 3171 | /* Odd part */ |
| 3172 | |
| 3173 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
| 3174 | CONST_BITS-PASS1_BITS-1); |
| 3175 | |
| 3176 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1))); |
| 3177 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1)); |
| 3178 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1))); |
| 3179 | |
| 3180 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3181 | } |
| 3182 | |
| 3183 | /* Pass 2: process columns. |
| 3184 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3185 | * by an overall factor of 8. |
| 3186 | * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
| 3187 | * fold into the constant multipliers (other part was done in pass 1): |
| 3188 | * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9. |
| 3189 | */ |
| 3190 | |
| 3191 | dataptr = data; |
| 3192 | for (ctr = 0; ctr < 6; ctr++) { |
| 3193 | /* Even part */ |
| 3194 | |
| 3195 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
| 3196 | tmp1 = dataptr[DCTSIZE*1]; |
| 3197 | |
| 3198 | tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
| 3199 | |
| 3200 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 3201 | DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
| 3202 | CONST_BITS+PASS1_BITS); |
| 3203 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 3204 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
| 3205 | CONST_BITS+PASS1_BITS); |
| 3206 | |
| 3207 | /* Odd part */ |
| 3208 | |
| 3209 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 3210 | DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
| 3211 | CONST_BITS+PASS1_BITS); |
| 3212 | |
| 3213 | dataptr++; /* advance pointer to next column */ |
| 3214 | } |
| 3215 | } |
| 3216 | |
| 3217 | |
| 3218 | /* |
| 3219 | * Perform the forward DCT on a 4x2 sample block. |
| 3220 | * |
| 3221 | * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
| 3222 | */ |
| 3223 | |
| 3224 | GLOBAL(void) |
| 3225 | jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3226 | { |
| 3227 | INT32 tmp0, tmp1; |
| 3228 | INT32 tmp10, tmp11; |
| 3229 | DCTELEM *dataptr; |
| 3230 | JSAMPROW elemptr; |
| 3231 | int ctr; |
| 3232 | SHIFT_TEMPS |
| 3233 | |
| 3234 | /* Pre-zero output coefficient block. */ |
| 3235 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3236 | |
| 3237 | /* Pass 1: process rows. */ |
| 3238 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3239 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3240 | /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */ |
| 3241 | /* 4-point FDCT kernel, */ |
| 3242 | /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
| 3243 | |
| 3244 | dataptr = data; |
| 3245 | for (ctr = 0; ctr < 2; ctr++) { |
| 3246 | elemptr = sample_data[ctr] + start_col; |
| 3247 | |
| 3248 | /* Even part */ |
| 3249 | |
| 3250 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
| 3251 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
| 3252 | |
| 3253 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
| 3254 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
| 3255 | |
| 3256 | /* Apply unsigned->signed conversion */ |
| 3257 | dataptr[0] = (DCTELEM) |
| 3258 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3)); |
| 3259 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3)); |
| 3260 | |
| 3261 | /* Odd part */ |
| 3262 | |
| 3263 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 3264 | /* Add fudge factor here for final descale. */ |
| 3265 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-4); |
| 3266 | |
| 3267 | dataptr[1] = (DCTELEM) |
| 3268 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 3269 | CONST_BITS-PASS1_BITS-3); |
| 3270 | dataptr[3] = (DCTELEM) |
| 3271 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 3272 | CONST_BITS-PASS1_BITS-3); |
| 3273 | |
| 3274 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3275 | } |
| 3276 | |
| 3277 | /* Pass 2: process columns. |
| 3278 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3279 | * by an overall factor of 8. |
| 3280 | */ |
| 3281 | |
| 3282 | dataptr = data; |
| 3283 | for (ctr = 0; ctr < 4; ctr++) { |
| 3284 | /* Even part */ |
| 3285 | |
| 3286 | /* Add fudge factor here for final descale. */ |
| 3287 | tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1)); |
| 3288 | tmp1 = dataptr[DCTSIZE*1]; |
| 3289 | |
| 3290 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
| 3291 | |
| 3292 | /* Odd part */ |
| 3293 | |
| 3294 | dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
| 3295 | |
| 3296 | dataptr++; /* advance pointer to next column */ |
| 3297 | } |
| 3298 | } |
| 3299 | |
| 3300 | |
| 3301 | /* |
| 3302 | * Perform the forward DCT on a 2x1 sample block. |
| 3303 | * |
| 3304 | * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns). |
| 3305 | */ |
| 3306 | |
| 3307 | GLOBAL(void) |
| 3308 | jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3309 | { |
| 3310 | INT32 tmp0, tmp1; |
| 3311 | JSAMPROW elemptr; |
| 3312 | |
| 3313 | /* Pre-zero output coefficient block. */ |
| 3314 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3315 | |
| 3316 | elemptr = sample_data[0] + start_col; |
| 3317 | |
| 3318 | tmp0 = GETJSAMPLE(elemptr[0]); |
| 3319 | tmp1 = GETJSAMPLE(elemptr[1]); |
| 3320 | |
| 3321 | /* We leave the results scaled up by an overall factor of 8. |
| 3322 | * We must also scale the output by (8/2)*(8/1) = 2**5. |
| 3323 | */ |
| 3324 | |
| 3325 | /* Even part */ |
| 3326 | /* Apply unsigned->signed conversion */ |
| 3327 | data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
| 3328 | |
| 3329 | /* Odd part */ |
| 3330 | data[1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
| 3331 | } |
| 3332 | |
| 3333 | |
| 3334 | /* |
| 3335 | * Perform the forward DCT on an 8x16 sample block. |
| 3336 | * |
