Parker Schuh | ebf887e | 2016-01-10 18:04:04 -0800 | [diff] [blame] | 1 | /* |
| 2 | * jcarith.c |
| 3 | * |
| 4 | * Developed 1997-2011 by Guido Vollbeding. |
| 5 | * This file is part of the Independent JPEG Group's software. |
| 6 | * For conditions of distribution and use, see the accompanying README file. |
| 7 | * |
| 8 | * This file contains portable arithmetic entropy encoding routines for JPEG |
| 9 | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
| 10 | * |
| 11 | * Both sequential and progressive modes are supported in this single module. |
| 12 | * |
| 13 | * Suspension is not currently supported in this module. |
| 14 | */ |
| 15 | |
| 16 | #define JPEG_INTERNALS |
| 17 | #include "jinclude.h" |
| 18 | #include "jpeglib.h" |
| 19 | |
| 20 | |
| 21 | /* Expanded entropy encoder object for arithmetic encoding. */ |
| 22 | |
| 23 | typedef struct { |
| 24 | struct jpeg_entropy_encoder pub; /* public fields */ |
| 25 | |
| 26 | INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
| 27 | INT32 a; /* A register, normalized size of coding interval */ |
| 28 | INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
| 29 | INT32 zc; /* counter for pending 0x00 output values which might * |
| 30 | * be discarded at the end ("Pacman" termination) */ |
| 31 | int ct; /* bit shift counter, determines when next byte will be written */ |
| 32 | int buffer; /* buffer for most recent output byte != 0xFF */ |
| 33 | |
| 34 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
| 35 | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
| 36 | |
| 37 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
| 38 | int next_restart_num; /* next restart number to write (0-7) */ |
| 39 | |
| 40 | /* Pointers to statistics areas (these workspaces have image lifespan) */ |
| 41 | unsigned char * dc_stats[NUM_ARITH_TBLS]; |
| 42 | unsigned char * ac_stats[NUM_ARITH_TBLS]; |
| 43 | |
| 44 | /* Statistics bin for coding with fixed probability 0.5 */ |
| 45 | unsigned char fixed_bin[4]; |
| 46 | } arith_entropy_encoder; |
| 47 | |
| 48 | typedef arith_entropy_encoder * arith_entropy_ptr; |
| 49 | |
| 50 | /* The following two definitions specify the allocation chunk size |
| 51 | * for the statistics area. |
| 52 | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
| 53 | * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
| 54 | * |
| 55 | * We use a compact representation with 1 byte per statistics bin, |
| 56 | * thus the numbers directly represent byte sizes. |
| 57 | * This 1 byte per statistics bin contains the meaning of the MPS |
| 58 | * (more probable symbol) in the highest bit (mask 0x80), and the |
| 59 | * index into the probability estimation state machine table |
| 60 | * in the lower bits (mask 0x7F). |
| 61 | */ |
| 62 | |
| 63 | #define DC_STAT_BINS 64 |
| 64 | #define AC_STAT_BINS 256 |
| 65 | |
| 66 | /* NOTE: Uncomment the following #define if you want to use the |
| 67 | * given formula for calculating the AC conditioning parameter Kx |
| 68 | * for spectral selection progressive coding in section G.1.3.2 |
| 69 | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
| 70 | * Although the spec and P&M authors claim that this "has proven |
| 71 | * to give good results for 8 bit precision samples", I'm not |
| 72 | * convinced yet that this is really beneficial. |
| 73 | * Early tests gave only very marginal compression enhancements |
| 74 | * (a few - around 5 or so - bytes even for very large files), |
| 75 | * which would turn out rather negative if we'd suppress the |
| 76 | * DAC (Define Arithmetic Conditioning) marker segments for |
| 77 | * the default parameters in the future. |
| 78 | * Note that currently the marker writing module emits 12-byte |
| 79 | * DAC segments for a full-component scan in a color image. |
| 80 | * This is not worth worrying about IMHO. However, since the |
| 81 | * spec defines the default values to be used if the tables |
| 82 | * are omitted (unlike Huffman tables, which are required |
| 83 | * anyway), one might optimize this behaviour in the future, |
| 84 | * and then it would be disadvantageous to use custom tables if |
| 85 | * they don't provide sufficient gain to exceed the DAC size. |
| 86 | * |
