Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame] | 1 | /* |
| 2 | * jchuff.c |
| 3 | * |
| 4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
| 5 | * Modified 2006-2009 by Guido Vollbeding. |
| 6 | * This file is part of the Independent JPEG Group's software. |
| 7 | * For conditions of distribution and use, see the accompanying README file. |
| 8 | * |
| 9 | * This file contains Huffman entropy encoding routines. |
| 10 | * Both sequential and progressive modes are supported in this single module. |
| 11 | * |
| 12 | * Much of the complexity here has to do with supporting output suspension. |
| 13 | * If the data destination module demands suspension, we want to be able to |
| 14 | * back up to the start of the current MCU. To do this, we copy state |
| 15 | * variables into local working storage, and update them back to the |
| 16 | * permanent JPEG objects only upon successful completion of an MCU. |
| 17 | * |
| 18 | * We do not support output suspension for the progressive JPEG mode, since |
| 19 | * the library currently does not allow multiple-scan files to be written |
| 20 | * with output suspension. |
| 21 | */ |
| 22 | |
| 23 | #define JPEG_INTERNALS |
| 24 | #include "jinclude.h" |
| 25 | #include "jpeglib.h" |
| 26 | |
| 27 | |
| 28 | /* The legal range of a DCT coefficient is |
| 29 | * -1024 .. +1023 for 8-bit data; |
| 30 | * -16384 .. +16383 for 12-bit data. |
| 31 | * Hence the magnitude should always fit in 10 or 14 bits respectively. |
| 32 | */ |
| 33 | |
| 34 | #if BITS_IN_JSAMPLE == 8 |
| 35 | #define MAX_COEF_BITS 10 |
| 36 | #else |
| 37 | #define MAX_COEF_BITS 14 |
| 38 | #endif |
| 39 | |
| 40 | /* Derived data constructed for each Huffman table */ |
| 41 | |
| 42 | typedef struct { |
| 43 | unsigned int ehufco[256]; /* code for each symbol */ |
| 44 | char ehufsi[256]; /* length of code for each symbol */ |
| 45 | /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
| 46 | } c_derived_tbl; |
| 47 | |
| 48 | |
| 49 | /* Expanded entropy encoder object for Huffman encoding. |
| 50 | * |
| 51 | * The savable_state subrecord contains fields that change within an MCU, |
| 52 | * but must not be updated permanently until we complete the MCU. |
| 53 | */ |
| 54 | |
| 55 | typedef struct { |
| 56 | INT32 put_buffer; /* current bit-accumulation buffer */ |
| 57 | int put_bits; /* # of bits now in it */ |
| 58 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 59 | } savable_state; |
| 60 | |
| 61 | /* This macro is to work around compilers with missing or broken |
| 62 | * structure assignment. You'll need to fix this code if you have |
| 63 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
| 64 | */ |
| 65 | |
| 66 | #ifndef NO_STRUCT_ASSIGN |
| 67 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
| 68 | #else |
| 69 | #if MAX_COMPS_IN_SCAN == 4 |
| 70 | #define ASSIGN_STATE(dest,src) \ |
| 71 | ((dest).put_buffer = (src).put_buffer, \ |
| 72 | (dest).put_bits = (src).put_bits, \ |
| 73 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
| 74 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
| 75 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
| 76 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
| 77 | #endif |
| 78 | #endif |
| 79 | |
| 80 | |
| 81 | typedef struct { |
| 82 | struct jpeg_entropy_encoder pub; /* public fields */ |
| 83 | |
| 84 | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
| 85 | |
| 86 | /* These fields are NOT loaded into local working state. */ |
| 87 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 88 | int next_restart_num; /* next restart number to write (0-7) */ |
| 89 | |
| 90 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
| 91 | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
| 92 | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
| 93 | |
| 94 | /* Statistics tables for optimization */ |
| 95 | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
| 96 | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
| 97 | |
| 98 | /* Following fields used only in progressive mode */ |
| 99 | |
| 100 | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
| 101 | boolean gather_statistics; |
| 102 | |
| 103 | /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
| 104 | */ |
| 105 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| 106 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| 107 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
| 108 | |
| 109 | /* Coding status for AC components */ |
| 110 | int ac_tbl_no; /* the table number of the single component */ |
| 111 | unsigned int EOBRUN; /* run length of EOBs */ |
| 112 | unsigned int BE; /* # of buffered correction bits before MCU */ |
| 113 | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
| 114 | /* packing correction bits tightly would save some space but cost time... */ |
| 115 | } huff_entropy_encoder; |
| 116 | |
| 117 | typedef huff_entropy_encoder * huff_entropy_ptr; |
| 118 | |
| 119 | /* Working state while writing an MCU (sequential mode). |
| 120 | * This struct contains all the fields that are needed by subroutines. |
| 121 | */ |
| 122 | |
| 123 | typedef struct { |
| 124 | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
| 125 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
| 126 | savable_state cur; /* Current bit buffer & DC state */ |
| 127 | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
| 128 | } working_state; |
| 129 | |
| 130 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
| 131 | * buffer can hold. Larger sizes may slightly improve compression, but |
| 132 | * 1000 is already well into the realm of overkill. |
| 133 | * The minimum safe size is 64 bits. |
| 134 | */ |
| 135 | |
| 136 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
| 137 | |
| 138 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| 139 | * We assume that int right shift is unsigned if INT32 right shift is, |
| 140 | * which should be safe. |
| 141 | */ |
| 142 | |
| 143 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| 144 | #define ISHIFT_TEMPS int ishift_temp; |
| 145 | #define IRIGHT_SHIFT(x,shft) \ |
| 146 | ((ishift_temp = (x)) < 0 ? \ |
| 147 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| 148 | (ishift_temp >> (shft))) |
| 149 | #else |
| 150 | #define ISHIFT_TEMPS |
| 151 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| 152 | #endif |
| 153 | |
| 154 | |
| 155 | /* |
| 156 | * Compute the derived values for a Huffman table. |
| 157 | * This routine also performs some validation checks on the table. |
| 158 | */ |
| 159 | |
| 160 | LOCAL(void) |
| 161 | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
| 162 | c_derived_tbl ** pdtbl) |
| 163 | { |
| 164 | JHUFF_TBL *htbl; |
| 165 | c_derived_tbl *dtbl; |
| 166 | int p, i, l, lastp, si, maxsymbol; |
| 167 | char huffsize[257]; |
| 168 | unsigned int huffcode[257]; |
| 169 | unsigned int code; |
| 170 | |
| 171 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
| 172 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
| 173 | */ |
| 174 | |
| 175 | /* Find the input Huffman table */ |
| 176 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
| 177 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 178 | htbl = |
| 179 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