| 3337 | * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns). |
| 3338 | */ |
| 3339 | |
| 3340 | GLOBAL(void) |
| 3341 | jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3342 | { |
| 3343 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
| 3344 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
| 3345 | INT32 z1; |
| 3346 | DCTELEM workspace[DCTSIZE2]; |
| 3347 | DCTELEM *dataptr; |
| 3348 | DCTELEM *wsptr; |
| 3349 | JSAMPROW elemptr; |
| 3350 | int ctr; |
| 3351 | SHIFT_TEMPS |
| 3352 | |
| 3353 | /* Pass 1: process rows. */ |
| 3354 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3355 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3356 | |
| 3357 | dataptr = data; |
| 3358 | ctr = 0; |
| 3359 | for (;;) { |
| 3360 | elemptr = sample_data[ctr] + start_col; |
| 3361 | |
| 3362 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 3363 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 3364 | */ |
| 3365 | |
| 3366 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
| 3367 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
| 3368 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
| 3369 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
| 3370 | |
| 3371 | tmp10 = tmp0 + tmp3; |
| 3372 | tmp12 = tmp0 - tmp3; |
| 3373 | tmp11 = tmp1 + tmp2; |
| 3374 | tmp13 = tmp1 - tmp2; |
| 3375 | |
| 3376 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
| 3377 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
| 3378 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
| 3379 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
| 3380 | |
| 3381 | /* Apply unsigned->signed conversion */ |
| 3382 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
| 3383 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
| 3384 | |
| 3385 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 3386 | dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
| 3387 | CONST_BITS-PASS1_BITS); |
| 3388 | dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
| 3389 | CONST_BITS-PASS1_BITS); |
| 3390 | |
| 3391 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 3392 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
| 3393 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 3394 | */ |
| 3395 | |
| 3396 | tmp10 = tmp0 + tmp3; |
| 3397 | tmp11 = tmp1 + tmp2; |
| 3398 | tmp12 = tmp0 + tmp2; |
| 3399 | tmp13 = tmp1 + tmp3; |
| 3400 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 3401 | |
| 3402 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 3403 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 3404 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 3405 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 3406 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 3407 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 3408 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 3409 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 3410 | |
| 3411 | tmp12 += z1; |
| 3412 | tmp13 += z1; |
| 3413 | |
| 3414 | dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
| 3415 | dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
| 3416 | dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
| 3417 | dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
| 3418 | |
| 3419 | ctr++; |
| 3420 | |
| 3421 | if (ctr != DCTSIZE) { |
| 3422 | if (ctr == DCTSIZE * 2) |
| 3423 | break; /* Done. */ |
| 3424 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3425 | } else |
| 3426 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 3427 | } |
| 3428 | |
| 3429 | /* Pass 2: process columns. |
| 3430 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3431 | * by an overall factor of 8. |
| 3432 | * We must also scale the output by 8/16 = 1/2. |
| 3433 | * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). |
| 3434 | */ |
| 3435 | |
| 3436 | dataptr = data; |
| 3437 | wsptr = workspace; |
| 3438 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
| 3439 | /* Even part */ |
| 3440 | |
| 3441 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
| 3442 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
| 3443 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
| 3444 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
| 3445 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
| 3446 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
| 3447 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
| 3448 | tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
| 3449 | |
| 3450 | tmp10 = tmp0 + tmp7; |
| 3451 | tmp14 = tmp0 - tmp7; |
| 3452 | tmp11 = tmp1 + tmp6; |
| 3453 | tmp15 = tmp1 - tmp6; |
| 3454 | tmp12 = tmp2 + tmp5; |
| 3455 | tmp16 = tmp2 - tmp5; |
| 3456 | tmp13 = tmp3 + tmp4; |
| 3457 | tmp17 = tmp3 - tmp4; |
| 3458 | |
| 3459 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
| 3460 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
| 3461 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
| 3462 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
| 3463 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
| 3464 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
| 3465 | tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
| 3466 | tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
| 3467 | |
| 3468 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 3469 | DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1); |
| 3470 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 3471 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
| 3472 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
| 3473 | CONST_BITS+PASS1_BITS+1); |
| 3474 | |
| 3475 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
| 3476 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
| 3477 | |
| 3478 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 3479 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