| 87 | * On the other hand, I'd consider it as a reasonable result |
| 88 | * that the conditioning has no significant influence on the |
| 89 | * compression performance. This means that the basic |
| 90 | * statistical model is already rather stable. |
| 91 | * |
| 92 | * Thus, at the moment, we use the default conditioning values |
| 93 | * anyway, and do not use the custom formula. |
| 94 | * |
| 95 | #define CALCULATE_SPECTRAL_CONDITIONING |
| 96 | */ |
| 97 | |
| 98 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
| 99 | * We assume that int right shift is unsigned if INT32 right shift is, |
| 100 | * which should be safe. |
| 101 | */ |
| 102 | |
| 103 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
| 104 | #define ISHIFT_TEMPS int ishift_temp; |
| 105 | #define IRIGHT_SHIFT(x,shft) \ |
| 106 | ((ishift_temp = (x)) < 0 ? \ |
| 107 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
| 108 | (ishift_temp >> (shft))) |
| 109 | #else |
| 110 | #define ISHIFT_TEMPS |
| 111 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
| 112 | #endif |
| 113 | |
| 114 | |
| 115 | LOCAL(void) |
| 116 | emit_byte (int val, j_compress_ptr cinfo) |
| 117 | /* Write next output byte; we do not support suspension in this module. */ |
| 118 | { |
| 119 | struct jpeg_destination_mgr * dest = cinfo->dest; |
| 120 | |
| 121 | *dest->next_output_byte++ = (JOCTET) val; |
| 122 | if (--dest->free_in_buffer == 0) |
| 123 | if (! (*dest->empty_output_buffer) (cinfo)) |
| 124 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
| 125 | } |
| 126 | |
| 127 | |
| 128 | /* |
| 129 | * Finish up at the end of an arithmetic-compressed scan. |
| 130 | */ |
| 131 | |
| 132 | METHODDEF(void) |
| 133 | finish_pass (j_compress_ptr cinfo) |
| 134 | { |
| 135 | arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| 136 | INT32 temp; |
| 137 | |
| 138 | /* Section D.1.8: Termination of encoding */ |
| 139 | |
| 140 | /* Find the e->c in the coding interval with the largest |
| 141 | * number of trailing zero bits */ |
| 142 | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
| 143 | e->c = temp + 0x8000L; |
| 144 | else |
| 145 | e->c = temp; |
| 146 | /* Send remaining bytes to output */ |
| 147 | e->c <<= e->ct; |
| 148 | if (e->c & 0xF8000000L) { |
| 149 | /* One final overflow has to be handled */ |
| 150 | if (e->buffer >= 0) { |
| 151 | if (e->zc) |
| 152 | do emit_byte(0x00, cinfo); |
| 153 | while (--e->zc); |
| 154 | emit_byte(e->buffer + 1, cinfo); |
| 155 | if (e->buffer + 1 == 0xFF) |
| 156 | emit_byte(0x00, cinfo); |
| 157 | } |
| 158 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| 159 | e->sc = 0; |
| 160 | } else { |
| 161 | if (e->buffer == 0) |
| 162 | ++e->zc; |
| 163 | else if (e->buffer >= 0) { |
| 164 | if (e->zc) |
| 165 | do emit_byte(0x00, cinfo); |
| 166 | while (--e->zc); |
| 167 | emit_byte(e->buffer, cinfo); |
| 168 | } |
| 169 | if (e->sc) { |
| 170 | if (e->zc) |
| 171 | do emit_byte(0x00, cinfo); |
| 172 | while (--e->zc); |
| 173 | do { |
| 174 | emit_byte(0xFF, cinfo); |
| 175 | emit_byte(0x00, cinfo); |
| 176 | } while (--e->sc); |
| 177 | } |
| 178 | } |
| 179 | /* Output final bytes only if they are not 0x00 */ |
| 180 | if (e->c & 0x7FFF800L) { |
| 181 | if (e->zc) /* output final pending zero bytes */ |
| 182 | do emit_byte(0x00, cinfo); |
| 183 | while (--e->zc); |
| 184 | emit_byte((e->c >> 19) & 0xFF, cinfo); |
| 185 | if (((e->c >> 19) & 0xFF) == 0xFF) |
| 186 | emit_byte(0x00, cinfo); |
| 187 | if (e->c & 0x7F800L) { |
| 188 | emit_byte((e->c >> 11) & 0xFF, cinfo); |
| 189 | if (((e->c >> 11) & 0xFF) == 0xFF) |
| 190 | emit_byte(0x00, cinfo); |
| 191 | } |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | |
| 196 | /* |
| 197 | * The core arithmetic encoding routine (common in JPEG and JBIG). |
| 198 | * This needs to go as fast as possible. |
| 199 | * Machine-dependent optimization facilities |
| 200 | * are not utilized in this portable implementation. |
| 201 | * However, this code should be fairly efficient and |
| 202 | * may be a good base for further optimizations anyway. |
| 203 | * |
| 204 | * Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
| 205 | * |
| 206 | * Note: I've added full "Pacman" termination support to the |
| 207 | * byte output routines, which is equivalent to the optional |
