Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | |
| 2 | //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out |
| 3 | //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out |
| 4 | // -DNOGMM -DNOMTL -DCSPARSE |
| 5 | // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| 6 | #ifndef SIZE |
| 7 | #define SIZE 100000 |
| 8 | #endif |
| 9 | |
| 10 | #ifndef NBPERROW |
| 11 | #define NBPERROW 24 |
| 12 | #endif |
| 13 | |
| 14 | #ifndef REPEAT |
| 15 | #define REPEAT 2 |
| 16 | #endif |
| 17 | |
| 18 | #ifndef NBTRIES |
| 19 | #define NBTRIES 2 |
| 20 | #endif |
| 21 | |
| 22 | #ifndef KK |
| 23 | #define KK 10 |
| 24 | #endif |
| 25 | |
| 26 | #ifndef NOGOOGLE |
| 27 | #define EIGEN_GOOGLEHASH_SUPPORT |
| 28 | #include <google/sparse_hash_map> |
| 29 | #endif |
| 30 | |
| 31 | #include "BenchSparseUtil.h" |
| 32 | |
| 33 | #define CHECK_MEM |
| 34 | // #define CHECK_MEM std/**/::cout << "check mem\n"; getchar(); |
| 35 | |
| 36 | #define BENCH(X) \ |
| 37 | timer.reset(); \ |
| 38 | for (int _j=0; _j<NBTRIES; ++_j) { \ |
| 39 | timer.start(); \ |
| 40 | for (int _k=0; _k<REPEAT; ++_k) { \ |
| 41 | X \ |
| 42 | } timer.stop(); } |
| 43 | |
| 44 | typedef std::vector<Vector2i> Coordinates; |
| 45 | typedef std::vector<float> Values; |
| 46 | |
| 47 | EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals); |
| 48 | EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals); |
| 49 | EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals); |
| 50 | EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals); |
| 51 | EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); |
| 52 | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); |
| 53 | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); |
| 54 | EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals); |
| 55 | EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); |
| 56 | EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); |
| 57 | EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); |
| 58 | EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); |
| 59 | EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); |
| 60 | |
| 61 | int main(int argc, char *argv[]) |
| 62 | { |
| 63 | int rows = SIZE; |
| 64 | int cols = SIZE; |
| 65 | bool fullyrand = true; |
| 66 | |
| 67 | BenchTimer timer; |
| 68 | Coordinates coords; |
| 69 | Values values; |
| 70 | if(fullyrand) |
| 71 | { |
| 72 | Coordinates pool; |
| 73 | pool.reserve(cols*NBPERROW); |
| 74 | std::cerr << "fill pool" << "\n"; |
| 75 | for (int i=0; i<cols*NBPERROW; ) |
| 76 | { |
| 77 | // DynamicSparseMatrix<int> stencil(SIZE,SIZE); |
| 78 | Vector2i ij(internal::random<int>(0,rows-1),internal::random<int>(0,cols-1)); |
| 79 | // if(stencil.coeffRef(ij.x(), ij.y())==0) |
| 80 | { |
| 81 | // stencil.coeffRef(ij.x(), ij.y()) = 1; |
| 82 | pool.push_back(ij); |
| 83 | |
| 84 | } |
| 85 | ++i; |
| 86 | } |
| 87 | std::cerr << "pool ok" << "\n"; |
| 88 | int n = cols*NBPERROW*KK; |
| 89 | coords.reserve(n); |
| 90 | values.reserve(n); |
| 91 | for (int i=0; i<n; ++i) |
| 92 | { |
| 93 | int i = internal::random<int>(0,pool.size()); |
| 94 | coords.push_back(pool[i]); |
| 95 | values.push_back(internal::random<Scalar>()); |
| 96 | } |
| 97 | } |
| 98 | else |
| 99 | { |
| 100 | for (int j=0; j<cols; ++j) |
| 101 | for (int i=0; i<NBPERROW; ++i) |
| 102 | { |
| 103 | coords.push_back(Vector2i(internal::random<int>(0,rows-1),j)); |
| 104 | values.push_back(internal::random<Scalar>()); |
| 105 | } |
| 106 | } |
| 107 | std::cout << "nnz = " << coords.size() << "\n"; |
| 108 | CHECK_MEM |
| 109 | |
| 110 | // dense matrices |
| 111 | #ifdef DENSEMATRIX |
| 112 | { |
| 113 | BENCH(setrand_eigen_dense(coords,values);) |
| 114 | std::cout << "Eigen Dense\t" << timer.value() << "\n"; |
| 115 | } |
| 116 | #endif |
| 117 | |