| 180 | if (htbl == NULL) |
| 181 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
| 182 | |
| 183 | /* Allocate a workspace if we haven't already done so. */ |
| 184 | if (*pdtbl == NULL) |
| 185 | *pdtbl = (c_derived_tbl *) |
| 186 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 187 | SIZEOF(c_derived_tbl)); |
| 188 | dtbl = *pdtbl; |
| 189 | |
| 190 | /* Figure C.1: make table of Huffman code length for each symbol */ |
| 191 | |
| 192 | p = 0; |
| 193 | for (l = 1; l <= 16; l++) { |
| 194 | i = (int) htbl->bits[l]; |
| 195 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
| 196 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 197 | while (i--) |
| 198 | huffsize[p++] = (char) l; |
| 199 | } |
| 200 | huffsize[p] = 0; |
| 201 | lastp = p; |
| 202 | |
| 203 | /* Figure C.2: generate the codes themselves */ |
| 204 | /* We also validate that the counts represent a legal Huffman code tree. */ |
| 205 | |
| 206 | code = 0; |
| 207 | si = huffsize[0]; |
| 208 | p = 0; |
| 209 | while (huffsize[p]) { |
| 210 | while (((int) huffsize[p]) == si) { |
| 211 | huffcode[p++] = code; |
| 212 | code++; |
| 213 | } |
| 214 | /* code is now 1 more than the last code used for codelength si; but |
| 215 | * it must still fit in si bits, since no code is allowed to be all ones. |
| 216 | */ |
| 217 | if (((INT32) code) >= (((INT32) 1) << si)) |
| 218 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 219 | code <<= 1; |
| 220 | si++; |
| 221 | } |
| 222 | |
| 223 | /* Figure C.3: generate encoding tables */ |
| 224 | /* These are code and size indexed by symbol value */ |
| 225 | |
| 226 | /* Set all codeless symbols to have code length 0; |
| 227 | * this lets us detect duplicate VAL entries here, and later |
| 228 | * allows emit_bits to detect any attempt to emit such symbols. |
| 229 | */ |
| 230 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
| 231 | |
| 232 | /* This is also a convenient place to check for out-of-range |
| 233 | * and duplicated VAL entries. We allow 0..255 for AC symbols |
| 234 | * but only 0..15 for DC. (We could constrain them further |
| 235 | * based on data depth and mode, but this seems enough.) |
| 236 | */ |
| 237 | maxsymbol = isDC ? 15 : 255; |
| 238 | |
| 239 | for (p = 0; p < lastp; p++) { |
| 240 | i = htbl->huffval[p]; |
| 241 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
| 242 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
| 243 | dtbl->ehufco[i] = huffcode[p]; |
| 244 | dtbl->ehufsi[i] = huffsize[p]; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | |
| 249 | /* Outputting bytes to the file. |
| 250 | * NB: these must be called only when actually outputting, |
| 251 | * that is, entropy->gather_statistics == FALSE. |
| 252 | */ |
| 253 | |
| 254 | /* Emit a byte, taking 'action' if must suspend. */ |
| 255 | #define emit_byte_s(state,val,action) \ |
| 256 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
| 257 | if (--(state)->free_in_buffer == 0) \ |
| 258 | if (! dump_buffer_s(state)) \ |
| 259 | { action; } } |
| 260 | |
| 261 | /* Emit a byte */ |
| 262 | #define emit_byte_e(entropy,val) \ |
| 263 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
| 264 | if (--(entropy)->free_in_buffer == 0) \ |
| 265 | dump_buffer_e(entropy); } |
| 266 | |
| 267 | |
| 268 | LOCAL(boolean) |
| 269 | dump_buffer_s (working_state * state) |
| 270 | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
| 271 | { |
| 272 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
| 273 | |
| 274 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
| 275 | return FALSE; |
| 276 | /* After a successful buffer dump, must reset buffer pointers */ |
| 277 | state->next_output_byte = dest->next_output_byte; |
| 278 | state->free_in_buffer = dest->free_in_buffer; |
| 279 | return TRUE; |
| 280 | } |
| 281 | |
| 282 | |
| 283 | LOCAL(void) |
| 284 | dump_buffer_e (huff_entropy_ptr entropy) |
| 285 | /* Empty the output buffer; we do not support suspension in this case. */ |
| 286 | { |
| 287 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
| 288 | |
| 289 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
| 290 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
| 291 | /* After a successful buffer dump, must reset buffer pointers */ |
| 292 | entropy->next_output_byte = dest->next_output_byte; |
| 293 | entropy->free_in_buffer = dest->free_in_buffer; |
| 294 | } |
| 295 | |
| 296 | |
| 297 | /* Outputting bits to the file */ |
| 298 | |
| 299 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
| 300 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
| 301 | * in one call, and we never retain more than 7 bits in put_buffer |
| 302 | * between calls, so 24 bits are sufficient. |
| 303 | */ |
| 304 | |
| 305 | INLINE |
| 306 | LOCAL(boolean) |
| 307 | emit_bits_s (working_state * state, unsigned int code, int size) |
| 308 | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
| 309 | { |
| 310 | /* This routine is heavily used, so it's worth coding tightly. */ |
| 311 | register INT32 put_buffer = (INT32) code; |
| 312 | register int put_bits = state->cur.put_bits; |
| 313 | |
| 314 | /* if size is 0, caller used an invalid Huffman table entry */ |
| 315 | if (size == 0) |
| 316 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
| 317 | |
| 318 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
| 319 | |
| 320 | put_bits += size; /* new number of bits in buffer */ |
| 321 | |
| 322 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| 323 | |
| 324 | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ |
| 325 | |
| 326 | while (put_bits >= 8) { |
| 327 | int c = (int) ((put_buffer >> 16) & 0xFF); |
| 328 | |
| 329 | emit_byte_s(state, c, return FALSE); |
| 330 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
| 331 | emit_byte_s(state, 0, return FALSE); |
| 332 | } |
| 333 | put_buffer <<= 8; |
| 334 | put_bits -= 8; |
| 335 | } |
| 336 | |
| 337 | state->cur.put_buffer = put_buffer; /* update state variables */ |
| 338 | state->cur.put_bits = put_bits; |
| 339 | |
| 340 | return TRUE; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | INLINE |
| 345 | LOCAL(void) |
| 346 | emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) |
| 347 | /* Emit some bits, unless we are in gather mode */ |
| 348 | { |
| 349 | /* This routine is heavily used, so it's worth coding tightly. */ |
| 350 | register INT32 put_buffer = (INT32) code; |
| 351 | register int put_bits = entropy->saved.put_bits; |
| 352 | |
| 353 | /* if size is 0, caller used an invalid Huffman table entry */ |
| 354 | if (size == 0) |
| 355 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| 356 | |
| 357 | if (entropy->gather_statistics) |
| 358 | return; /* do nothing if we're only getting stats */ |
| 359 | |
| 360 | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ |
| 361 | |
| 362 | put_bits += size; /* new number of bits in buffer */ |
| 363 | |
| 364 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
| 365 | |
| 366 | /* and merge with old buffer contents */ |
| 367 | put_buffer |= entropy->saved.put_buffer; |
| 368 | |
| 369 | while (put_bits >= 8) { |
| 370 | int c = (int) ((put_buffer >> 16) & 0xFF); |
| 371 | |
| 372 | emit_byte_e(entropy, c); |
| 373 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