| 208 | * Discard_final_zeros procedure (Figure D.15) in the spec. |
| 209 | * Thus, we always produce the shortest possible output |
| 210 | * stream compliant to the spec (no trailing zero bytes, |
| 211 | * except for FF stuffing). |
| 212 | * |
| 213 | * I've also introduced a new scheme for accessing |
| 214 | * the probability estimation state machine table, |
| 215 | * derived from Markus Kuhn's JBIG implementation. |
| 216 | */ |
| 217 | |
| 218 | LOCAL(void) |
| 219 | arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
| 220 | { |
| 221 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
| 222 | register unsigned char nl, nm; |
| 223 | register INT32 qe, temp; |
| 224 | register int sv; |
| 225 | |
| 226 | /* Fetch values from our compact representation of Table D.3(D.2): |
| 227 | * Qe values and probability estimation state machine |
| 228 | */ |
| 229 | sv = *st; |
| 230 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
| 231 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
| 232 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
| 233 | |
| 234 | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
| 235 | e->a -= qe; |
| 236 | if (val != (sv >> 7)) { |
| 237 | /* Encode the less probable symbol */ |
| 238 | if (e->a >= qe) { |
| 239 | /* If the interval size (qe) for the less probable symbol (LPS) |
| 240 | * is larger than the interval size for the MPS, then exchange |
| 241 | * the two symbols for coding efficiency, otherwise code the LPS |
| 242 | * as usual: */ |
| 243 | e->c += e->a; |
| 244 | e->a = qe; |
| 245 | } |
| 246 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
| 247 | } else { |
| 248 | /* Encode the more probable symbol */ |
| 249 | if (e->a >= 0x8000L) |
| 250 | return; /* A >= 0x8000 -> ready, no renormalization required */ |
| 251 | if (e->a < qe) { |
| 252 | /* If the interval size (qe) for the less probable symbol (LPS) |
| 253 | * is larger than the interval size for the MPS, then exchange |
| 254 | * the two symbols for coding efficiency: */ |
| 255 | e->c += e->a; |
| 256 | e->a = qe; |
| 257 | } |
| 258 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
| 259 | } |
| 260 | |
| 261 | /* Renormalization & data output per section D.1.6 */ |
| 262 | do { |
| 263 | e->a <<= 1; |
| 264 | e->c <<= 1; |
| 265 | if (--e->ct == 0) { |
| 266 | /* Another byte is ready for output */ |
| 267 | temp = e->c >> 19; |
| 268 | if (temp > 0xFF) { |
| 269 | /* Handle overflow over all stacked 0xFF bytes */ |
| 270 | if (e->buffer >= 0) { |
| 271 | if (e->zc) |
| 272 | do emit_byte(0x00, cinfo); |
| 273 | while (--e->zc); |
| 274 | emit_byte(e->buffer + 1, cinfo); |
| 275 | if (e->buffer + 1 == 0xFF) |
| 276 | emit_byte(0x00, cinfo); |
| 277 | } |
| 278 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
| 279 | e->sc = 0; |
| 280 | /* Note: The 3 spacer bits in the C register guarantee |
| 281 | * that the new buffer byte can't be 0xFF here |
| 282 | * (see page 160 in the P&M JPEG book). */ |
| 283 | e->buffer = temp & 0xFF; /* new output byte, might overflow later */ |
| 284 | } else if (temp == 0xFF) { |
| 285 | ++e->sc; /* stack 0xFF byte (which might overflow later) */ |
| 286 | } else { |
| 287 | /* Output all stacked 0xFF bytes, they will not overflow any more */ |
| 288 | if (e->buffer == 0) |
| 289 | ++e->zc; |
| 290 | else if (e->buffer >= 0) { |
| 291 | if (e->zc) |
| 292 | do emit_byte(0x00, cinfo); |
| 293 | while (--e->zc); |
| 294 | emit_byte(e->buffer, cinfo); |
| 295 | } |
| 296 | if (e->sc) { |
| 297 | if (e->zc) |
| 298 | do emit_byte(0x00, cinfo); |
| 299 | while (--e->zc); |
| 300 | do { |
| 301 | emit_byte(0xFF, cinfo); |
| 302 | emit_byte(0x00, cinfo); |
| 303 | } while (--e->sc); |
| 304 | } |
| 305 | e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ |
| 306 | } |
| 307 | e->c &= 0x7FFFFL; |
| 308 | e->ct += 8; |
| 309 | } |
| 310 | } while (e->a < 0x8000L); |
| 311 | } |
| 312 | |
| 313 | |
| 314 | /* |
| 315 | * Emit a restart marker & resynchronize predictions. |
| 316 | */ |
| 317 | |
| 318 | LOCAL(void) |
| 319 | emit_restart (j_compress_ptr cinfo, int restart_num) |
| 320 | { |
| 321 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 322 | int ci; |
| 323 | jpeg_component_info * compptr; |