| 118 | // eigen sparse matrices |
| 119 | // if (!fullyrand) |
| 120 | // { |
| 121 | // BENCH(setinnerrand_eigen(coords,values);) |
| 122 | // std::cout << "Eigen fillrand\t" << timer.value() << "\n"; |
| 123 | // } |
| 124 | { |
| 125 | BENCH(setrand_eigen_dynamic(coords,values);) |
| 126 | std::cout << "Eigen dynamic\t" << timer.value() << "\n"; |
| 127 | } |
| 128 | // { |
| 129 | // BENCH(setrand_eigen_compact(coords,values);) |
| 130 | // std::cout << "Eigen compact\t" << timer.value() << "\n"; |
| 131 | // } |
| 132 | { |
| 133 | BENCH(setrand_eigen_sumeq(coords,values);) |
| 134 | std::cout << "Eigen sumeq\t" << timer.value() << "\n"; |
| 135 | } |
| 136 | { |
| 137 | // BENCH(setrand_eigen_gnu_hash(coords,values);) |
| 138 | // std::cout << "Eigen std::map\t" << timer.value() << "\n"; |
| 139 | } |
| 140 | { |
| 141 | BENCH(setrand_scipy(coords,values);) |
| 142 | std::cout << "scipy\t" << timer.value() << "\n"; |
| 143 | } |
| 144 | #ifndef NOGOOGLE |
| 145 | { |
| 146 | BENCH(setrand_eigen_google_dense(coords,values);) |
| 147 | std::cout << "Eigen google dense\t" << timer.value() << "\n"; |
| 148 | } |
| 149 | { |
| 150 | BENCH(setrand_eigen_google_sparse(coords,values);) |
| 151 | std::cout << "Eigen google sparse\t" << timer.value() << "\n"; |
| 152 | } |
| 153 | #endif |
| 154 | |
| 155 | #ifndef NOUBLAS |
| 156 | { |
| 157 | // BENCH(setrand_ublas_mapped(coords,values);) |
| 158 | // std::cout << "ublas mapped\t" << timer.value() << "\n"; |
| 159 | } |
| 160 | { |
| 161 | BENCH(setrand_ublas_genvec(coords,values);) |
| 162 | std::cout << "ublas vecofvec\t" << timer.value() << "\n"; |
| 163 | } |
| 164 | /*{ |
| 165 | timer.reset(); |
| 166 | timer.start(); |
| 167 | for (int k=0; k<REPEAT; ++k) |
| 168 | setrand_ublas_compressed(coords,values); |
| 169 | timer.stop(); |
| 170 | std::cout << "ublas comp\t" << timer.value() << "\n"; |
| 171 | } |
| 172 | { |
| 173 | timer.reset(); |
| 174 | timer.start(); |
| 175 | for (int k=0; k<REPEAT; ++k) |
| 176 | setrand_ublas_coord(coords,values); |
| 177 | timer.stop(); |
| 178 | std::cout << "ublas coord\t" << timer.value() << "\n"; |
| 179 | }*/ |
| 180 | #endif |
| 181 | |
| 182 | |
| 183 | // MTL4 |
| 184 | #ifndef NOMTL |
| 185 | { |
| 186 | BENCH(setrand_mtl(coords,values)); |
| 187 | std::cout << "MTL\t" << timer.value() << "\n"; |
| 188 | } |
| 189 | #endif |
| 190 | |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) |
| 195 | { |
| 196 | using namespace Eigen; |
| 197 | SparseMatrix<Scalar> mat(SIZE,SIZE); |
| 198 | //mat.startFill(2000000/*coords.size()*/); |
| 199 | for (int i=0; i<coords.size(); ++i) |
| 200 | { |
| 201 | mat.insert(coords[i].x(), coords[i].y()) = vals[i]; |
| 202 | } |
| 203 | mat.finalize(); |
| 204 | CHECK_MEM; |
| 205 | return 0; |
| 206 | } |
| 207 | |
| 208 | EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals) |
| 209 | { |
| 210 | using namespace Eigen; |
| 211 | DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); |
| 212 | mat.reserve(coords.size()/10); |
| 213 | for (int i=0; i<coords.size(); ++i) |
| 214 | { |
| 215 | mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; |
| 216 | } |
| 217 | mat.finalize(); |
| 218 | CHECK_MEM; |
| 219 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 220 | } |
| 221 | |
| 222 | EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals) |
| 223 | { |
| 224 | using namespace Eigen; |
| 225 | int n = coords.size()/KK; |
| 226 | DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); |
| 227 | for (int j=0; j<KK; ++j) |
| 228 | { |
| 229 | DynamicSparseMatrix<Scalar> aux(SIZE,SIZE); |
| 230 | mat.reserve(n); |
| 231 | for (int i=j*n; i<(j+1)*n; ++i) |
| 232 | { |
| 233 | aux.insert(coords[i].x(), coords[i].y()) += vals[i]; |
| 234 | } |
| 235 | aux.finalize(); |
| 236 | mat += aux; |
| 237 | } |