| 3480 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
| 3481 | CONST_BITS+PASS1_BITS+1); |
| 3482 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 3483 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
| 3484 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
| 3485 | CONST_BITS+PASS1_BITS+1); |
| 3486 | |
| 3487 | /* Odd part */ |
| 3488 | |
| 3489 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
| 3490 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
| 3491 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
| 3492 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
| 3493 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
| 3494 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
| 3495 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
| 3496 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
| 3497 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
| 3498 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
| 3499 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
| 3500 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
| 3501 | tmp10 = tmp11 + tmp12 + tmp13 - |
| 3502 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
| 3503 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
| 3504 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
| 3505 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
| 3506 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
| 3507 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
| 3508 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
| 3509 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
| 3510 | |
| 3511 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1); |
| 3512 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1); |
| 3513 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1); |
| 3514 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1); |
| 3515 | |
| 3516 | dataptr++; /* advance pointer to next column */ |
| 3517 | wsptr++; /* advance pointer to next column */ |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | |
| 3522 | /* |
| 3523 | * Perform the forward DCT on a 7x14 sample block. |
| 3524 | * |
| 3525 | * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns). |
| 3526 | */ |
| 3527 | |
| 3528 | GLOBAL(void) |
| 3529 | jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3530 | { |
| 3531 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
| 3532 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
| 3533 | INT32 z1, z2, z3; |
| 3534 | DCTELEM workspace[8*6]; |
| 3535 | DCTELEM *dataptr; |
| 3536 | DCTELEM *wsptr; |
| 3537 | JSAMPROW elemptr; |
| 3538 | int ctr; |
| 3539 | SHIFT_TEMPS |
| 3540 | |
| 3541 | /* Pre-zero output coefficient block. */ |
| 3542 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3543 | |
| 3544 | /* Pass 1: process rows. */ |
| 3545 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3546 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3547 | /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ |
| 3548 | |
| 3549 | dataptr = data; |
| 3550 | ctr = 0; |
| 3551 | for (;;) { |
| 3552 | elemptr = sample_data[ctr] + start_col; |
| 3553 | |
| 3554 | /* Even part */ |
| 3555 | |
| 3556 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
| 3557 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
| 3558 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
| 3559 | tmp3 = GETJSAMPLE(elemptr[3]); |
| 3560 | |
| 3561 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
| 3562 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
| 3563 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
| 3564 | |
| 3565 | z1 = tmp0 + tmp2; |
| 3566 | /* Apply unsigned->signed conversion */ |
| 3567 | dataptr[0] = (DCTELEM) |
| 3568 | ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
| 3569 | tmp3 += tmp3; |
| 3570 | z1 -= tmp3; |
| 3571 | z1 -= tmp3; |
| 3572 | z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
| 3573 | z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
| 3574 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
| 3575 | dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
| 3576 | z1 -= z2; |
| 3577 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
| 3578 | dataptr[4] = (DCTELEM) |
| 3579 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
| 3580 | CONST_BITS-PASS1_BITS); |
| 3581 | dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
| 3582 | |
| 3583 | /* Odd part */ |
| 3584 | |
| 3585 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
| 3586 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
| 3587 | tmp0 = tmp1 - tmp2; |
| 3588 | tmp1 += tmp2; |
| 3589 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
| 3590 | tmp1 += tmp2; |
| 3591 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
| 3592 | tmp0 += tmp3; |
| 3593 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
| 3594 | |
| 3595 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
| 3596 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
| 3597 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
| 3598 | |
| 3599 | ctr++; |
| 3600 | |
| 3601 | if (ctr != DCTSIZE) { |
| 3602 | if (ctr == 14) |
| 3603 | break; /* Done. */ |
| 3604 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3605 | } else |
| 3606 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 3607 | } |
| 3608 | |
| 3609 | /* Pass 2: process columns. |
| 3610 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3611 | * by an overall factor of 8. |
| 3612 | * We must also scale the output by (8/7)*(8/14) = 32/49, which we |
| 3613 | * fold into the constant multipliers: |
| 3614 | * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49. |
| 3615 | */ |
| 3616 | |
| 3617 | dataptr = data; |
| 3618 | wsptr = workspace; |