| 324 | |
| 325 | finish_pass(cinfo); |
| 326 | |
| 327 | emit_byte(0xFF, cinfo); |
| 328 | emit_byte(JPEG_RST0 + restart_num, cinfo); |
| 329 | |
| 330 | /* Re-initialize statistics areas */ |
| 331 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 332 | compptr = cinfo->cur_comp_info[ci]; |
| 333 | /* DC needs no table for refinement scan */ |
| 334 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| 335 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
| 336 | /* Reset DC predictions to 0 */ |
| 337 | entropy->last_dc_val[ci] = 0; |
| 338 | entropy->dc_context[ci] = 0; |
| 339 | } |
| 340 | /* AC needs no table when not present */ |
| 341 | if (cinfo->Se) { |
| 342 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | /* Reset arithmetic encoding variables */ |
| 347 | entropy->c = 0; |
| 348 | entropy->a = 0x10000L; |
| 349 | entropy->sc = 0; |
| 350 | entropy->zc = 0; |
| 351 | entropy->ct = 11; |
| 352 | entropy->buffer = -1; /* empty */ |
| 353 | } |
| 354 | |
| 355 | |
| 356 | /* |
| 357 | * MCU encoding for DC initial scan (either spectral selection, |
| 358 | * or first pass of successive approximation). |
| 359 | */ |
| 360 | |
| 361 | METHODDEF(boolean) |
| 362 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 363 | { |
| 364 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 365 | JBLOCKROW block; |
| 366 | unsigned char *st; |
| 367 | int blkn, ci, tbl; |
| 368 | int v, v2, m; |
| 369 | ISHIFT_TEMPS |
| 370 | |
| 371 | /* Emit restart marker if needed */ |
| 372 | if (cinfo->restart_interval) { |
| 373 | if (entropy->restarts_to_go == 0) { |
| 374 | emit_restart(cinfo, entropy->next_restart_num); |
| 375 | entropy->restarts_to_go = cinfo->restart_interval; |
| 376 | entropy->next_restart_num++; |
| 377 | entropy->next_restart_num &= 7; |
| 378 | } |
| 379 | entropy->restarts_to_go--; |
| 380 | } |
| 381 | |
| 382 | /* Encode the MCU data blocks */ |
| 383 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 384 | block = MCU_data[blkn]; |
| 385 | ci = cinfo->MCU_membership[blkn]; |
| 386 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
| 387 | |
| 388 | /* Compute the DC value after the required point transform by Al. |
| 389 | * This is simply an arithmetic right shift. |
| 390 | */ |
| 391 | m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); |
| 392 | |
| 393 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| 394 | |
| 395 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 396 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 397 | |
| 398 | /* Figure F.4: Encode_DC_DIFF */ |
| 399 | if ((v = m - entropy->last_dc_val[ci]) == 0) { |
| 400 | arith_encode(cinfo, st, 0); |
| 401 | entropy->dc_context[ci] = 0; /* zero diff category */ |
| 402 | } else { |
| 403 | entropy->last_dc_val[ci] = m; |
| 404 | arith_encode(cinfo, st, 1); |
| 405 | /* Figure F.6: Encoding nonzero value v */ |
| 406 | /* Figure F.7: Encoding the sign of v */ |
| 407 | if (v > 0) { |
| 408 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| 409 | st += 2; /* Table F.4: SP = S0 + 2 */ |
| 410 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
| 411 | } else { |
| 412 | v = -v; |
| 413 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| 414 | st += 3; /* Table F.4: SN = S0 + 3 */ |
| 415 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
| 416 | } |
| 417 | /* Figure F.8: Encoding the magnitude category of v */ |
| 418 | m = 0; |
| 419 | if (v -= 1) { |
| 420 | arith_encode(cinfo, st, 1); |
| 421 | m = 1; |
| 422 | v2 = v; |
| 423 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 424 | while (v2 >>= 1) { |
| 425 | arith_encode(cinfo, st, 1); |
| 426 | m <<= 1; |
| 427 | st += 1; |
| 428 | } |
| 429 | } |
| 430 | arith_encode(cinfo, st, 0); |
| 431 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 432 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 433 | entropy->dc_context[ci] = 0; /* zero diff category */ |
| 434 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 435 | entropy->dc_context[ci] += 8; /* large diff category */ |
| 436 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 437 | st += 14; |
| 438 | while (m >>= 1) |
| 439 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | return TRUE; |
| 444 | } |