| 374 | emit_byte_e(entropy, 0); |
| 375 | } |
| 376 | put_buffer <<= 8; |
| 377 | put_bits -= 8; |
| 378 | } |
| 379 | |
| 380 | entropy->saved.put_buffer = put_buffer; /* update variables */ |
| 381 | entropy->saved.put_bits = put_bits; |
| 382 | } |
| 383 | |
| 384 | |
| 385 | LOCAL(boolean) |
| 386 | flush_bits_s (working_state * state) |
| 387 | { |
| 388 | if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ |
| 389 | return FALSE; |
| 390 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
| 391 | state->cur.put_bits = 0; |
| 392 | return TRUE; |
| 393 | } |
| 394 | |
| 395 | |
| 396 | LOCAL(void) |
| 397 | flush_bits_e (huff_entropy_ptr entropy) |
| 398 | { |
| 399 | emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
| 400 | entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ |
| 401 | entropy->saved.put_bits = 0; |
| 402 | } |
| 403 | |
| 404 | |
| 405 | /* |
| 406 | * Emit (or just count) a Huffman symbol. |
| 407 | */ |
| 408 | |
| 409 | INLINE |
| 410 | LOCAL(void) |
| 411 | emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
| 412 | { |
| 413 | if (entropy->gather_statistics) |
| 414 | entropy->dc_count_ptrs[tbl_no][symbol]++; |
| 415 | else { |
| 416 | c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; |
| 417 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | |
| 422 | INLINE |
| 423 | LOCAL(void) |
| 424 | emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
| 425 | { |
| 426 | if (entropy->gather_statistics) |
| 427 | entropy->ac_count_ptrs[tbl_no][symbol]++; |
| 428 | else { |
| 429 | c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; |
| 430 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | |
| 435 | /* |
| 436 | * Emit bits from a correction bit buffer. |
| 437 | */ |
| 438 | |
| 439 | LOCAL(void) |
| 440 | emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, |
| 441 | unsigned int nbits) |
| 442 | { |
| 443 | if (entropy->gather_statistics) |
| 444 | return; /* no real work */ |
| 445 | |
| 446 | while (nbits > 0) { |
| 447 | emit_bits_e(entropy, (unsigned int) (*bufstart), 1); |
| 448 | bufstart++; |
| 449 | nbits--; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | |
| 454 | /* |
| 455 | * Emit any pending EOBRUN symbol. |
| 456 | */ |
| 457 | |
| 458 | LOCAL(void) |
| 459 | emit_eobrun (huff_entropy_ptr entropy) |
| 460 | { |
| 461 | register int temp, nbits; |
| 462 | |
| 463 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
| 464 | temp = entropy->EOBRUN; |
| 465 | nbits = 0; |
| 466 | while ((temp >>= 1)) |
| 467 | nbits++; |
| 468 | /* safety check: shouldn't happen given limited correction-bit buffer */ |
| 469 | if (nbits > 14) |
| 470 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
| 471 | |
| 472 | emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
| 473 | if (nbits) |
| 474 | emit_bits_e(entropy, entropy->EOBRUN, nbits); |
| 475 | |
| 476 | entropy->EOBRUN = 0; |
| 477 | |
| 478 | /* Emit any buffered correction bits */ |
| 479 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
| 480 | entropy->BE = 0; |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | |
| 485 | /* |
| 486 | * Emit a restart marker & resynchronize predictions. |
| 487 | */ |
| 488 | |
| 489 | LOCAL(boolean) |
| 490 | emit_restart_s (working_state * state, int restart_num) |
| 491 | { |
| 492 | int ci; |
| 493 | |
| 494 | if (! flush_bits_s(state)) |
| 495 | return FALSE; |
| 496 | |
| 497 | emit_byte_s(state, 0xFF, return FALSE); |
| 498 | emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); |
| 499 | |
| 500 | /* Re-initialize DC predictions to 0 */ |
| 501 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
| 502 | state->cur.last_dc_val[ci] = 0; |
| 503 | |
| 504 | /* The restart counter is not updated until we successfully write the MCU. */ |
| 505 | |
| 506 | return TRUE; |
| 507 | } |
| 508 | |
| 509 | |
| 510 | LOCAL(void) |
| 511 | emit_restart_e (huff_entropy_ptr entropy, int restart_num) |
| 512 | { |
| 513 | int ci; |
| 514 | |
| 515 | emit_eobrun(entropy); |
| 516 | |
| 517 | if (! entropy->gather_statistics) { |
| 518 | flush_bits_e(entropy); |
| 519 | emit_byte_e(entropy, 0xFF); |
| 520 | emit_byte_e(entropy, JPEG_RST0 + restart_num); |
| 521 | } |
| 522 | |
| 523 | if (entropy->cinfo->Ss == 0) { |
| 524 | /* Re-initialize DC predictions to 0 */ |
| 525 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
| 526 | entropy->saved.last_dc_val[ci] = 0; |
| 527 | } else { |
| 528 | /* Re-initialize all AC-related fields to 0 */ |
| 529 | entropy->EOBRUN = 0; |
| 530 | entropy->BE = 0; |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | |
| 535 | /* |
| 536 | * MCU encoding for DC initial scan (either spectral selection, |
| 537 | * or first pass of successive approximation). |
| 538 | */ |
| 539 | |
| 540 | METHODDEF(boolean) |
| 541 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 542 | { |
| 543 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 544 | register int temp, temp2; |
| 545 | register int nbits; |
| 546 | int blkn, ci; |
| 547 | int Al = cinfo->Al; |
| 548 | JBLOCKROW block; |
| 549 | jpeg_component_info * compptr; |
| 550 | ISHIFT_TEMPS |
| 551 | |
| 552 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 553 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 554 | |
| 555 | /* Emit restart marker if needed */ |
| 556 | if (cinfo->restart_interval) |
| 557 | if (entropy->restarts_to_go == 0) |
| 558 | emit_restart_e(entropy, entropy->next_restart_num); |
| 559 | |
| 560 | /* Encode the MCU data blocks */ |
| 561 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 562 | block = MCU_data[blkn]; |
| 563 | ci = cinfo->MCU_membership[blkn]; |
| 564 | compptr = cinfo->cur_comp_info[ci]; |
| 565 | |
| 566 | /* Compute the DC value after the required point transform by Al. |
| 567 | * This is simply an arithmetic right shift. |
| 568 | */ |
| 569 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
| 570 | |
| 571 | /* DC differences are figured on the point-transformed values. */ |
| 572 | temp = temp2 - entropy->saved.last_dc_val[ci]; |
| 573 | entropy->saved.last_dc_val[ci] = temp2; |
| 574 | |
| 575 | /* Encode the DC coefficient difference per section G.1.2.1 */ |
| 576 | temp2 = temp; |
| 577 | if (temp < 0) { |
| 578 | temp = -temp; /* temp is abs value of input */ |
| 579 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
| 580 | /* This code assumes we are on a two's complement machine */ |
| 581 | temp2--; |
| 582 | } |
| 583 | |
| 584 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 585 | nbits = 0; |
| 586 | while (temp) { |
| 587 | nbits++; |
| 588 | temp >>= 1; |
| 589 | } |
| 590 | /* Check for out-of-range coefficient values. |
| 591 | * Since we're encoding a difference, the range limit is twice as much. |
| 592 | */ |
| 593 | if (nbits > MAX_COEF_BITS+1) |
| 594 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 595 | |
| 596 | /* Count/emit the Huffman-coded symbol for the number of bits */ |
| 597 | emit_dc_symbol(entropy, compptr->dc_tbl_no, nbits); |
| 598 | |
| 599 | /* Emit that number of bits of the value, if positive, */ |
| 600 | /* or the complement of its magnitude, if negative. */ |
| 601 | if (nbits) /* emit_bits rejects calls with size 0 */ |
| 602 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