| 3619 | for (ctr = 0; ctr < 7; ctr++) { |
| 3620 | /* Even part */ |
| 3621 | |
| 3622 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
| 3623 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
| 3624 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
| 3625 | tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
| 3626 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
| 3627 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
| 3628 | tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
| 3629 | |
| 3630 | tmp10 = tmp0 + tmp6; |
| 3631 | tmp14 = tmp0 - tmp6; |
| 3632 | tmp11 = tmp1 + tmp5; |
| 3633 | tmp15 = tmp1 - tmp5; |
| 3634 | tmp12 = tmp2 + tmp4; |
| 3635 | tmp16 = tmp2 - tmp4; |
| 3636 | |
| 3637 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
| 3638 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
| 3639 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
| 3640 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
| 3641 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
| 3642 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
| 3643 | tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
| 3644 | |
| 3645 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 3646 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
| 3647 | FIX(0.653061224)), /* 32/49 */ |
| 3648 | CONST_BITS+PASS1_BITS); |
| 3649 | tmp13 += tmp13; |
| 3650 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 3651 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
| 3652 | MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
| 3653 | MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
| 3654 | CONST_BITS+PASS1_BITS); |
| 3655 | |
| 3656 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
| 3657 | |
| 3658 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 3659 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
| 3660 | + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
| 3661 | CONST_BITS+PASS1_BITS); |
| 3662 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 3663 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
| 3664 | - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
| 3665 | CONST_BITS+PASS1_BITS); |
| 3666 | |
| 3667 | /* Odd part */ |
| 3668 | |
| 3669 | tmp10 = tmp1 + tmp2; |
| 3670 | tmp11 = tmp5 - tmp4; |
| 3671 | dataptr[DCTSIZE*7] = (DCTELEM) |
| 3672 | DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
| 3673 | FIX(0.653061224)), /* 32/49 */ |
| 3674 | CONST_BITS+PASS1_BITS); |
| 3675 | tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
| 3676 | tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
| 3677 | tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
| 3678 | tmp10 += tmp11 - tmp3; |
| 3679 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
| 3680 | MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
| 3681 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 3682 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
| 3683 | + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
| 3684 | CONST_BITS+PASS1_BITS); |
| 3685 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
| 3686 | MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
| 3687 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 3688 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
| 3689 | - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
| 3690 | CONST_BITS+PASS1_BITS); |
| 3691 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 3692 | DESCALE(tmp11 + tmp12 + tmp3 |
| 3693 | - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
| 3694 | - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
| 3695 | CONST_BITS+PASS1_BITS); |
| 3696 | |
| 3697 | dataptr++; /* advance pointer to next column */ |
| 3698 | wsptr++; /* advance pointer to next column */ |
| 3699 | } |
| 3700 | } |
| 3701 | |
| 3702 | |
| 3703 | /* |
| 3704 | * Perform the forward DCT on a 6x12 sample block. |
| 3705 | * |
| 3706 | * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns). |
| 3707 | */ |
| 3708 | |
| 3709 | GLOBAL(void) |
| 3710 | jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3711 | { |
| 3712 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
| 3713 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
| 3714 | DCTELEM workspace[8*4]; |
| 3715 | DCTELEM *dataptr; |
| 3716 | DCTELEM *wsptr; |
| 3717 | JSAMPROW elemptr; |
| 3718 | int ctr; |
| 3719 | SHIFT_TEMPS |
| 3720 | |
| 3721 | /* Pre-zero output coefficient block. */ |
| 3722 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3723 | |
| 3724 | /* Pass 1: process rows. */ |
| 3725 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3726 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3727 | /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
| 3728 | |
| 3729 | dataptr = data; |
| 3730 | ctr = 0; |
| 3731 | for (;;) { |
| 3732 | elemptr = sample_data[ctr] + start_col; |
| 3733 | |
| 3734 | /* Even part */ |
| 3735 | |
| 3736 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
| 3737 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
| 3738 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
| 3739 | |
| 3740 | tmp10 = tmp0 + tmp2; |
| 3741 | tmp12 = tmp0 - tmp2; |
| 3742 | |
| 3743 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
| 3744 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
| 3745 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
| 3746 | |
| 3747 | /* Apply unsigned->signed conversion */ |
| 3748 | dataptr[0] = (DCTELEM) |
| 3749 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
| 3750 | dataptr[2] = (DCTELEM) |
| 3751 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
| 3752 | CONST_BITS-PASS1_BITS); |
| 3753 | dataptr[4] = (DCTELEM) |
| 3754 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
| 3755 | CONST_BITS-PASS1_BITS); |
