blob: 0ca54cef3e1abf561914f877b2069ff73c8950d3 [file] [log] [blame]
Brian Silverman72890c22015-09-19 14:37:37 -04001// A simple quickref for Eigen. Add anything that's missing.
2// Main author: Keir Mierle
3
4#include <Eigen/Dense>
5
6Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
7Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
8Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
9Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
10Matrix3f P, Q, R; // 3x3 float matrix.
11Vector3f x, y, z; // 3x1 float matrix.
12RowVector3f a, b, c; // 1x3 float matrix.
13VectorXd v; // Dynamic column vector of doubles
14double s;
15
16// Basic usage
17// Eigen // Matlab // comments
18x.size() // length(x) // vector size
19C.rows() // size(C,1) // number of rows
20C.cols() // size(C,2) // number of columns
21x(i) // x(i+1) // Matlab is 1-based
22C(i,j) // C(i+1,j+1) //
23
24A.resize(4, 4); // Runtime error if assertions are on.
25B.resize(4, 9); // Runtime error if assertions are on.
26A.resize(3, 3); // Ok; size didn't change.
27B.resize(3, 9); // Ok; only dynamic cols changed.
28
29A << 1, 2, 3, // Initialize A. The elements can also be
30 4, 5, 6, // matrices, which are stacked along cols
31 7, 8, 9; // and then the rows are stacked.
32B << A, A, A; // B is three horizontally stacked A's.
33A.fill(10); // Fill A with all 10's.
34
Austin Schuh189376f2018-12-20 22:11:15 +110035// Eigen // Matlab
36MatrixXd::Identity(rows,cols) // eye(rows,cols)
37C.setIdentity(rows,cols) // C = eye(rows,cols)
38MatrixXd::Zero(rows,cols) // zeros(rows,cols)
39C.setZero(rows,cols) // C = zeros(rows,cols)
40MatrixXd::Ones(rows,cols) // ones(rows,cols)
41C.setOnes(rows,cols) // C = ones(rows,cols)
42MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
43C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
44VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
45v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
46VectorXi::LinSpaced(((hi-low)/step)+1, // low:step:hi
47 low,low+step*(size-1)) //
Brian Silverman72890c22015-09-19 14:37:37 -040048
49
50// Matrix slicing and blocks. All expressions listed here are read/write.
51// Templated size versions are faster. Note that Matlab is 1-based (a size N
52// vector is x(1)...x(N)).
53// Eigen // Matlab
54x.head(n) // x(1:n)
55x.head<n>() // x(1:n)
56x.tail(n) // x(end - n + 1: end)
57x.tail<n>() // x(end - n + 1: end)
58x.segment(i, n) // x(i+1 : i+n)
59x.segment<n>(i) // x(i+1 : i+n)
60P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
61P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
62P.row(i) // P(i+1, :)
63P.col(j) // P(:, j+1)
64P.leftCols<cols>() // P(:, 1:cols)
65P.leftCols(cols) // P(:, 1:cols)
66P.middleCols<cols>(j) // P(:, j+1:j+cols)
67P.middleCols(j, cols) // P(:, j+1:j+cols)
68P.rightCols<cols>() // P(:, end-cols+1:end)
69P.rightCols(cols) // P(:, end-cols+1:end)
70P.topRows<rows>() // P(1:rows, :)
71P.topRows(rows) // P(1:rows, :)
72P.middleRows<rows>(i) // P(i+1:i+rows, :)
73P.middleRows(i, rows) // P(i+1:i+rows, :)
74P.bottomRows<rows>() // P(end-rows+1:end, :)
75P.bottomRows(rows) // P(end-rows+1:end, :)
76P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
77P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
78P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
79P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
80P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
81P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
82P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
83P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
84
85// Of particular note is Eigen's swap function which is highly optimized.
86// Eigen // Matlab
Austin Schuh189376f2018-12-20 22:11:15 +110087R.row(i) = P.col(j); // R(i, :) = P(:, j)
Brian Silverman72890c22015-09-19 14:37:37 -040088R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
89
Austin Schuh189376f2018-12-20 22:11:15 +110090// Views, transpose, etc;
Brian Silverman72890c22015-09-19 14:37:37 -040091// Eigen // Matlab
92R.adjoint() // R'
Austin Schuh189376f2018-12-20 22:11:15 +110093R.transpose() // R.' or conj(R') // Read-write
94R.diagonal() // diag(R) // Read-write
Brian Silverman72890c22015-09-19 14:37:37 -040095x.asDiagonal() // diag(x)
Austin Schuh189376f2018-12-20 22:11:15 +110096R.transpose().colwise().reverse() // rot90(R) // Read-write
97R.rowwise().reverse() // fliplr(R)
98R.colwise().reverse() // flipud(R)
99R.replicate(i,j) // repmat(P,i,j)
100
Brian Silverman72890c22015-09-19 14:37:37 -0400101
102// All the same as Matlab, but matlab doesn't have *= style operators.