| 445 | |
| 446 | |
| 447 | /* |
| 448 | * MCU encoding for AC initial scan (either spectral selection, |
| 449 | * or first pass of successive approximation). |
| 450 | */ |
| 451 | |
| 452 | METHODDEF(boolean) |
| 453 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 454 | { |
| 455 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 456 | JBLOCKROW block; |
| 457 | unsigned char *st; |
| 458 | int tbl, k, ke; |
| 459 | int v, v2, m; |
| 460 | const int * natural_order; |
| 461 | |
| 462 | /* Emit restart marker if needed */ |
| 463 | if (cinfo->restart_interval) { |
| 464 | if (entropy->restarts_to_go == 0) { |
| 465 | emit_restart(cinfo, entropy->next_restart_num); |
| 466 | entropy->restarts_to_go = cinfo->restart_interval; |
| 467 | entropy->next_restart_num++; |
| 468 | entropy->next_restart_num &= 7; |
| 469 | } |
| 470 | entropy->restarts_to_go--; |
| 471 | } |
| 472 | |
| 473 | natural_order = cinfo->natural_order; |
| 474 | |
| 475 | /* Encode the MCU data block */ |
| 476 | block = MCU_data[0]; |
| 477 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 478 | |
| 479 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| 480 | |
| 481 | /* Establish EOB (end-of-block) index */ |
| 482 | for (ke = cinfo->Se; ke > 0; ke--) |
| 483 | /* We must apply the point transform by Al. For AC coefficients this |
| 484 | * is an integer division with rounding towards 0. To do this portably |
| 485 | * in C, we shift after obtaining the absolute value. |
| 486 | */ |
| 487 | if ((v = (*block)[natural_order[ke]]) >= 0) { |
| 488 | if (v >>= cinfo->Al) break; |
| 489 | } else { |
| 490 | v = -v; |
| 491 | if (v >>= cinfo->Al) break; |
| 492 | } |
| 493 | |
| 494 | /* Figure F.5: Encode_AC_Coefficients */ |
| 495 | for (k = cinfo->Ss; k <= ke; k++) { |
| 496 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 497 | arith_encode(cinfo, st, 0); /* EOB decision */ |
| 498 | for (;;) { |
| 499 | if ((v = (*block)[natural_order[k]]) >= 0) { |
| 500 | if (v >>= cinfo->Al) { |
| 501 | arith_encode(cinfo, st + 1, 1); |
| 502 | arith_encode(cinfo, entropy->fixed_bin, 0); |
| 503 | break; |
| 504 | } |
| 505 | } else { |
| 506 | v = -v; |
| 507 | if (v >>= cinfo->Al) { |
| 508 | arith_encode(cinfo, st + 1, 1); |
| 509 | arith_encode(cinfo, entropy->fixed_bin, 1); |
| 510 | break; |
| 511 | } |
| 512 | } |
| 513 | arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| 514 | } |
| 515 | st += 2; |
| 516 | /* Figure F.8: Encoding the magnitude category of v */ |
| 517 | m = 0; |
| 518 | if (v -= 1) { |
| 519 | arith_encode(cinfo, st, 1); |
| 520 | m = 1; |
| 521 | v2 = v; |
| 522 | if (v2 >>= 1) { |
| 523 | arith_encode(cinfo, st, 1); |
| 524 | m <<= 1; |
| 525 | st = entropy->ac_stats[tbl] + |
| 526 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 527 | while (v2 >>= 1) { |
| 528 | arith_encode(cinfo, st, 1); |
| 529 | m <<= 1; |
| 530 | st += 1; |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | arith_encode(cinfo, st, 0); |
| 535 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 536 | st += 14; |
| 537 | while (m >>= 1) |
| 538 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 539 | } |
| 540 | /* Encode EOB decision only if k <= cinfo->Se */ |
| 541 | if (k <= cinfo->Se) { |
| 542 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 543 | arith_encode(cinfo, st, 1); |
| 544 | } |
| 545 | |
| 546 | return TRUE; |
| 547 | } |
| 548 | |
| 549 | |
| 550 | /* |
| 551 | * MCU encoding for DC successive approximation refinement scan. |
| 552 | */ |
| 553 | |
| 554 | METHODDEF(boolean) |
| 555 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 556 | { |
| 557 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 558 | unsigned char *st; |
| 559 | int Al, blkn; |
| 560 | |
| 561 | /* Emit restart marker if needed */ |
| 562 | if (cinfo->restart_interval) { |
| 563 | if (entropy->restarts_to_go == 0) { |
| 564 | emit_restart(cinfo, entropy->next_restart_num); |
| 565 | entropy->restarts_to_go = cinfo->restart_interval; |
| 566 | entropy->next_restart_num++; |
| 567 | entropy->next_restart_num &= 7; |
| 568 | } |
| 569 | entropy->restarts_to_go--; |
| 570 | } |
| 571 | |
| 572 | st = entropy->fixed_bin; /* use fixed probability estimation */ |
| 573 | Al = cinfo->Al; |
| 574 | |