| 603 | } |
| 604 | |
| 605 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 606 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 607 | |
| 608 | /* Update restart-interval state too */ |
| 609 | if (cinfo->restart_interval) { |
| 610 | if (entropy->restarts_to_go == 0) { |
| 611 | entropy->restarts_to_go = cinfo->restart_interval; |
| 612 | entropy->next_restart_num++; |
| 613 | entropy->next_restart_num &= 7; |
| 614 | } |
| 615 | entropy->restarts_to_go--; |
| 616 | } |
| 617 | |
| 618 | return TRUE; |
| 619 | } |
| 620 | |
| 621 | |
| 622 | /* |
| 623 | * MCU encoding for AC initial scan (either spectral selection, |
| 624 | * or first pass of successive approximation). |
| 625 | */ |
| 626 | |
| 627 | METHODDEF(boolean) |
| 628 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 629 | { |
| 630 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 631 | register int temp, temp2; |
| 632 | register int nbits; |
| 633 | register int r, k; |
| 634 | int Se, Al; |
| 635 | const int * natural_order; |
| 636 | JBLOCKROW block; |
| 637 | |
| 638 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 639 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 640 | |
| 641 | /* Emit restart marker if needed */ |
| 642 | if (cinfo->restart_interval) |
| 643 | if (entropy->restarts_to_go == 0) |
| 644 | emit_restart_e(entropy, entropy->next_restart_num); |
| 645 | |
| 646 | Se = cinfo->Se; |
| 647 | Al = cinfo->Al; |
| 648 | natural_order = cinfo->natural_order; |
| 649 | |
| 650 | /* Encode the MCU data block */ |
| 651 | block = MCU_data[0]; |
| 652 | |
| 653 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
| 654 | |
| 655 | r = 0; /* r = run length of zeros */ |
| 656 | |
| 657 | for (k = cinfo->Ss; k <= Se; k++) { |
| 658 | if ((temp = (*block)[natural_order[k]]) == 0) { |
| 659 | r++; |
| 660 | continue; |
| 661 | } |
| 662 | /* We must apply the point transform by Al. For AC coefficients this |
| 663 | * is an integer division with rounding towards 0. To do this portably |
| 664 | * in C, we shift after obtaining the absolute value; so the code is |
| 665 | * interwoven with finding the abs value (temp) and output bits (temp2). |
| 666 | */ |
| 667 | if (temp < 0) { |
| 668 | temp = -temp; /* temp is abs value of input */ |
| 669 | temp >>= Al; /* apply the point transform */ |
| 670 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
| 671 | temp2 = ~temp; |
| 672 | } else { |
| 673 | temp >>= Al; /* apply the point transform */ |
| 674 | temp2 = temp; |
| 675 | } |
| 676 | /* Watch out for case that nonzero coef is zero after point transform */ |
| 677 | if (temp == 0) { |
| 678 | r++; |
| 679 | continue; |
| 680 | } |
| 681 | |
| 682 | /* Emit any pending EOBRUN */ |
| 683 | if (entropy->EOBRUN > 0) |
| 684 | emit_eobrun(entropy); |
| 685 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| 686 | while (r > 15) { |
| 687 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| 688 | r -= 16; |
| 689 | } |
| 690 | |
| 691 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 692 | nbits = 1; /* there must be at least one 1 bit */ |
| 693 | while ((temp >>= 1)) |
| 694 | nbits++; |
| 695 | /* Check for out-of-range coefficient values */ |
| 696 | if (nbits > MAX_COEF_BITS) |
| 697 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 698 | |
| 699 | /* Count/emit Huffman symbol for run length / number of bits */ |
| 700 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
| 701 | |
| 702 | /* Emit that number of bits of the value, if positive, */ |
| 703 | /* or the complement of its magnitude, if negative. */ |
| 704 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
| 705 | |
| 706 | r = 0; /* reset zero run length */ |
| 707 | } |
| 708 | |
| 709 | if (r > 0) { /* If there are trailing zeroes, */ |
| 710 | entropy->EOBRUN++; /* count an EOB */ |
| 711 | if (entropy->EOBRUN == 0x7FFF) |
| 712 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
| 713 | } |
| 714 | |
| 715 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 716 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 717 | |
| 718 | /* Update restart-interval state too */ |
| 719 | if (cinfo->restart_interval) { |
| 720 | if (entropy->restarts_to_go == 0) { |
| 721 | entropy->restarts_to_go = cinfo->restart_interval; |
| 722 | entropy->next_restart_num++; |
| 723 | entropy->next_restart_num &= 7; |
| 724 | } |
| 725 | entropy->restarts_to_go--; |
| 726 | } |
| 727 | |
| 728 | return TRUE; |
| 729 | } |
| 730 | |
| 731 | |
| 732 | /* |
| 733 | * MCU encoding for DC successive approximation refinement scan. |
| 734 | * Note: we assume such scans can be multi-component, although the spec |
| 735 | * is not very clear on the point. |
| 736 | */ |
| 737 | |
| 738 | METHODDEF(boolean) |
| 739 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 740 | { |
| 741 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 742 | register int temp; |
| 743 | int blkn; |
| 744 | int Al = cinfo->Al; |
| 745 | JBLOCKROW block; |
| 746 | |
| 747 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 748 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 749 | |
| 750 | /* Emit restart marker if needed */ |
| 751 | if (cinfo->restart_interval) |
| 752 | if (entropy->restarts_to_go == 0) |
| 753 | emit_restart_e(entropy, entropy->next_restart_num); |
| 754 | |
| 755 | /* Encode the MCU data blocks */ |
| 756 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 757 | block = MCU_data[blkn]; |
| 758 | |
| 759 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
| 760 | temp = (*block)[0]; |
| 761 | emit_bits_e(entropy, (unsigned int) (temp >> Al), 1); |
| 762 | } |
| 763 | |
| 764 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 765 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 766 | |
| 767 | /* Update restart-interval state too */ |
| 768 | if (cinfo->restart_interval) { |
| 769 | if (entropy->restarts_to_go == 0) { |
| 770 | entropy->restarts_to_go = cinfo->restart_interval; |
| 771 | entropy->next_restart_num++; |
| 772 | entropy->next_restart_num &= 7; |
| 773 | } |
| 774 | entropy->restarts_to_go--; |
| 775 | } |
| 776 | |
| 777 | return TRUE; |
| 778 | } |
| 779 | |
| 780 | |
| 781 | /* |
| 782 | * MCU encoding for AC successive approximation refinement scan. |
| 783 | */ |
| 784 | |
| 785 | METHODDEF(boolean) |
| 786 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 787 | { |
| 788 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 789 | register int temp; |
| 790 | register int r, k; |
| 791 | int EOB; |
| 792 | char *BR_buffer; |
| 793 | unsigned int BR; |
| 794 | int Se, Al; |
| 795 | const int * natural_order; |
| 796 | JBLOCKROW block; |
| 797 | int absvalues[DCTSIZE2]; |
| 798 | |
| 799 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 800 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 801 | |
| 802 | /* Emit restart marker if needed */ |
| 803 | if (cinfo->restart_interval) |
| 804 | if (entropy->restarts_to_go == 0) |
| 805 | emit_restart_e(entropy, entropy->next_restart_num); |
| 806 | |
| 807 | Se = cinfo->Se; |
| 808 | Al = cinfo->Al; |
| 809 | natural_order = cinfo->natural_order; |
| 810 | |
| 811 | /* Encode the MCU data block */ |
| 812 | block = MCU_data[0]; |
| 813 | |
| 814 | /* It is convenient to make a pre-pass to determine the transformed |