103// Matrix-vector. Matrix-matrix. Matrix-scalar.
104y = M*x; R = P*Q; R = P*s;
105a = b*M; R = P - Q; R = s*P;
106a *= M; R = P + Q; R = P/s;
107 R *= Q; R = s*P;
108 R += Q; R *= s;
109 R -= Q; R /= s;
110
111// Vectorized operations on each element independently
Austin Schuh189376f2018-12-20 22:11:15 +1100112// Eigen // Matlab
113R = P.cwiseProduct(Q); // R = P .* Q
114R = P.array() * s.array(); // R = P .* s
115R = P.cwiseQuotient(Q); // R = P ./ Q
116R = P.array() / Q.array(); // R = P ./ Q
117R = P.array() + s.array(); // R = P + s
118R = P.array() - s.array(); // R = P - s
119R.array() += s; // R = R + s
120R.array() -= s; // R = R - s
121R.array() < Q.array(); // R < Q
122R.array() <= Q.array(); // R <= Q
123R.cwiseInverse(); // 1 ./ P
124R.array().inverse(); // 1 ./ P
125R.array().sin() // sin(P)
126R.array().cos() // cos(P)
127R.array().pow(s) // P .^ s
128R.array().square() // P .^ 2
129R.array().cube() // P .^ 3
130R.cwiseSqrt() // sqrt(P)
131R.array().sqrt() // sqrt(P)
132R.array().exp() // exp(P)
133R.array().log() // log(P)
134R.cwiseMax(P) // max(R, P)
135R.array().max(P.array()) // max(R, P)
136R.cwiseMin(P) // min(R, P)
137R.array().min(P.array()) // min(R, P)
138R.cwiseAbs() // abs(P)
139R.array().abs() // abs(P)
140R.cwiseAbs2() // abs(P.^2)
141R.array().abs2() // abs(P.^2)
142(R.array() < s).select(P,Q ); // (R < s ? P : Q)
143R = (Q.array()==0).select(P,R) // R(Q==0) = P(Q==0)
144R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // with: scalar func(const scalar &x);
145
Brian Silverman72890c22015-09-19 14:37:37 -0400146
147// Reductions.
148int r, c;
149// Eigen // Matlab
150R.minCoeff() // min(R(:))
151R.maxCoeff() // max(R(:))
152s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
153s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
154R.sum() // sum(R(:))
155R.colwise().sum() // sum(R)
156R.rowwise().sum() // sum(R, 2) or sum(R')'
157R.prod() // prod(R(:))
158R.colwise().prod() // prod(R)
159R.rowwise().prod() // prod(R, 2) or prod(R')'
160R.trace() // trace(R)
161R.all() // all(R(:))
162R.colwise().all() // all(R)
163R.rowwise().all() // all(R, 2)
164R.any() // any(R(:))
165R.colwise().any() // any(R)
166R.rowwise().any() // any(R, 2)
167
168// Dot products, norms, etc.
169// Eigen // Matlab
170x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
171x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
172x.dot(y) // dot(x, y)
173x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
174
175//// Type conversion
Austin Schuh189376f2018-12-20 22:11:15 +1100176// Eigen // Matlab
177A.cast<double>(); // double(A)
178A.cast<float>(); // single(A)
179A.cast<int>(); // int32(A)
180A.real(); // real(A)
181A.imag(); // imag(A)
Brian Silverman72890c22015-09-19 14:37:37 -0400182// if the original type equals destination type, no work is done
183
184// Note that for most operations Eigen requires all operands to have the same type:
185MatrixXf F = MatrixXf::Zero(3,3);
186A += F; // illegal in Eigen. In Matlab A = A+F is allowed
187A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
188
189// Eigen can map existing memory into Eigen matrices.
190float array[3];
191Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
192int data[4] = {1, 2, 3, 4};
193Matrix2i mat2x2(data); // copies data into mat2x2
194Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
195MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
196
197// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
198x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
199x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
200x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
201x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
202x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
203// .ldlt() -> .matrixL() and .matrixD()
204// .llt() -> .matrixL()
205// .lu() -> .matrixL() and .matrixU()
206// .qr() -> .matrixQ() and .matrixR()
207// .svd() -> .matrixU(), .singularValues(), and .matrixV()
208
209// Eigenvalue problems
210// Eigen // Matlab
211A.eigenvalues(); // eig(A);
212EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
213eig.eigenvalues(); // diag(val)
214eig.eigenvectors(); // vec
215// For self-adjoint matrices use SelfAdjointEigenSolver<>