| 575 | /* Encode the MCU data blocks */ |
| 576 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 577 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
| 578 | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
| 579 | } |
| 580 | |
| 581 | return TRUE; |
| 582 | } |
| 583 | |
| 584 | |
| 585 | /* |
| 586 | * MCU encoding for AC successive approximation refinement scan. |
| 587 | */ |
| 588 | |
| 589 | METHODDEF(boolean) |
| 590 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 591 | { |
| 592 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 593 | JBLOCKROW block; |
| 594 | unsigned char *st; |
| 595 | int tbl, k, ke, kex; |
| 596 | int v; |
| 597 | const int * natural_order; |
| 598 | |
| 599 | /* Emit restart marker if needed */ |
| 600 | if (cinfo->restart_interval) { |
| 601 | if (entropy->restarts_to_go == 0) { |
| 602 | emit_restart(cinfo, entropy->next_restart_num); |
| 603 | entropy->restarts_to_go = cinfo->restart_interval; |
| 604 | entropy->next_restart_num++; |
| 605 | entropy->next_restart_num &= 7; |
| 606 | } |
| 607 | entropy->restarts_to_go--; |
| 608 | } |
| 609 | |
| 610 | natural_order = cinfo->natural_order; |
| 611 | |
| 612 | /* Encode the MCU data block */ |
| 613 | block = MCU_data[0]; |
| 614 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
| 615 | |
| 616 | /* Section G.1.3.3: Encoding of AC coefficients */ |
| 617 | |
| 618 | /* Establish EOB (end-of-block) index */ |
| 619 | for (ke = cinfo->Se; ke > 0; ke--) |
| 620 | /* We must apply the point transform by Al. For AC coefficients this |
| 621 | * is an integer division with rounding towards 0. To do this portably |
| 622 | * in C, we shift after obtaining the absolute value. |
| 623 | */ |
| 624 | if ((v = (*block)[natural_order[ke]]) >= 0) { |
| 625 | if (v >>= cinfo->Al) break; |
| 626 | } else { |
| 627 | v = -v; |
| 628 | if (v >>= cinfo->Al) break; |
| 629 | } |
| 630 | |
| 631 | /* Establish EOBx (previous stage end-of-block) index */ |
| 632 | for (kex = ke; kex > 0; kex--) |
| 633 | if ((v = (*block)[natural_order[kex]]) >= 0) { |
| 634 | if (v >>= cinfo->Ah) break; |
| 635 | } else { |
| 636 | v = -v; |
| 637 | if (v >>= cinfo->Ah) break; |
| 638 | } |
| 639 | |
| 640 | /* Figure G.10: Encode_AC_Coefficients_SA */ |
| 641 | for (k = cinfo->Ss; k <= ke; k++) { |
| 642 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 643 | if (k > kex) |
| 644 | arith_encode(cinfo, st, 0); /* EOB decision */ |
| 645 | for (;;) { |
| 646 | if ((v = (*block)[natural_order[k]]) >= 0) { |
| 647 | if (v >>= cinfo->Al) { |
| 648 | if (v >> 1) /* previously nonzero coef */ |
| 649 | arith_encode(cinfo, st + 2, (v & 1)); |
| 650 | else { /* newly nonzero coef */ |
| 651 | arith_encode(cinfo, st + 1, 1); |
| 652 | arith_encode(cinfo, entropy->fixed_bin, 0); |
| 653 | } |
| 654 | break; |
| 655 | } |
| 656 | } else { |
| 657 | v = -v; |
| 658 | if (v >>= cinfo->Al) { |
| 659 | if (v >> 1) /* previously nonzero coef */ |
| 660 | arith_encode(cinfo, st + 2, (v & 1)); |
| 661 | else { /* newly nonzero coef */ |
| 662 | arith_encode(cinfo, st + 1, 1); |
| 663 | arith_encode(cinfo, entropy->fixed_bin, 1); |
| 664 | } |
| 665 | break; |
| 666 | } |
| 667 | } |
| 668 | arith_encode(cinfo, st + 1, 0); st += 3; k++; |
| 669 | } |
| 670 | } |
| 671 | /* Encode EOB decision only if k <= cinfo->Se */ |
| 672 | if (k <= cinfo->Se) { |
| 673 | st = entropy->ac_stats[tbl] + 3 * (k - 1); |
| 674 | arith_encode(cinfo, st, 1); |
| 675 | } |
| 676 | |
| 677 | return TRUE; |
| 678 | } |
| 679 | |
| 680 | |
| 681 | /* |
| 682 | * Encode and output one MCU's worth of arithmetic-compressed coefficients. |
| 683 | */ |
| 684 | |
| 685 | METHODDEF(boolean) |
| 686 | encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
| 687 | { |
| 688 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 689 | jpeg_component_info * compptr; |
| 690 | JBLOCKROW block; |
| 691 | unsigned char *st; |
| 692 | int blkn, ci, tbl, k, ke; |
| 693 | int v, v2, m; |
| 694 | const int * natural_order; |
| 695 | |
| 696 | /* Emit restart marker if needed */ |
| 697 | if (cinfo->restart_interval) { |
| 698 | if (entropy->restarts_to_go == 0) { |
| 699 | emit_restart(cinfo, entropy->next_restart_num); |
| 700 | entropy->restarts_to_go = cinfo->restart_interval; |