| 815 | * coefficients' absolute values and the EOB position. |
| 816 | */ |
| 817 | EOB = 0; |
| 818 | for (k = cinfo->Ss; k <= Se; k++) { |
| 819 | temp = (*block)[natural_order[k]]; |
| 820 | /* We must apply the point transform by Al. For AC coefficients this |
| 821 | * is an integer division with rounding towards 0. To do this portably |
| 822 | * in C, we shift after obtaining the absolute value. |
| 823 | */ |
| 824 | if (temp < 0) |
| 825 | temp = -temp; /* temp is abs value of input */ |
| 826 | temp >>= Al; /* apply the point transform */ |
| 827 | absvalues[k] = temp; /* save abs value for main pass */ |
| 828 | if (temp == 1) |
| 829 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
| 830 | } |
| 831 | |
| 832 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
| 833 | |
| 834 | r = 0; /* r = run length of zeros */ |
| 835 | BR = 0; /* BR = count of buffered bits added now */ |
| 836 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
| 837 | |
| 838 | for (k = cinfo->Ss; k <= Se; k++) { |
| 839 | if ((temp = absvalues[k]) == 0) { |
| 840 | r++; |
| 841 | continue; |
| 842 | } |
| 843 | |
| 844 | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
| 845 | while (r > 15 && k <= EOB) { |
| 846 | /* emit any pending EOBRUN and the BE correction bits */ |
| 847 | emit_eobrun(entropy); |
| 848 | /* Emit ZRL */ |
| 849 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
| 850 | r -= 16; |
| 851 | /* Emit buffered correction bits that must be associated with ZRL */ |
| 852 | emit_buffered_bits(entropy, BR_buffer, BR); |
| 853 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| 854 | BR = 0; |
| 855 | } |
| 856 | |
| 857 | /* If the coef was previously nonzero, it only needs a correction bit. |
| 858 | * NOTE: a straight translation of the spec's figure G.7 would suggest |
| 859 | * that we also need to test r > 15. But if r > 15, we can only get here |
| 860 | * if k > EOB, which implies that this coefficient is not 1. |
| 861 | */ |
| 862 | if (temp > 1) { |
| 863 | /* The correction bit is the next bit of the absolute value. */ |
| 864 | BR_buffer[BR++] = (char) (temp & 1); |
| 865 | continue; |
| 866 | } |
| 867 | |
| 868 | /* Emit any pending EOBRUN and the BE correction bits */ |
| 869 | emit_eobrun(entropy); |
| 870 | |
| 871 | /* Count/emit Huffman symbol for run length / number of bits */ |
| 872 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
| 873 | |
| 874 | /* Emit output bit for newly-nonzero coef */ |
| 875 | temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; |
| 876 | emit_bits_e(entropy, (unsigned int) temp, 1); |
| 877 | |
| 878 | /* Emit buffered correction bits that must be associated with this code */ |
| 879 | emit_buffered_bits(entropy, BR_buffer, BR); |
| 880 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
| 881 | BR = 0; |
| 882 | r = 0; /* reset zero run length */ |
| 883 | } |
| 884 | |
| 885 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
| 886 | entropy->EOBRUN++; /* count an EOB */ |
| 887 | entropy->BE += BR; /* concat my correction bits to older ones */ |
| 888 | /* We force out the EOB if we risk either: |
| 889 | * 1. overflow of the EOB counter; |
| 890 | * 2. overflow of the correction bit buffer during the next MCU. |
| 891 | */ |
| 892 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
| 893 | emit_eobrun(entropy); |
| 894 | } |
| 895 | |
| 896 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 897 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 898 | |
| 899 | /* Update restart-interval state too */ |
| 900 | if (cinfo->restart_interval) { |
| 901 | if (entropy->restarts_to_go == 0) { |
| 902 | entropy->restarts_to_go = cinfo->restart_interval; |
| 903 | entropy->next_restart_num++; |
| 904 | entropy->next_restart_num &= 7; |
| 905 | } |
| 906 | entropy->restarts_to_go--; |
| 907 | } |
| 908 | |
| 909 | return TRUE; |
| 910 | } |
| 911 | |
| 912 | |
| 913 | /* Encode a single block's worth of coefficients */ |
| 914 | |
| 915 | LOCAL(boolean) |
| 916 | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
| 917 | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
| 918 | { |
| 919 | register int temp, temp2; |
| 920 | register int nbits; |
| 921 | register int k, r, i; |
| 922 | int Se = state->cinfo->lim_Se; |
| 923 | const int * natural_order = state->cinfo->natural_order; |
| 924 | |
| 925 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
| 926 | |
| 927 | temp = temp2 = block[0] - last_dc_val; |
| 928 | |
| 929 | if (temp < 0) { |
| 930 | temp = -temp; /* temp is abs value of input */ |
| 931 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
| 932 | /* This code assumes we are on a two's complement machine */ |
| 933 | temp2--; |
| 934 | } |
| 935 | |
| 936 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 937 | nbits = 0; |
| 938 | while (temp) { |
| 939 | nbits++; |
| 940 | temp >>= 1; |
| 941 | } |
| 942 | /* Check for out-of-range coefficient values. |
| 943 | * Since we're encoding a difference, the range limit is twice as much. |
| 944 | */ |
| 945 | if (nbits > MAX_COEF_BITS+1) |
| 946 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
| 947 | |
| 948 | /* Emit the Huffman-coded symbol for the number of bits */ |
| 949 | if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
| 950 | return FALSE; |
| 951 | |
| 952 | /* Emit that number of bits of the value, if positive, */ |
| 953 | /* or the complement of its magnitude, if negative. */ |
| 954 | if (nbits) /* emit_bits rejects calls with size 0 */ |
| 955 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
| 956 | return FALSE; |
| 957 | |
| 958 | /* Encode the AC coefficients per section F.1.2.2 */ |
| 959 | |
| 960 | r = 0; /* r = run length of zeros */ |
| 961 | |
| 962 | for (k = 1; k <= Se; k++) { |
| 963 | if ((temp = block[natural_order[k]]) == 0) { |
| 964 | r++; |
| 965 | } else { |
| 966 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| 967 | while (r > 15) { |
| 968 | if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
| 969 | return FALSE; |
| 970 | r -= 16; |
| 971 | } |
| 972 | |
| 973 | temp2 = temp; |
| 974 | if (temp < 0) { |
| 975 | temp = -temp; /* temp is abs value of input */ |
| 976 | /* This code assumes we are on a two's complement machine */ |
| 977 | temp2--; |
| 978 | } |
| 979 | |
| 980 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 981 | nbits = 1; /* there must be at least one 1 bit */ |
| 982 | while ((temp >>= 1)) |
| 983 | nbits++; |
| 984 | /* Check for out-of-range coefficient values */ |
| 985 | if (nbits > MAX_COEF_BITS) |
| 986 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
| 987 | |
| 988 | /* Emit Huffman symbol for run length / number of bits */ |
| 989 | i = (r << 4) + nbits; |
| 990 | if (! emit_bits_s(state, actbl->ehufco[i], actbl->ehufsi[i])) |
| 991 | return FALSE; |
| 992 | |
| 993 | /* Emit that number of bits of the value, if positive, */ |
| 994 | /* or the complement of its magnitude, if negative. */ |
| 995 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
| 996 | return FALSE; |
| 997 | |
| 998 | r = 0; |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | /* If the last coef(s) were zero, emit an end-of-block code */ |
| 1003 | if (r > 0) |
| 1004 | if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) |