| 3756 | |
| 3757 | /* Odd part */ |
| 3758 | |
| 3759 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
| 3760 | CONST_BITS-PASS1_BITS); |
| 3761 | |
| 3762 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
| 3763 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
| 3764 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
| 3765 | |
| 3766 | ctr++; |
| 3767 | |
| 3768 | if (ctr != DCTSIZE) { |
| 3769 | if (ctr == 12) |
| 3770 | break; /* Done. */ |
| 3771 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3772 | } else |
| 3773 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 3774 | } |
| 3775 | |
| 3776 | /* Pass 2: process columns. |
| 3777 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3778 | * by an overall factor of 8. |
| 3779 | * We must also scale the output by (8/6)*(8/12) = 8/9, which we |
| 3780 | * fold into the constant multipliers: |
| 3781 | * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9. |
| 3782 | */ |
| 3783 | |
| 3784 | dataptr = data; |
| 3785 | wsptr = workspace; |
| 3786 | for (ctr = 0; ctr < 6; ctr++) { |
| 3787 | /* Even part */ |
| 3788 | |
| 3789 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
| 3790 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
| 3791 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
| 3792 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
| 3793 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
| 3794 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
| 3795 | |
| 3796 | tmp10 = tmp0 + tmp5; |
| 3797 | tmp13 = tmp0 - tmp5; |
| 3798 | tmp11 = tmp1 + tmp4; |
| 3799 | tmp14 = tmp1 - tmp4; |
| 3800 | tmp12 = tmp2 + tmp3; |
| 3801 | tmp15 = tmp2 - tmp3; |
| 3802 | |
| 3803 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
| 3804 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
| 3805 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
| 3806 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
| 3807 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
| 3808 | tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
| 3809 | |
| 3810 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 3811 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
| 3812 | CONST_BITS+PASS1_BITS); |
| 3813 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 3814 | DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
| 3815 | CONST_BITS+PASS1_BITS); |
| 3816 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 3817 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
| 3818 | CONST_BITS+PASS1_BITS); |
| 3819 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 3820 | DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
| 3821 | MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
| 3822 | CONST_BITS+PASS1_BITS); |
| 3823 | |
| 3824 | /* Odd part */ |
| 3825 | |
| 3826 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
| 3827 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
| 3828 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
| 3829 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
| 3830 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
| 3831 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
| 3832 | + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
| 3833 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
| 3834 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
| 3835 | + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
| 3836 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
| 3837 | - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
| 3838 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
| 3839 | - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
| 3840 | |
| 3841 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS); |
| 3842 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS); |
| 3843 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS); |
| 3844 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS); |
| 3845 | |
| 3846 | dataptr++; /* advance pointer to next column */ |
| 3847 | wsptr++; /* advance pointer to next column */ |
| 3848 | } |
| 3849 | } |
| 3850 | |
| 3851 | |
| 3852 | /* |
| 3853 | * Perform the forward DCT on a 5x10 sample block. |
| 3854 | * |
| 3855 | * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns). |
| 3856 | */ |
| 3857 | |
| 3858 | GLOBAL(void) |
| 3859 | jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 3860 | { |
| 3861 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
| 3862 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
| 3863 | DCTELEM workspace[8*2]; |
| 3864 | DCTELEM *dataptr; |
| 3865 | DCTELEM *wsptr; |
| 3866 | JSAMPROW elemptr; |
| 3867 | int ctr; |
| 3868 | SHIFT_TEMPS |
| 3869 | |
| 3870 | /* Pre-zero output coefficient block. */ |
| 3871 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 3872 | |
| 3873 | /* Pass 1: process rows. */ |
| 3874 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 3875 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 3876 | /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ |
| 3877 | |
| 3878 | dataptr = data; |
| 3879 | ctr = 0; |
| 3880 | for (;;) { |
| 3881 | elemptr = sample_data[ctr] + start_col; |
| 3882 | |
| 3883 | /* Even part */ |
| 3884 | |
| 3885 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
| 3886 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
| 3887 | tmp2 = GETJSAMPLE(elemptr[2]); |
| 3888 | |
| 3889 | tmp10 = tmp0 + tmp1; |
| 3890 | tmp11 = tmp0 - tmp1; |
| 3891 | |
| 3892 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
| 3893 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
| 3894 | |
| 3895 | /* Apply unsigned->signed conversion */ |
| 3896 | dataptr[0] = (DCTELEM) |
| 3897 | ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS); |
| 3898 | tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