| 238 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 239 | } |
| 240 | |
| 241 | EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals) |
| 242 | { |
| 243 | using namespace Eigen; |
| 244 | DynamicSparseMatrix<Scalar> setter(SIZE,SIZE); |
| 245 | setter.reserve(coords.size()/10); |
| 246 | for (int i=0; i<coords.size(); ++i) |
| 247 | { |
| 248 | setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; |
| 249 | } |
| 250 | SparseMatrix<Scalar> mat = setter; |
| 251 | CHECK_MEM; |
| 252 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 253 | } |
| 254 | |
| 255 | EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) |
| 256 | { |
| 257 | using namespace Eigen; |
| 258 | SparseMatrix<Scalar> mat(SIZE,SIZE); |
| 259 | { |
| 260 | RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat); |
| 261 | for (int i=0; i<coords.size(); ++i) |
| 262 | { |
| 263 | setter(coords[i].x(), coords[i].y()) += vals[i]; |
| 264 | } |
| 265 | CHECK_MEM; |
| 266 | } |
| 267 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 268 | } |
| 269 | |
| 270 | #ifndef NOGOOGLE |
| 271 | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) |
| 272 | { |
| 273 | using namespace Eigen; |
| 274 | SparseMatrix<Scalar> mat(SIZE,SIZE); |
| 275 | { |
| 276 | RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); |
| 277 | for (int i=0; i<coords.size(); ++i) |
| 278 | setter(coords[i].x(), coords[i].y()) += vals[i]; |
| 279 | CHECK_MEM; |
| 280 | } |
| 281 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 282 | } |
| 283 | |
| 284 | EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) |
| 285 | { |
| 286 | using namespace Eigen; |
| 287 | SparseMatrix<Scalar> mat(SIZE,SIZE); |
| 288 | { |
| 289 | RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); |
| 290 | for (int i=0; i<coords.size(); ++i) |
| 291 | setter(coords[i].x(), coords[i].y()) += vals[i]; |
| 292 | CHECK_MEM; |
| 293 | } |
| 294 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 295 | } |
| 296 | #endif |
| 297 | |
| 298 | |
| 299 | template <class T> |
| 300 | void coo_tocsr(const int n_row, |
| 301 | const int n_col, |
| 302 | const int nnz, |
| 303 | const Coordinates Aij, |
| 304 | const Values Ax, |
| 305 | int Bp[], |
| 306 | int Bj[], |
| 307 | T Bx[]) |
| 308 | { |
| 309 | //compute number of non-zero entries per row of A coo_tocsr |
| 310 | std::fill(Bp, Bp + n_row, 0); |
| 311 | |
| 312 | for (int n = 0; n < nnz; n++){ |
| 313 | Bp[Aij[n].x()]++; |
| 314 | } |
| 315 | |
| 316 | //cumsum the nnz per row to get Bp[] |
| 317 | for(int i = 0, cumsum = 0; i < n_row; i++){ |
| 318 | int temp = Bp[i]; |
| 319 | Bp[i] = cumsum; |
| 320 | cumsum += temp; |
| 321 | } |
| 322 | Bp[n_row] = nnz; |
| 323 | |
| 324 | //write Aj,Ax into Bj,Bx |
| 325 | for(int n = 0; n < nnz; n++){ |
| 326 | int row = Aij[n].x(); |
| 327 | int dest = Bp[row]; |
| 328 | |
| 329 | Bj[dest] = Aij[n].y(); |
| 330 | Bx[dest] = Ax[n]; |
| 331 | |
| 332 | Bp[row]++; |
| 333 | } |
| 334 | |
| 335 | for(int i = 0, last = 0; i <= n_row; i++){ |
| 336 | int temp = Bp[i]; |
| 337 | Bp[i] = last; |
| 338 | last = temp; |
| 339 | } |
| 340 | |
| 341 | //now Bp,Bj,Bx form a CSR representation (with possible duplicates) |
| 342 | } |
| 343 | |
| 344 | template< class T1, class T2 > |
| 345 | bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){ |
| 346 | return x.first < y.first; |
| 347 | } |
| 348 | |
| 349 | |
| 350 | template<class I, class T> |
| 351 | void csr_sort_indices(const I n_row, |
| 352 | const I Ap[], |
| 353 | I Aj[], |
| 354 | T Ax[]) |
| 355 | { |
| 356 | std::vector< std::pair<I,T> > temp; |
| 357 | |
| 358 | for(I i = 0; i < n_row; i++){ |
| 359 | I row_start = Ap[i]; |
| 360 | I row_end = Ap[i+1]; |
| 361 | |
| 362 | temp.clear(); |
| 363 | |
| 364 | for(I jj = row_start; jj < row_end; jj++){ |
| 365 | temp.push_back(std::make_pair(Aj[jj],Ax[jj])); |