| 1005 | return FALSE; |
| 1006 | |
| 1007 | return TRUE; |
| 1008 | } |
| 1009 | |
| 1010 | |
| 1011 | /* |
| 1012 | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
| 1013 | */ |
| 1014 | |
| 1015 | METHODDEF(boolean) |
| 1016 | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 1017 | { |
| 1018 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 1019 | working_state state; |
| 1020 | int blkn, ci; |
| 1021 | jpeg_component_info * compptr; |
| 1022 | |
| 1023 | /* Load up working state */ |
| 1024 | state.next_output_byte = cinfo->dest->next_output_byte; |
| 1025 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
| 1026 | ASSIGN_STATE(state.cur, entropy->saved); |
| 1027 | state.cinfo = cinfo; |
| 1028 | |
| 1029 | /* Emit restart marker if needed */ |
| 1030 | if (cinfo->restart_interval) { |
| 1031 | if (entropy->restarts_to_go == 0) |
| 1032 | if (! emit_restart_s(&state, entropy->next_restart_num)) |
| 1033 | return FALSE; |
| 1034 | } |
| 1035 | |
| 1036 | /* Encode the MCU data blocks */ |
| 1037 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 1038 | ci = cinfo->MCU_membership[blkn]; |
| 1039 | compptr = cinfo->cur_comp_info[ci]; |
| 1040 | if (! encode_one_block(&state, |
| 1041 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
| 1042 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
| 1043 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
| 1044 | return FALSE; |
| 1045 | /* Update last_dc_val */ |
| 1046 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| 1047 | } |
| 1048 | |
| 1049 | /* Completed MCU, so update state */ |
| 1050 | cinfo->dest->next_output_byte = state.next_output_byte; |
| 1051 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
| 1052 | ASSIGN_STATE(entropy->saved, state.cur); |
| 1053 | |
| 1054 | /* Update restart-interval state too */ |
| 1055 | if (cinfo->restart_interval) { |
| 1056 | if (entropy->restarts_to_go == 0) { |
| 1057 | entropy->restarts_to_go = cinfo->restart_interval; |
| 1058 | entropy->next_restart_num++; |
| 1059 | entropy->next_restart_num &= 7; |
| 1060 | } |
| 1061 | entropy->restarts_to_go--; |
| 1062 | } |
| 1063 | |
| 1064 | return TRUE; |
| 1065 | } |
| 1066 | |
| 1067 | |
| 1068 | /* |
| 1069 | * Finish up at the end of a Huffman-compressed scan. |
| 1070 | */ |
| 1071 | |
| 1072 | METHODDEF(void) |
| 1073 | finish_pass_huff (j_compress_ptr cinfo) |
| 1074 | { |
| 1075 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 1076 | working_state state; |
| 1077 | |
| 1078 | if (cinfo->progressive_mode) { |
| 1079 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
| 1080 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
| 1081 | |
| 1082 | /* Flush out any buffered data */ |
| 1083 | emit_eobrun(entropy); |
| 1084 | flush_bits_e(entropy); |
| 1085 | |
| 1086 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
| 1087 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
| 1088 | } else { |
| 1089 | /* Load up working state ... flush_bits needs it */ |
| 1090 | state.next_output_byte = cinfo->dest->next_output_byte; |
| 1091 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
| 1092 | ASSIGN_STATE(state.cur, entropy->saved); |
| 1093 | state.cinfo = cinfo; |
| 1094 | |
| 1095 | /* Flush out the last data */ |
| 1096 | if (! flush_bits_s(&state)) |
| 1097 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 1098 | |
| 1099 | /* Update state */ |
| 1100 | cinfo->dest->next_output_byte = state.next_output_byte; |
| 1101 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
| 1102 | ASSIGN_STATE(entropy->saved, state.cur); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | |
| 1107 | /* |
| 1108 | * Huffman coding optimization. |
| 1109 | * |
| 1110 | * We first scan the supplied data and count the number of uses of each symbol |
| 1111 | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
| 1112 | * Then we build a Huffman coding tree for the observed counts. |
| 1113 | * Symbols which are not needed at all for the particular image are not |
| 1114 | * assigned any code, which saves space in the DHT marker as well as in |
| 1115 | * the compressed data. |
| 1116 | */ |
| 1117 | |
| 1118 | |
| 1119 | /* Process a single block's worth of coefficients */ |
| 1120 | |
| 1121 | LOCAL(void) |
| 1122 | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
| 1123 | long dc_counts[], long ac_counts[]) |
| 1124 | { |
| 1125 | register int temp; |
| 1126 | register int nbits; |
| 1127 | register int k, r; |
| 1128 | int Se = cinfo->lim_Se; |
| 1129 | const int * natural_order = cinfo->natural_order; |
| 1130 | |
| 1131 | /* Encode the DC coefficient difference per section F.1.2.1 */ |
| 1132 | |
| 1133 | temp = block[0] - last_dc_val; |
| 1134 | if (temp < 0) |
| 1135 | temp = -temp; |
| 1136 | |
| 1137 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 1138 | nbits = 0; |
| 1139 | while (temp) { |
| 1140 | nbits++; |
| 1141 | temp >>= 1; |
| 1142 | } |
| 1143 | /* Check for out-of-range coefficient values. |
| 1144 | * Since we're encoding a difference, the range limit is twice as much. |
| 1145 | */ |
| 1146 | if (nbits > MAX_COEF_BITS+1) |
| 1147 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 1148 | |
| 1149 | /* Count the Huffman symbol for the number of bits */ |
| 1150 | dc_counts[nbits]++; |
| 1151 | |
| 1152 | /* Encode the AC coefficients per section F.1.2.2 */ |
| 1153 | |
| 1154 | r = 0; /* r = run length of zeros */ |
| 1155 | |
| 1156 | for (k = 1; k <= Se; k++) { |
| 1157 | if ((temp = block[natural_order[k]]) == 0) { |
| 1158 | r++; |
| 1159 | } else { |
| 1160 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
| 1161 | while (r > 15) { |
| 1162 | ac_counts[0xF0]++; |
| 1163 | r -= 16; |
| 1164 | } |
| 1165 | |
| 1166 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 1167 | if (temp < 0) |
| 1168 | temp = -temp; |
| 1169 | |
| 1170 | /* Find the number of bits needed for the magnitude of the coefficient */ |
| 1171 | nbits = 1; /* there must be at least one 1 bit */ |
| 1172 | while ((temp >>= 1)) |
| 1173 | nbits++; |
| 1174 | /* Check for out-of-range coefficient values */ |
| 1175 | if (nbits > MAX_COEF_BITS) |
| 1176 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
| 1177 | |
| 1178 | /* Count Huffman symbol for run length / number of bits */ |
| 1179 | ac_counts[(r << 4) + nbits]++; |
| 1180 | |
| 1181 | r = 0; |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | /* If the last coef(s) were zero, emit an end-of-block code */ |
| 1186 | if (r > 0) |
| 1187 | ac_counts[0]++; |
| 1188 | } |
| 1189 | |
| 1190 | |
| 1191 | /* |
| 1192 | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
| 1193 | * No data is actually output, so no suspension return is possible. |
| 1194 | */ |
| 1195 | |
| 1196 | METHODDEF(boolean) |
| 1197 | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 1198 | { |
| 1199 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 1200 | int blkn, ci; |
| 1201 | jpeg_component_info * compptr; |
| 1202 | |
| 1203 | /* Take care of restart intervals if needed */ |
| 1204 | if (cinfo->restart_interval) { |
| 1205 | if (entropy->restarts_to_go == 0) { |
| 1206 | /* Re-initialize DC predictions to 0 */ |
| 1207 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
| 1208 | entropy->saved.last_dc_val[ci] = 0; |