| 3899 | tmp10 -= tmp2 << 2; |
| 3900 | tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
| 3901 | dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS); |
| 3902 | dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS); |
| 3903 | |
| 3904 | /* Odd part */ |
| 3905 | |
| 3906 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
| 3907 | |
| 3908 | dataptr[1] = (DCTELEM) |
| 3909 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
| 3910 | CONST_BITS-PASS1_BITS); |
| 3911 | dataptr[3] = (DCTELEM) |
| 3912 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
| 3913 | CONST_BITS-PASS1_BITS); |
| 3914 | |
| 3915 | ctr++; |
| 3916 | |
| 3917 | if (ctr != DCTSIZE) { |
| 3918 | if (ctr == 10) |
| 3919 | break; /* Done. */ |
| 3920 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 3921 | } else |
| 3922 | dataptr = workspace; /* switch pointer to extended workspace */ |
| 3923 | } |
| 3924 | |
| 3925 | /* Pass 2: process columns. |
| 3926 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 3927 | * by an overall factor of 8. |
| 3928 | * We must also scale the output by (8/5)*(8/10) = 32/25, which we |
| 3929 | * fold into the constant multipliers: |
| 3930 | * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25. |
| 3931 | */ |
| 3932 | |
| 3933 | dataptr = data; |
| 3934 | wsptr = workspace; |
| 3935 | for (ctr = 0; ctr < 5; ctr++) { |
| 3936 | /* Even part */ |
| 3937 | |
| 3938 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
| 3939 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
| 3940 | tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
| 3941 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
| 3942 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
| 3943 | |
| 3944 | tmp10 = tmp0 + tmp4; |
| 3945 | tmp13 = tmp0 - tmp4; |
| 3946 | tmp11 = tmp1 + tmp3; |
| 3947 | tmp14 = tmp1 - tmp3; |
| 3948 | |
| 3949 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
| 3950 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
| 3951 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
| 3952 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
| 3953 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
| 3954 | |
| 3955 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 3956 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
| 3957 | CONST_BITS+PASS1_BITS); |
| 3958 | tmp12 += tmp12; |
| 3959 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 3960 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
| 3961 | MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
| 3962 | CONST_BITS+PASS1_BITS); |
| 3963 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
| 3964 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 3965 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
| 3966 | CONST_BITS+PASS1_BITS); |
| 3967 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 3968 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
| 3969 | CONST_BITS+PASS1_BITS); |
| 3970 | |
| 3971 | /* Odd part */ |
| 3972 | |
| 3973 | tmp10 = tmp0 + tmp4; |
| 3974 | tmp11 = tmp1 - tmp3; |
| 3975 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 3976 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
| 3977 | CONST_BITS+PASS1_BITS); |
| 3978 | tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
| 3979 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 3980 | DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
| 3981 | MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
| 3982 | MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
| 3983 | MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
| 3984 | CONST_BITS+PASS1_BITS); |
| 3985 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
| 3986 | MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
| 3987 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
| 3988 | MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
| 3989 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS); |
| 3990 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS); |
| 3991 | |
| 3992 | dataptr++; /* advance pointer to next column */ |
| 3993 | wsptr++; /* advance pointer to next column */ |
| 3994 | } |
| 3995 | } |
| 3996 | |
| 3997 | |
| 3998 | /* |
| 3999 | * Perform the forward DCT on a 4x8 sample block. |
| 4000 | * |
| 4001 | * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
| 4002 | */ |
| 4003 | |
| 4004 | GLOBAL(void) |
| 4005 | jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 4006 | { |
| 4007 | INT32 tmp0, tmp1, tmp2, tmp3; |
| 4008 | INT32 tmp10, tmp11, tmp12, tmp13; |
| 4009 | INT32 z1; |
| 4010 | DCTELEM *dataptr; |
| 4011 | JSAMPROW elemptr; |
| 4012 | int ctr; |
| 4013 | SHIFT_TEMPS |
| 4014 | |
| 4015 | /* Pre-zero output coefficient block. */ |
| 4016 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 4017 | |
| 4018 | /* Pass 1: process rows. */ |
| 4019 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 4020 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 4021 | /* We must also scale the output by 8/4 = 2, which we add here. */ |
| 4022 | /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ |
| 4023 | |
| 4024 | dataptr = data; |
| 4025 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
| 4026 | elemptr = sample_data[ctr] + start_col; |
| 4027 | |
| 4028 | /* Even part */ |
| 4029 | |
| 4030 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
| 4031 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
| 4032 | |
| 4033 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
| 4034 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
| 4035 | |
| 4036 | /* Apply unsigned->signed conversion */ |
| 4037 | dataptr[0] = (DCTELEM) |
| 4038 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
| 4039 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1)); |