| 701 | entropy->next_restart_num++; |
| 702 | entropy->next_restart_num &= 7; |
| 703 | } |
| 704 | entropy->restarts_to_go--; |
| 705 | } |
| 706 | |
| 707 | natural_order = cinfo->natural_order; |
| 708 | |
| 709 | /* Encode the MCU data blocks */ |
| 710 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
| 711 | block = MCU_data[blkn]; |
| 712 | ci = cinfo->MCU_membership[blkn]; |
| 713 | compptr = cinfo->cur_comp_info[ci]; |
| 714 | |
| 715 | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
| 716 | |
| 717 | tbl = compptr->dc_tbl_no; |
| 718 | |
| 719 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
| 720 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
| 721 | |
| 722 | /* Figure F.4: Encode_DC_DIFF */ |
| 723 | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
| 724 | arith_encode(cinfo, st, 0); |
| 725 | entropy->dc_context[ci] = 0; /* zero diff category */ |
| 726 | } else { |
| 727 | entropy->last_dc_val[ci] = (*block)[0]; |
| 728 | arith_encode(cinfo, st, 1); |
| 729 | /* Figure F.6: Encoding nonzero value v */ |
| 730 | /* Figure F.7: Encoding the sign of v */ |
| 731 | if (v > 0) { |
| 732 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
| 733 | st += 2; /* Table F.4: SP = S0 + 2 */ |
| 734 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
| 735 | } else { |
| 736 | v = -v; |
| 737 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
| 738 | st += 3; /* Table F.4: SN = S0 + 3 */ |
| 739 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
| 740 | } |
| 741 | /* Figure F.8: Encoding the magnitude category of v */ |
| 742 | m = 0; |
| 743 | if (v -= 1) { |
| 744 | arith_encode(cinfo, st, 1); |
| 745 | m = 1; |
| 746 | v2 = v; |
| 747 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
| 748 | while (v2 >>= 1) { |
| 749 | arith_encode(cinfo, st, 1); |
| 750 | m <<= 1; |
| 751 | st += 1; |
| 752 | } |
| 753 | } |
| 754 | arith_encode(cinfo, st, 0); |
| 755 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
| 756 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
| 757 | entropy->dc_context[ci] = 0; /* zero diff category */ |
| 758 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
| 759 | entropy->dc_context[ci] += 8; /* large diff category */ |
| 760 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 761 | st += 14; |
| 762 | while (m >>= 1) |
| 763 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 764 | } |
| 765 | |
| 766 | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
| 767 | |
| 768 | if ((ke = cinfo->lim_Se) == 0) continue; |
| 769 | tbl = compptr->ac_tbl_no; |
| 770 | |
| 771 | /* Establish EOB (end-of-block) index */ |
| 772 | do { |
| 773 | if ((*block)[natural_order[ke]]) break; |
| 774 | } while (--ke); |
| 775 | |
| 776 | /* Figure F.5: Encode_AC_Coefficients */ |
| 777 | for (k = 0; k < ke;) { |
| 778 | st = entropy->ac_stats[tbl] + 3 * k; |
| 779 | arith_encode(cinfo, st, 0); /* EOB decision */ |
| 780 | while ((v = (*block)[natural_order[++k]]) == 0) { |
| 781 | arith_encode(cinfo, st + 1, 0); |
| 782 | st += 3; |
| 783 | } |
| 784 | arith_encode(cinfo, st + 1, 1); |
| 785 | /* Figure F.6: Encoding nonzero value v */ |
| 786 | /* Figure F.7: Encoding the sign of v */ |
| 787 | if (v > 0) { |
| 788 | arith_encode(cinfo, entropy->fixed_bin, 0); |
| 789 | } else { |
| 790 | v = -v; |
| 791 | arith_encode(cinfo, entropy->fixed_bin, 1); |
| 792 | } |
| 793 | st += 2; |
| 794 | /* Figure F.8: Encoding the magnitude category of v */ |
| 795 | m = 0; |
| 796 | if (v -= 1) { |
| 797 | arith_encode(cinfo, st, 1); |
| 798 | m = 1; |
| 799 | v2 = v; |
| 800 | if (v2 >>= 1) { |
| 801 | arith_encode(cinfo, st, 1); |
| 802 | m <<= 1; |
| 803 | st = entropy->ac_stats[tbl] + |
| 804 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
| 805 | while (v2 >>= 1) { |
| 806 | arith_encode(cinfo, st, 1); |
| 807 | m <<= 1; |
| 808 | st += 1; |
| 809 | } |
| 810 | } |
| 811 | } |
| 812 | arith_encode(cinfo, st, 0); |
| 813 | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
| 814 | st += 14; |
| 815 | while (m >>= 1) |
| 816 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
| 817 | } |
| 818 | /* Encode EOB decision only if k < cinfo->lim_Se */ |
| 819 | if (k < cinfo->lim_Se) { |