| 1209 | /* Update restart state */ |
| 1210 | entropy->restarts_to_go = cinfo->restart_interval; |
| 1211 | } |
| 1212 | entropy->restarts_to_go--; |
| 1213 | } |
| 1214 | |
| 1215 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 1216 | ci = cinfo->MCU_membership[blkn]; |
| 1217 | compptr = cinfo->cur_comp_info[ci]; |
| 1218 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
| 1219 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
| 1220 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
| 1221 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
| 1222 | } |
| 1223 | |
| 1224 | return TRUE; |
| 1225 | } |
| 1226 | |
| 1227 | |
| 1228 | /* |
| 1229 | * Generate the best Huffman code table for the given counts, fill htbl. |
| 1230 | * |
| 1231 | * The JPEG standard requires that no symbol be assigned a codeword of all |
| 1232 | * one bits (so that padding bits added at the end of a compressed segment |
| 1233 | * can't look like a valid code). Because of the canonical ordering of |
| 1234 | * codewords, this just means that there must be an unused slot in the |
| 1235 | * longest codeword length category. Section K.2 of the JPEG spec suggests |
| 1236 | * reserving such a slot by pretending that symbol 256 is a valid symbol |
| 1237 | * with count 1. In theory that's not optimal; giving it count zero but |
| 1238 | * including it in the symbol set anyway should give a better Huffman code. |
| 1239 | * But the theoretically better code actually seems to come out worse in |
| 1240 | * practice, because it produces more all-ones bytes (which incur stuffed |
| 1241 | * zero bytes in the final file). In any case the difference is tiny. |
| 1242 | * |
| 1243 | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
| 1244 | * If some symbols have a very small but nonzero probability, the Huffman tree |
| 1245 | * must be adjusted to meet the code length restriction. We currently use |
| 1246 | * the adjustment method suggested in JPEG section K.2. This method is *not* |
| 1247 | * optimal; it may not choose the best possible limited-length code. But |
| 1248 | * typically only very-low-frequency symbols will be given less-than-optimal |
| 1249 | * lengths, so the code is almost optimal. Experimental comparisons against |
| 1250 | * an optimal limited-length-code algorithm indicate that the difference is |
| 1251 | * microscopic --- usually less than a hundredth of a percent of total size. |
| 1252 | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
| 1253 | */ |
| 1254 | |
| 1255 | LOCAL(void) |
| 1256 | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
| 1257 | { |
| 1258 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
| 1259 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
| 1260 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
| 1261 | int others[257]; /* next symbol in current branch of tree */ |
| 1262 | int c1, c2; |
| 1263 | int p, i, j; |
| 1264 | long v; |
| 1265 | |
| 1266 | /* This algorithm is explained in section K.2 of the JPEG standard */ |
| 1267 | |
| 1268 | MEMZERO(bits, SIZEOF(bits)); |
| 1269 | MEMZERO(codesize, SIZEOF(codesize)); |
| 1270 | for (i = 0; i < 257; i++) |
| 1271 | others[i] = -1; /* init links to empty */ |
| 1272 | |
| 1273 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
| 1274 | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
| 1275 | * that no real symbol is given code-value of all ones, because 256 |
| 1276 | * will be placed last in the largest codeword category. |
| 1277 | */ |
| 1278 | |
| 1279 | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
| 1280 | |
| 1281 | for (;;) { |
| 1282 | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
| 1283 | /* In case of ties, take the larger symbol number */ |
| 1284 | c1 = -1; |
| 1285 | v = 1000000000L; |
| 1286 | for (i = 0; i <= 256; i++) { |
| 1287 | if (freq[i] && freq[i] <= v) { |
| 1288 | v = freq[i]; |
| 1289 | c1 = i; |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
| 1294 | /* In case of ties, take the larger symbol number */ |
| 1295 | c2 = -1; |
| 1296 | v = 1000000000L; |
| 1297 | for (i = 0; i <= 256; i++) { |
| 1298 | if (freq[i] && freq[i] <= v && i != c1) { |
| 1299 | v = freq[i]; |
| 1300 | c2 = i; |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | /* Done if we've merged everything into one frequency */ |
| 1305 | if (c2 < 0) |
| 1306 | break; |
| 1307 | |
| 1308 | /* Else merge the two counts/trees */ |
| 1309 | freq[c1] += freq[c2]; |
| 1310 | freq[c2] = 0; |
| 1311 | |
| 1312 | /* Increment the codesize of everything in c1's tree branch */ |
| 1313 | codesize[c1]++; |
| 1314 | while (others[c1] >= 0) { |
| 1315 | c1 = others[c1]; |
| 1316 | codesize[c1]++; |
| 1317 | } |
| 1318 | |
| 1319 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
| 1320 | |
| 1321 | /* Increment the codesize of everything in c2's tree branch */ |
| 1322 | codesize[c2]++; |
| 1323 | while (others[c2] >= 0) { |
| 1324 | c2 = others[c2]; |
| 1325 | codesize[c2]++; |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | /* Now count the number of symbols of each code length */ |
| 1330 | for (i = 0; i <= 256; i++) { |
| 1331 | if (codesize[i]) { |
| 1332 | /* The JPEG standard seems to think that this can't happen, */ |
| 1333 | /* but I'm paranoid... */ |
| 1334 | if (codesize[i] > MAX_CLEN) |
| 1335 | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); |
| 1336 | |
| 1337 | bits[codesize[i]]++; |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
| 1342 | * Huffman procedure assigned any such lengths, we must adjust the coding. |
| 1343 | * Here is what the JPEG spec says about how this next bit works: |
| 1344 | * Since symbols are paired for the longest Huffman code, the symbols are |
| 1345 | * removed from this length category two at a time. The prefix for the pair |
| 1346 | * (which is one bit shorter) is allocated to one of the pair; then, |
| 1347 | * skipping the BITS entry for that prefix length, a code word from the next |
| 1348 | * shortest nonzero BITS entry is converted into a prefix for two code words |
| 1349 | * one bit longer. |
| 1350 | */ |
| 1351 | |
| 1352 | for (i = MAX_CLEN; i > 16; i--) { |
| 1353 | while (bits[i] > 0) { |
| 1354 | j = i - 2; /* find length of new prefix to be used */ |
| 1355 | while (bits[j] == 0) |
| 1356 | j--; |
| 1357 | |
| 1358 | bits[i] -= 2; /* remove two symbols */ |
| 1359 | bits[i-1]++; /* one goes in this length */ |
| 1360 | bits[j+1] += 2; /* two new symbols in this length */ |
| 1361 | bits[j]--; /* symbol of this length is now a prefix */ |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
| 1366 | while (bits[i] == 0) /* find largest codelength still in use */ |
| 1367 | i--; |
| 1368 | bits[i]--; |
| 1369 | |
| 1370 | /* Return final symbol counts (only for lengths 0..16) */ |
| 1371 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
| 1372 | |
| 1373 | /* Return a list of the symbols sorted by code length */ |
| 1374 | /* It's not real clear to me why we don't need to consider the codelength |
| 1375 | * changes made above, but the JPEG spec seems to think this works. |
| 1376 | */ |
| 1377 | p = 0; |
| 1378 | for (i = 1; i <= MAX_CLEN; i++) { |
| 1379 | for (j = 0; j <= 255; j++) { |
| 1380 | if (codesize[j] == i) { |
| 1381 | htbl->huffval[p] = (UINT8) j; |