| 4040 | |
| 4041 | /* Odd part */ |
| 4042 | |
| 4043 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 4044 | /* Add fudge factor here for final descale. */ |
| 4045 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-2); |
| 4046 | |
| 4047 | dataptr[1] = (DCTELEM) |
| 4048 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 4049 | CONST_BITS-PASS1_BITS-1); |
| 4050 | dataptr[3] = (DCTELEM) |
| 4051 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 4052 | CONST_BITS-PASS1_BITS-1); |
| 4053 | |
| 4054 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 4055 | } |
| 4056 | |
| 4057 | /* Pass 2: process columns. |
| 4058 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 4059 | * by an overall factor of 8. |
| 4060 | */ |
| 4061 | |
| 4062 | dataptr = data; |
| 4063 | for (ctr = 0; ctr < 4; ctr++) { |
| 4064 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
| 4065 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
| 4066 | */ |
| 4067 | |
| 4068 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
| 4069 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
| 4070 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
| 4071 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
| 4072 | |
| 4073 | /* Add fudge factor here for final descale. */ |
| 4074 | tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
| 4075 | tmp12 = tmp0 - tmp3; |
| 4076 | tmp11 = tmp1 + tmp2; |
| 4077 | tmp13 = tmp1 - tmp2; |
| 4078 | |
| 4079 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
| 4080 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
| 4081 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
| 4082 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
| 4083 | |
| 4084 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
| 4085 | dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
| 4086 | |
| 4087 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
| 4088 | /* Add fudge factor here for final descale. */ |
| 4089 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 4090 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 4091 | RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
| 4092 | dataptr[DCTSIZE*6] = (DCTELEM) |
| 4093 | RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
| 4094 | |
| 4095 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
| 4096 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
| 4097 | * i0..i3 in the paper are tmp0..tmp3 here. |
| 4098 | */ |
| 4099 | |
| 4100 | tmp10 = tmp0 + tmp3; |
| 4101 | tmp11 = tmp1 + tmp2; |
| 4102 | tmp12 = tmp0 + tmp2; |
| 4103 | tmp13 = tmp1 + tmp3; |
| 4104 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
| 4105 | /* Add fudge factor here for final descale. */ |
| 4106 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
| 4107 | |
| 4108 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
| 4109 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
| 4110 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
| 4111 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
| 4112 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
| 4113 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
| 4114 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
| 4115 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
| 4116 | |
| 4117 | tmp12 += z1; |
| 4118 | tmp13 += z1; |
| 4119 | |
| 4120 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 4121 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
| 4122 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 4123 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
| 4124 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 4125 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
| 4126 | dataptr[DCTSIZE*7] = (DCTELEM) |
| 4127 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
| 4128 | |
| 4129 | dataptr++; /* advance pointer to next column */ |
| 4130 | } |
| 4131 | } |
| 4132 | |
| 4133 | |
| 4134 | /* |
| 4135 | * Perform the forward DCT on a 3x6 sample block. |
| 4136 | * |
| 4137 | * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
| 4138 | */ |
| 4139 | |
| 4140 | GLOBAL(void) |
| 4141 | jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 4142 | { |
| 4143 | INT32 tmp0, tmp1, tmp2; |
| 4144 | INT32 tmp10, tmp11, tmp12; |
| 4145 | DCTELEM *dataptr; |
| 4146 | JSAMPROW elemptr; |
| 4147 | int ctr; |
| 4148 | SHIFT_TEMPS |
| 4149 | |
| 4150 | /* Pre-zero output coefficient block. */ |
| 4151 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 4152 | |
| 4153 | /* Pass 1: process rows. */ |
| 4154 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
| 4155 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
| 4156 | /* We scale the results further by 2 as part of output adaption */ |
| 4157 | /* scaling for different DCT size. */ |
| 4158 | /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ |
| 4159 | |
| 4160 | dataptr = data; |
| 4161 | for (ctr = 0; ctr < 6; ctr++) { |
| 4162 | elemptr = sample_data[ctr] + start_col; |
| 4163 | |
| 4164 | /* Even part */ |
| 4165 | |
| 4166 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
| 4167 | tmp1 = GETJSAMPLE(elemptr[1]); |
| 4168 | |
| 4169 | tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
| 4170 | |
| 4171 | /* Apply unsigned->signed conversion */ |
| 4172 | dataptr[0] = (DCTELEM) |
| 4173 | ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
| 4174 | dataptr[2] = (DCTELEM) |
| 4175 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
| 4176 | CONST_BITS-PASS1_BITS-1); |
| 4177 | |
| 4178 | /* Odd part */ |
| 4179 | |
| 4180 | dataptr[1] = (DCTELEM) |
| 4181 | DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
| 4182 | CONST_BITS-PASS1_BITS-1); |
| 4183 | |
| 4184 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 4185 | } |
| 4186 | |