| 820 | st = entropy->ac_stats[tbl] + 3 * k; |
| 821 | arith_encode(cinfo, st, 1); |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | return TRUE; |
| 826 | } |
| 827 | |
| 828 | |
| 829 | /* |
| 830 | * Initialize for an arithmetic-compressed scan. |
| 831 | */ |
| 832 | |
| 833 | METHODDEF(void) |
| 834 | start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
| 835 | { |
| 836 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
| 837 | int ci, tbl; |
| 838 | jpeg_component_info * compptr; |
| 839 | |
| 840 | if (gather_statistics) |
| 841 | /* Make sure to avoid that in the master control logic! |
| 842 | * We are fully adaptive here and need no extra |
| 843 | * statistics gathering pass! |
| 844 | */ |
| 845 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
| 846 | |
| 847 | /* We assume jcmaster.c already validated the progressive scan parameters. */ |
| 848 | |
| 849 | /* Select execution routines */ |
| 850 | if (cinfo->progressive_mode) { |
| 851 | if (cinfo->Ah == 0) { |
| 852 | if (cinfo->Ss == 0) |
| 853 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
| 854 | else |
| 855 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
| 856 | } else { |
| 857 | if (cinfo->Ss == 0) |
| 858 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
| 859 | else |
| 860 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
| 861 | } |
| 862 | } else |
| 863 | entropy->pub.encode_mcu = encode_mcu; |
| 864 | |
| 865 | /* Allocate & initialize requested statistics areas */ |
| 866 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| 867 | compptr = cinfo->cur_comp_info[ci]; |
| 868 | /* DC needs no table for refinement scan */ |
| 869 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
| 870 | tbl = compptr->dc_tbl_no; |
| 871 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 872 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 873 | if (entropy->dc_stats[tbl] == NULL) |
| 874 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 875 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
| 876 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
| 877 | /* Initialize DC predictions to 0 */ |
| 878 | entropy->last_dc_val[ci] = 0; |
| 879 | entropy->dc_context[ci] = 0; |
| 880 | } |
| 881 | /* AC needs no table when not present */ |
| 882 | if (cinfo->Se) { |
| 883 | tbl = compptr->ac_tbl_no; |
| 884 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
| 885 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
| 886 | if (entropy->ac_stats[tbl] == NULL) |
| 887 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
| 888 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
| 889 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
| 890 | #ifdef CALCULATE_SPECTRAL_CONDITIONING |
| 891 | if (cinfo->progressive_mode) |
| 892 | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
| 893 | cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
| 894 | #endif |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | /* Initialize arithmetic encoding variables */ |
| 899 | entropy->c = 0; |
| 900 | entropy->a = 0x10000L; |
| 901 | entropy->sc = 0; |
| 902 | entropy->zc = 0; |
| 903 | entropy->ct = 11; |
| 904 | entropy->buffer = -1; /* empty */ |
| 905 | |
| 906 | /* Initialize restart stuff */ |
| 907 | entropy->restarts_to_go = cinfo->restart_interval; |
| 908 | entropy->next_restart_num = 0; |
| 909 | } |
| 910 | |
| 911 | |
| 912 | /* |
| 913 | * Module initialization routine for arithmetic entropy encoding. |
| 914 | */ |
| 915 | |
| 916 | GLOBAL(void) |
| 917 | jinit_arith_encoder (j_compress_ptr cinfo) |
| 918 | { |
| 919 | arith_entropy_ptr entropy; |
| 920 | int i; |
| 921 | |
| 922 | entropy = (arith_entropy_ptr) |
| 923 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| 924 | SIZEOF(arith_entropy_encoder)); |
| 925 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
| 926 | entropy->pub.start_pass = start_pass; |
| 927 | entropy->pub.finish_pass = finish_pass; |
| 928 | |
| 929 | /* Mark tables unallocated */ |
| 930 | for (i = 0; i < NUM_ARITH_TBLS; i++) { |
| 931 | entropy->dc_stats[i] = NULL; |
| 932 | entropy->ac_stats[i] = NULL; |
| 933 | } |
| 934 | |
| 935 | /* Initialize index for fixed probability estimation */ |
| 936 | entropy->fixed_bin[0] = 113; |
| 937 | } |