| 1382 | p++; |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
| 1388 | htbl->sent_table = FALSE; |
| 1389 | } |
| 1390 | |
| 1391 | |
| 1392 | /* |
| 1393 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
| 1394 | */ |
| 1395 | |
| 1396 | METHODDEF(void) |
| 1397 | finish_pass_gather (j_compress_ptr cinfo) |
| 1398 | { |
| 1399 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 1400 | int ci, tbl; |
| 1401 | jpeg_component_info * compptr; |
| 1402 | JHUFF_TBL **htblptr; |
| 1403 | boolean did_dc[NUM_HUFF_TBLS]; |
| 1404 | boolean did_ac[NUM_HUFF_TBLS]; |
| 1405 | |
| 1406 | /* It's important not to apply jpeg_gen_optimal_table more than once |
| 1407 | * per table, because it clobbers the input frequency counts! |
| 1408 | */ |
| 1409 | if (cinfo->progressive_mode) |
| 1410 | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
| 1411 | emit_eobrun(entropy); |
| 1412 | |
| 1413 | MEMZERO(did_dc, SIZEOF(did_dc)); |
| 1414 | MEMZERO(did_ac, SIZEOF(did_ac)); |
| 1415 | |
| 1416 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 1417 | compptr = cinfo->cur_comp_info[ci]; |
| 1418 | /* DC needs no table for refinement scan */ |
| 1419 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| 1420 | tbl = compptr->dc_tbl_no; |
| 1421 | if (! did_dc[tbl]) { |
| 1422 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
| 1423 | if (*htblptr == NULL) |
| 1424 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| 1425 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); |
| 1426 | did_dc[tbl] = TRUE; |
| 1427 | } |
| 1428 | } |
| 1429 | /* AC needs no table when not present */ |
| 1430 | if (cinfo->Se) { |
| 1431 | tbl = compptr->ac_tbl_no; |
| 1432 | if (! did_ac[tbl]) { |
| 1433 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
| 1434 | if (*htblptr == NULL) |
| 1435 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
| 1436 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); |
| 1437 | did_ac[tbl] = TRUE; |
| 1438 | } |
| 1439 | } |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | |
| 1444 | /* |
| 1445 | * Initialize for a Huffman-compressed scan. |
| 1446 | * If gather_statistics is TRUE, we do not output anything during the scan, |
| 1447 | * just count the Huffman symbols used and generate Huffman code tables. |
| 1448 | */ |
| 1449 | |
| 1450 | METHODDEF(void) |
| 1451 | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
| 1452 | { |
| 1453 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
| 1454 | int ci, tbl; |
| 1455 | jpeg_component_info * compptr; |
| 1456 | |
| 1457 | if (gather_statistics) |
| 1458 | entropy->pub.finish_pass = finish_pass_gather; |
| 1459 | else |
| 1460 | entropy->pub.finish_pass = finish_pass_huff; |
| 1461 | |
| 1462 | if (cinfo->progressive_mode) { |
| 1463 | entropy->cinfo = cinfo; |
| 1464 | entropy->gather_statistics = gather_statistics; |
| 1465 | |
| 1466 | /* We assume jcmaster.c already validated the scan parameters. */ |
| 1467 | |
| 1468 | /* Select execution routine */ |
| 1469 | if (cinfo->Ah == 0) { |
| 1470 | if (cinfo->Ss == 0) |
| 1471 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
| 1472 | else |
| 1473 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
| 1474 | } else { |
| 1475 | if (cinfo->Ss == 0) |
| 1476 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| 1477 | else { |
| 1478 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| 1479 | /* AC refinement needs a correction bit buffer */ |
| 1480 | if (entropy->bit_buffer == NULL) |
| 1481 | entropy->bit_buffer = (char *) |
| 1482 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1483 | MAX_CORR_BITS * SIZEOF(char)); |
| 1484 | } |
| 1485 | } |
| 1486 | |
| 1487 | /* Initialize AC stuff */ |
| 1488 | entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 1489 | entropy->EOBRUN = 0; |
| 1490 | entropy->BE = 0; |
| 1491 | } else { |
| 1492 | if (gather_statistics) |
| 1493 | entropy->pub.encode_mcu = encode_mcu_gather; |
| 1494 | else |
| 1495 | entropy->pub.encode_mcu = encode_mcu_huff; |
| 1496 | } |
| 1497 | |
| 1498 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 1499 | compptr = cinfo->cur_comp_info[ci]; |
| 1500 | /* DC needs no table for refinement scan */ |
| 1501 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| 1502 | tbl = compptr->dc_tbl_no; |
| 1503 | if (gather_statistics) { |
| 1504 | /* Check for invalid table index */ |
| 1505 | /* (make_c_derived_tbl does this in the other path) */ |
| 1506 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
| 1507 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
| 1508 | /* Allocate and zero the statistics tables */ |
| 1509 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
| 1510 | if (entropy->dc_count_ptrs[tbl] == NULL) |
| 1511 | entropy->dc_count_ptrs[tbl] = (long *) |
| 1512 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1513 | 257 * SIZEOF(long)); |
| 1514 | MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); |
| 1515 | } else { |
| 1516 | /* Compute derived values for Huffman tables */ |
| 1517 | /* We may do this more than once for a table, but it's not expensive */ |
| 1518 | jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, |
| 1519 | & entropy->dc_derived_tbls[tbl]); |
| 1520 | } |
| 1521 | /* Initialize DC predictions to 0 */ |
| 1522 | entropy->saved.last_dc_val[ci] = 0; |
| 1523 | } |
| 1524 | /* AC needs no table when not present */ |
| 1525 | if (cinfo->Se) { |
| 1526 | tbl = compptr->ac_tbl_no; |
| 1527 | if (gather_statistics) { |
| 1528 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
| 1529 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
| 1530 | if (entropy->ac_count_ptrs[tbl] == NULL) |
| 1531 | entropy->ac_count_ptrs[tbl] = (long *) |
| 1532 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1533 | 257 * SIZEOF(long)); |
| 1534 | MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); |
| 1535 | } else { |
| 1536 | jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, |
| 1537 | & entropy->ac_derived_tbls[tbl]); |
| 1538 | } |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | /* Initialize bit buffer to empty */ |
| 1543 | entropy->saved.put_buffer = 0; |
| 1544 | entropy->saved.put_bits = 0; |
| 1545 | |
| 1546 | /* Initialize restart stuff */ |
| 1547 | entropy->restarts_to_go = cinfo->restart_interval; |
| 1548 | entropy->next_restart_num = 0; |
| 1549 | } |
| 1550 | |
| 1551 | |
| 1552 | /* |
| 1553 | * Module initialization routine for Huffman entropy encoding. |
| 1554 | */ |
| 1555 | |
| 1556 | GLOBAL(void) |
| 1557 | jinit_huff_encoder (j_compress_ptr cinfo) |
| 1558 | { |
| 1559 | huff_entropy_ptr entropy; |
| 1560 | int i; |
| 1561 | |
| 1562 | entropy = (huff_entropy_ptr) |
| 1563 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 1564 | SIZEOF(huff_entropy_encoder)); |
| 1565 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| 1566 | entropy->pub.start_pass = start_pass_huff; |
| 1567 | |
| 1568 | /* Mark tables unallocated */ |
| 1569 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
| 1570 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
| 1571 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
| 1572 | } |
| 1573 | |
| 1574 | if (cinfo->progressive_mode) |
| 1575 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
| 1576 | } |