| 366 | } |
| 367 | |
| 368 | std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>); |
| 369 | |
| 370 | for(I jj = row_start, n = 0; jj < row_end; jj++, n++){ |
| 371 | Aj[jj] = temp[n].first; |
| 372 | Ax[jj] = temp[n].second; |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | template <class I, class T> |
| 378 | void csr_sum_duplicates(const I n_row, |
| 379 | const I n_col, |
| 380 | I Ap[], |
| 381 | I Aj[], |
| 382 | T Ax[]) |
| 383 | { |
| 384 | I nnz = 0; |
| 385 | I row_end = 0; |
| 386 | for(I i = 0; i < n_row; i++){ |
| 387 | I jj = row_end; |
| 388 | row_end = Ap[i+1]; |
| 389 | while( jj < row_end ){ |
| 390 | I j = Aj[jj]; |
| 391 | T x = Ax[jj]; |
| 392 | jj++; |
| 393 | while( jj < row_end && Aj[jj] == j ){ |
| 394 | x += Ax[jj]; |
| 395 | jj++; |
| 396 | } |
| 397 | Aj[nnz] = j; |
| 398 | Ax[nnz] = x; |
| 399 | nnz++; |
| 400 | } |
| 401 | Ap[i+1] = nnz; |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals) |
| 406 | { |
| 407 | using namespace Eigen; |
| 408 | SparseMatrix<Scalar> mat(SIZE,SIZE); |
| 409 | mat.resizeNonZeros(coords.size()); |
| 410 | // std::cerr << "setrand_scipy...\n"; |
| 411 | coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| 412 | // std::cerr << "coo_tocsr ok\n"; |
| 413 | |
| 414 | csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| 415 | |
| 416 | csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| 417 | |
| 418 | mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]); |
| 419 | |
| 420 | return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| 421 | } |
| 422 | |
| 423 | |
| 424 | #ifndef NOUBLAS |
| 425 | EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) |
| 426 | { |
| 427 | using namespace boost; |
| 428 | using namespace boost::numeric; |
| 429 | using namespace boost::numeric::ublas; |
| 430 | mapped_matrix<Scalar> aux(SIZE,SIZE); |
| 431 | for (int i=0; i<coords.size(); ++i) |
| 432 | { |
| 433 | aux(coords[i].x(), coords[i].y()) += vals[i]; |
| 434 | } |
| 435 | CHECK_MEM; |
| 436 | compressed_matrix<Scalar> mat(aux); |
| 437 | return 0;// &mat(coords[0].x(), coords[0].y()); |
| 438 | } |
| 439 | /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) |
| 440 | { |
| 441 | using namespace boost; |
| 442 | using namespace boost::numeric; |
| 443 | using namespace boost::numeric::ublas; |
| 444 | coordinate_matrix<Scalar> aux(SIZE,SIZE); |
| 445 | for (int i=0; i<coords.size(); ++i) |
| 446 | { |
| 447 | aux(coords[i].x(), coords[i].y()) = vals[i]; |
| 448 | } |
| 449 | compressed_matrix<Scalar> mat(aux); |
| 450 | return 0;//&mat(coords[0].x(), coords[0].y()); |
| 451 | } |
| 452 | EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) |
| 453 | { |
| 454 | using namespace boost; |
| 455 | using namespace boost::numeric; |
| 456 | using namespace boost::numeric::ublas; |
| 457 | compressed_matrix<Scalar> mat(SIZE,SIZE); |
| 458 | for (int i=0; i<coords.size(); ++i) |
| 459 | { |
| 460 | mat(coords[i].x(), coords[i].y()) = vals[i]; |
| 461 | } |
| 462 | return 0;//&mat(coords[0].x(), coords[0].y()); |
| 463 | }*/ |
| 464 | EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) |
| 465 | { |
| 466 | using namespace boost; |
| 467 | using namespace boost::numeric; |
| 468 | using namespace boost::numeric::ublas; |
| 469 | |
| 470 | // ublas::vector<coordinate_vector<Scalar> > foo; |
| 471 | generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE); |
| 472 | for (int i=0; i<coords.size(); ++i) |
| 473 | { |
| 474 | aux(coords[i].x(), coords[i].y()) += vals[i]; |
| 475 | } |
| 476 | CHECK_MEM; |
| 477 | compressed_matrix<Scalar,row_major> mat(aux); |
| 478 | return 0;//&mat(coords[0].x(), coords[0].y()); |
| 479 | } |
| 480 | #endif |
| 481 | |
| 482 | #ifndef NOMTL |
| 483 | EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); |
| 484 | #endif |
| 485 | |