| 4187 | /* Pass 2: process columns. |
| 4188 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
| 4189 | * by an overall factor of 8. |
| 4190 | * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
| 4191 | * fold into the constant multipliers (other part was done in pass 1): |
| 4192 | * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
| 4193 | */ |
| 4194 | |
| 4195 | dataptr = data; |
| 4196 | for (ctr = 0; ctr < 3; ctr++) { |
| 4197 | /* Even part */ |
| 4198 | |
| 4199 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
| 4200 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
| 4201 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
| 4202 | |
| 4203 | tmp10 = tmp0 + tmp2; |
| 4204 | tmp12 = tmp0 - tmp2; |
| 4205 | |
| 4206 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
| 4207 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
| 4208 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
| 4209 | |
| 4210 | dataptr[DCTSIZE*0] = (DCTELEM) |
| 4211 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
| 4212 | CONST_BITS+PASS1_BITS); |
| 4213 | dataptr[DCTSIZE*2] = (DCTELEM) |
| 4214 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
| 4215 | CONST_BITS+PASS1_BITS); |
| 4216 | dataptr[DCTSIZE*4] = (DCTELEM) |
| 4217 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
| 4218 | CONST_BITS+PASS1_BITS); |
| 4219 | |
| 4220 | /* Odd part */ |
| 4221 | |
| 4222 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
| 4223 | |
| 4224 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 4225 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
| 4226 | CONST_BITS+PASS1_BITS); |
| 4227 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 4228 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
| 4229 | CONST_BITS+PASS1_BITS); |
| 4230 | dataptr[DCTSIZE*5] = (DCTELEM) |
| 4231 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
| 4232 | CONST_BITS+PASS1_BITS); |
| 4233 | |
| 4234 | dataptr++; /* advance pointer to next column */ |
| 4235 | } |
| 4236 | } |
| 4237 | |
| 4238 | |
| 4239 | /* |
| 4240 | * Perform the forward DCT on a 2x4 sample block. |
| 4241 | * |
| 4242 | * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
| 4243 | */ |
| 4244 | |
| 4245 | GLOBAL(void) |
| 4246 | jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 4247 | { |
| 4248 | INT32 tmp0, tmp1; |
| 4249 | INT32 tmp10, tmp11; |
| 4250 | DCTELEM *dataptr; |
| 4251 | JSAMPROW elemptr; |
| 4252 | int ctr; |
| 4253 | SHIFT_TEMPS |
| 4254 | |
| 4255 | /* Pre-zero output coefficient block. */ |
| 4256 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 4257 | |
| 4258 | /* Pass 1: process rows. */ |
| 4259 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
| 4260 | /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */ |
| 4261 | |
| 4262 | dataptr = data; |
| 4263 | for (ctr = 0; ctr < 4; ctr++) { |
| 4264 | elemptr = sample_data[ctr] + start_col; |
| 4265 | |
| 4266 | /* Even part */ |
| 4267 | |
| 4268 | tmp0 = GETJSAMPLE(elemptr[0]); |
| 4269 | tmp1 = GETJSAMPLE(elemptr[1]); |
| 4270 | |
| 4271 | /* Apply unsigned->signed conversion */ |
| 4272 | dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3); |
| 4273 | |
| 4274 | /* Odd part */ |
| 4275 | |
| 4276 | dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3); |
| 4277 | |
| 4278 | dataptr += DCTSIZE; /* advance pointer to next row */ |
| 4279 | } |
| 4280 | |
| 4281 | /* Pass 2: process columns. |
| 4282 | * We leave the results scaled up by an overall factor of 8. |
| 4283 | * 4-point FDCT kernel, |
| 4284 | * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. |
| 4285 | */ |
| 4286 | |
| 4287 | dataptr = data; |
| 4288 | for (ctr = 0; ctr < 2; ctr++) { |
| 4289 | /* Even part */ |
| 4290 | |
| 4291 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3]; |
| 4292 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
| 4293 | |
| 4294 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
| 4295 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
| 4296 | |
| 4297 | dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1); |
| 4298 | dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1); |
| 4299 | |
| 4300 | /* Odd part */ |
| 4301 | |
| 4302 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
| 4303 | /* Add fudge factor here for final descale. */ |
| 4304 | tmp0 += ONE << (CONST_BITS-1); |
| 4305 | |
| 4306 | dataptr[DCTSIZE*1] = (DCTELEM) |
| 4307 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
| 4308 | CONST_BITS); |
| 4309 | dataptr[DCTSIZE*3] = (DCTELEM) |
| 4310 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
| 4311 | CONST_BITS); |
| 4312 | |
| 4313 | dataptr++; /* advance pointer to next column */ |
| 4314 | } |
| 4315 | } |
| 4316 | |
| 4317 | |
| 4318 | /* |
| 4319 | * Perform the forward DCT on a 1x2 sample block. |
| 4320 | * |
| 4321 | * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
| 4322 | */ |
| 4323 | |
| 4324 | GLOBAL(void) |
| 4325 | jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
| 4326 | { |
| 4327 | INT32 tmp0, tmp1; |
| 4328 | |
| 4329 | /* Pre-zero output coefficient block. */ |
| 4330 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
| 4331 | |
| 4332 | tmp0 = GETJSAMPLE(sample_data[0][start_col]); |
| 4333 | tmp1 = GETJSAMPLE(sample_data[1][start_col]); |
| 4334 | |
| 4335 | /* We leave the results scaled up by an overall factor of 8. |
| 4336 | * We must also scale the output by (8/1)*(8/2) = 2**5. |
| 4337 | */ |
| 4338 | |
| 4339 | /* Even part */ |
| 4340 | /* Apply unsigned->signed conversion */ |
| 4341 | data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
| 4342 | |
| 4343 | /* Odd part */ |
| 4344 | data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
| 4345 | } |
| 4346 | |
| 4347 | #endif /* DCT_SCALING_SUPPORTED */ |
| 4348 | #endif /* DCT_ISLOW_SUPPORTED */ |